ON UNIQUE RANGE SETS FOR HOLOMORPHIC MAPS SHARING HYPERSURFACES WITHOUT COUNTING MULTIPLICITY
HA TRAN PHUONG
In 1975, Fujimoto showed a result on the unique range set counting multiplicity for meromorphic maps from $\mathbb C^m$ to $\mathbb P^n(\mathbb C)$ with hyperplanes. Here we will prove some sufficient conditions of unique range sets ignoring multiplicity for algebraically non-degenerate holomorphic maps with hypersurfaces.