logo_acta

Acta Mathematica Vietnamica

STABILITY OF FUNCTIONAL EQUATIONS OF SEVERAL VARIABLES WHICH ARE ADDITIVE OR QUADRATIC IN EACH VARIABLES IN FRÉCHET SPACES

MADJID ESHAGHI GORDJI, ALI EBADIAN, RASOUL AGHALARY

Abstract

In this paper, we establish the Hyers–Ulam–Rassias stability of the system of functional equations $$\begin{cases} f(x_1, x_2, \dots, x_{i_r−1}, a + b, x_{i_r+1}, \dots, x_n) = f(x_1, x_2, \dots, x_{i_r−1}, a, x_{i_r+1}, \dots, x_n) \\ +f(x_1, x_2, \dots, x_{i_r−1}, b, x_{i_r+1}, \dots, x_n), \\ f(x_1, x_2, \dots, x_{j_s−1}, a + b, x_{j_s+1}, \dots, x_n) + f(x_1, x_2, \dots, x_{j_s−1}, a − b, x_{j_s+1}, \dots, x_n)\\ = 2f(x_1, x_2, \dots, x_{j_s−1}, a, x_{j_s+1}, \dots, xn) + 2f(x_1, x_2, \dots, x_{j_s−1}, b, x_{j_s+1}, \dots, x_n)\end{cases}$$ in Fréchet spaces, where $1 \leq i_1 < i_2 < \dots < i_k < n,$ $1 < j_1 < j_2 < \dots < j_{n−k},$ ${1, 2, \dots, n} = \{i_1, i_2, \dots, i_k\} \cup \{j_1, j_2, \dots, j_{n−k}\}$.