Xuất bản mới
Nguyễn Hữu Sáu, Piyapong Niamsup, Vũ Ngọc Phát, Linear Programming Approach to Constrained Stabilization of Positive Differential-Difference Equations With Unbounded Delay, Optimal Control Applications and Methods, 2025; 46:2581--2594 (SCI-E, Scopus) .
Đỗ Hoàng Sơn, Vũ Đức Việt, Quantitative stability for the complex Monge-Ampère equations II, Calculus of Variations and Partial Differential Equations 64 (2025), no. 8, Paper No. 269 (SCI-E, Scopus) .
Giang Trung Hiếu, Existence and uniqueness results for a nonlinear Budiansky-Sanders shell model, Journal of Engineering Mathematics, Volume 151, article number 5, (2025) (SCI-E, Scopus) .

A polynomial basis for the stuffle algebra and applications

Người báo cáo: Nguyễn Chu Gia Vượng

Time: 9:30 -- 11:00, April 17th, 2024

Venue: Room 612, A6

Abstract: Classical multiple zeta values were introduced and studied by Euler two centuries ago. After a seminal paper of Zagier these objects have been actively studied in various areas of mathematics and physics such as arithmetic geometry, knot invariants, quantum field theory and Witten’s zeta functions. Surprisingly, there are several connections with the well-known shuffle algebra and the stuffle algebra. In this talk, we explore these connections in the characteristic p setting. In particular, we show that the stuffle algebra in characteristic p is a polynomial algebra. As applications, we deduce a formula for the transcendence degree of the algebra generated by multiple zeta values of small weights. This is a joint work with Tuan Ngo Dac and Lan Huong Pham.