Xuất bản mới
Cấn Văn Hảo, Naoki Kubota, Shuta Nakajima, Lipschitz-Type Estimate for the Frog Model with Bernoulli Initial Configuration, Mathematical Physics, Analysis and Geometry, Volume 28, article number 1, (2025) (SCI-E, Scopus) .
Đoàn Thái Sơn, Phan Thị Hương, Peter E. Kloeden, Theta-scheme for solving Caputo fractional differential equations, Electronic Journal of Differential Equations, Vol. 2025 (2025), No. 05, pp. 1-13 (SCI-E, Scopus) .
Đinh Sĩ Tiệp, Guo Feng, Nguyễn Hồng Đức, Phạm Tiến Sơn, Computation of the Łojasiewicz exponents of real bivariate analytic functions, Manuscripta Mathematica . Volume 176, 1 (2025) (SCI-E, Scopus) .

Monodromy of analytic functions

Người báo cáo: Lê Dũng Tráng (Aix-Marseilles University, France)


Thời gian: 09h30, thứ năm, ngày 23/3/2023.

Địa điểm: Phòng 507, nhà A6.

Tóm tắt: There is famous theorem of N. A'Campo which says that if germ of complex analytic function $fin {mathcal O}_{X,x}$ belongs to the square of the maximal ideal ${mathfrak M}_{X,x}$, the Lefschetz number of the monodromy of $f$ at the point $x$ is $0$. We shall show that it means that the geometric monodromy of $f$ at $x$ has no fixed point. We shall introduce all the notions necessary to understand this result.