Xuất bản mới
Cấn Văn Hảo, Naoki Kubota, Shuta Nakajima, Lipschitz-Type Estimate for the Frog Model with Bernoulli Initial Configuration, Mathematical Physics, Analysis and Geometry, Volume 28, article number 1, (2025) (SCI-E, Scopus) .
Đoàn Thái Sơn, Phan Thị Hương, Peter E. Kloeden, Theta-scheme for solving Caputo fractional differential equations, Electronic Journal of Differential Equations, Vol. 2025 (2025), No. 05, pp. 1-13 (SCI-E, Scopus) .
Đinh Sĩ Tiệp, Guo Feng, Nguyễn Hồng Đức, Phạm Tiến Sơn, Computation of the Łojasiewicz exponents of real bivariate analytic functions, Manuscripta Mathematica . Volume 176, 1 (2025) (SCI-E, Scopus) .

Logarithmic Fontaine Integration

Người báo cáo: Nguyễn Đăng Khải Hoàn


Thời gian: 16h30 thứ năm, ngày 18/05/2023

Địa điểm: Pòng 612, Nhà A6.

Link online: https://meet.google.com/yep-kbzk-eao?pli=1&authuser=4

Tóm tắt: Jean-Marc Fontaine, in his celebrated paper 'Formes Différentielles et Modules de Tate des Variétés Abéliennes sur les Corps Locaux ', introduced a morphism which is nowadays called Fontaine integration in order to prove the Hodge-Tate decomposition theorem for abelian varieties. In this talk, we will introduce the notion of logarithmic Fontaine integration and discuss several applications.