PROPRIÉTÉS SPECTRALES LOCALES D'UNE MATRICE CARRÉE DES OPÉRATEURS
M. HOUIMDI, H. ZGUITTI
If $X$ and $Y$ are complex Banach spaces, then for $A\in\mathcal L(X)$, $B\in\mathcal L(Y)$ and $C\in\mathcal L(Y,X)$ we denote by $M_C$ the operator defined on $X\oplus Y$ by
$$ M_C=\begin{pmatrix} A&C\\ 0&B \end{pmatrix}.$$
When $B$ has SV EP, we show that $\sigma(M_C)=\sigma(A)\cup\sigma(B)$ for all $C\in\mathcal L(Y,X)$. And in the Hilbert space setting, this result gives a partial positive answer to the question 3 posed in [5].