Xuất bản mới
Cấn Văn Hảo, Naoki Kubota, Shuta Nakajima, Lipschitz-Type Estimate for the Frog Model with Bernoulli Initial Configuration, Mathematical Physics, Analysis and Geometry, Volume 28, article number 1, (2025) (SCI-E, Scopus) .
Đoàn Thái Sơn, Phan Thị Hương, Peter E. Kloeden, Theta-scheme for solving Caputo fractional differential equations, Electronic Journal of Differential Equations, Vol. 2025 (2025), No. 05, pp. 1-13 (SCI-E, Scopus) .
Đinh Sĩ Tiệp, Guo Feng, Nguyễn Hồng Đức, Phạm Tiến Sơn, Computation of the Łojasiewicz exponents of real bivariate analytic functions, Manuscripta Mathematica . Volume 176, 1 (2025) (SCI-E, Scopus) .

Tate modules and finitely generated projective modules over Laurent series rings

Người báo cáo: Đào Văn Thịnh


Thời gian: 16h30 thứ năm, ngày 11/05/2023

Địa điểm: Pòng 612, Nhà A6.

Link online: https://meet.google.com/yep-kbzk-eao?pli=1&authuser=4

Tóm tắt: In this talk, I will recall some deep results of Drinfeld ([Dri04]) on fpqc-local nature of the projectivity of modules over a Laurent series ring. These descent results are generalizations of a theorem of Raynaud-Gruson ([GR71]) which says that the property of a module being projective can be checked fpqc-locally. To state the results, we also need to introduce Tate modules and some related definitions. As an application, we can show that certain natural moduli stacks of local Galois representations are algebraic (or Ind-algebraic) stacks (see [EG19]).

References:

  • [Dri04] Vladimir Drinfeld, Infinite-dimensional vector bundles in algebraic geometry: an introduction, The unity of mathematics, Progr. Math., vol. 244, Birkhauser Boston, Boston, MA, 2006.
  • [EG19] Matthew Emerton and Toby Gee, Scheme-theoretic images of certain morphisms of stacks,  Journal of Algebraic Geometry (2019).
  • [GR71] Michel Raynaud and Laurent Gruson, Crit`eres de platitude et de projectivité. Techniques de planification d' un module, Invent. Math. 13 (1971)