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ON UNIQUE RANGE SETS FOR HOLOMORPHIC MAPS
SHARING HYPERSURFACES WITHOUT COUNTING

MULTIPLICITY

HA TRAN PHUONG

Abstract. In 1975, Fujimoto showed a result on the unique range set count-
ing multiplicity for meromorphic maps from Cm to Pn(C) with hyperplanes.
Here we will prove some sufficient conditions of unique range sets ignoring
multiplicity for algebraically non-degenerate holomorphic maps with hyper-
surfaces.

1. Introduction

In 1926, Nevanlinna proved that two non-constant meromorphic functions of
one complex variable which attain same five distinct values at the same points,
must be identical. In 1975, Fujimoto (see [5]) generalized Nevanlinna’s result to
the case of meromorphic mappings of Cm into Pn(C). Since that time, this prob-
lem has been studied intensively. In this paper by using the second main theorem
with ramification of An-Phuong (see [1]) we give some uniqueness results for alge-
braically non-degenerate holomorphic curves sharing sufficiently many non-linear
hypersurfaces in projective space. To state our results, we first introduce some
notations.

Let f : C→ C ∪ {∞} be a meromorphic function, we say that a ∈ C is a zero
of f with multiplicity α if there exists a nowhere vanishing holomorphic function
g in a neighborhood U of a such that

f(z) = (z − a)αg(z).

Then, we write ordf (a) = α.
Let f : C → Pn(C) be a holomorphic map, and f = (f0, . . . , fn) be a reduced

representative of f , where f0, . . . , fn are entire functions on C without common
zeros. Let D be a hypersurface in Pn(C) of degree d and Q be a homogeneous
polynomial of degree d in n + 1 variables with coefficients in C defining D, we
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define

Ef (D) := {z ∈ C | Q ◦ f(z) = 0 ignoring multiplicity };
Ef (D) := {(z,m) ∈ C× N | Q ◦ f(z) = 0 and ordQ◦f (z) = m}.

Let D = {D1, . . . , Dq} be a collection of hypersurfaces, we define

Ef (D) :=
⋃
D∈D

Ef (D) and Ef (D) :=
⋃
D∈D

Ef (D).

Definition. A collection of hypersurfaces D = {D1, . . . , Dq} in Pn(C) is said
to be a separated unique range set ignoring multiplicity, denoted by SURSIM
(or separated unique range set counting multiplicity, denoted by SURSCM) for a
family of holomorphic maps F if for any pair of holomorphic maps f, g ∈ F , the
condition Ef (Dj) = Eg(Dj) (resp. Ef (Dj) = Eg(Dj)), for j = 1, . . . , q, implies
f ≡ g. A collection D is said to be a unique range set ignoring multiplicity, de-
noted by URSIM (or unique range set counting multiplicity, denoted by URSCM)
for a family of holomorphic maps F if for any pair of holomorphic maps f, g ∈ F ,
the condition Ef (D) = Eg(D) (resp. Ef (D) = Eg(D)) implies f ≡ g. The SUR-
SIM, SURSCM, URSIM, URSCM are called the unique range set for a family F
to the same.

Obviously, if D = {D1, . . . , Dq} is a URSIM (resp. URSCM) then D will be a
SURSIM (resp. SURSCM), but the converse is not true.

Recall that a collection of q > n hypersurfaces D = {D1, . . . , Dq} in Pn(C) is
said to be in general position if for any distinct i1, . . . , in+1 ∈ {1, . . . , q},

n+1⋂
k=1

Dik = ∅.

In 1975, Fujimoto (see [5]) showed that

Theorem A. Let H = {H1, . . . ,H3n+2} be a collection of 3n+ 2 hyperplanes in
general position in Pn(C), and f, g : Cm → Pn(C) be meromorphic maps such
that f(Cm) 6⊂ H and g(Cm) 6⊂ H for any H ∈ H. If

Ef (Hj) = Eg(Hj) for any Hj ∈ H

then f ≡ g.
By Theorem A, we have a SURSCM having 3n + 2 hyperplanes in general

position for the family of linearly nondegenerate meromorphic maps. In 1983,
Smiley (see [10]) proved a result on the unique range set for a special collection
of linearly nondegenerate meromorphic maps, which was given again in 1998 by
Fujimoto (see [6]) and was considered again by Dethloff and Tan (see [4]) in 2005.
In 2002 and 2003, An and Manh (see [2] and [9]) showed some results for SURSIM
for linearly nondegenerate meromorphic maps in hyperplanes. Recently, many
mathematicians study two following problems: finding properties of unique range
sets, and finding out a unique range set with the smallest number of elements
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as possible. Our contribution is to give unicity results for algebraically non-
degenerate holomorphic maps sharing sufficiently many hypersurfaces in general
position in projective space.

Now let D = {D1, . . . , Dq} be a collection of q hypersurfaces. For j = 1, . . . , q,
denote the degree of Dj by dj , and let d be the least common multiple of the dj
for j = 1, . . . , q. We define the minimal index of degrees of D by

δ := min{d1, . . . , dq},
and the bound of truncated level of D by

Bn(D) = 2n+1d
[
2n(n+ 1)n(d+ 1)

]n
.

Let f : C → Pn(C) be a non-constant holomorphic map. We denote by F(D, f)
the family of all algebraically nondegenerate holomorphic maps g : C → Pn(C)
satisfying the condition

g(z) = f(z) for any z ∈ Eg(D).

Furthermore, we define F∗(D, f) ⊆ F(D, f) to be the set of those maps g in
F(D, f) such that

Eg(Di) ∩ Eg(Dj) = ∅
for every i 6= j ∈ {1, . . . , q}.

In this paper, we obtained the following results

Theorem 1. Let f : C → Pn(C) be a non-constant holomorphic map and

D = {D1, . . . , Dq} be a collection of q > n+ 2 +
2nBn(D)

δ
hypersurfaces in gen-

eral position in Pn(C). Then, D is a URSIM for the family F(D, f).

Theorem 2. Let f : C → Pn(C) be a non-constant holomorphic map and

D = {D1, . . . , Dq} be a collection of q > n+ 2 +
2Bn(D)

δ
hypersurfaces in general

position in Pn(C). Then, D is a URSIM for the family F∗(D, f).
Note that, Theorem 1 and Theorem 2 have shown the sufficient conditions

of the URSIM for a collection of algebraically non-degenerate holomorphic maps
F(D, f) and F∗(D, f) in the case hypersurfaces. But the number of hypersurfaces
in the URSIM is large. It would be interesting if one can find a URSIM with
the smallest number of hypersurfaces or show other sufficient conditions. The
proofs of our theorems base on the second main theorem with ramification of
An-Phuong, which is shown in [1], and the technique of An-Manh (see [2]) to the
case of hypersurfaces.

2. Some notations and results in Nevanlinna-Cartan theory

In this section, we introduce some notations in Nevanlinna-Cartan theory and
recall some results, which are necessary for the proofs of the our main results.
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Let f : C → Pn(C) be a holomorphic map and f = (f0, . . . , fn) be a reduced
representative of f , where f0, . . . , fn are entire functions on C without common
zeros. The Nevanlinna-Cartan characteristic function Tf (r) is defined by

Tf (r) =
1

2π

∫ 2π

0
log ‖f(reiθ)‖dθ,

where ‖f(z)‖ = max{|f0(z)|, . . . , |fn(z)|}. The above definition is independent,
up to an additive constant, of the choice of the reduced representation of f .

Let D be a hypersurface in Pn(C) of degree d. Let Q be the homogeneous
polynomial of degree d defining D. The proximity function of f is defined by

mf (r,D) =
1

2π

∫ 2π

0
log
‖f(reiθ)‖d

|Q ◦ f(reiθ)|
dθ.

Let nf (r,D) be the number of zeros of Q ◦ f in the disk |z| 6 r, counting
multiplicity. For any positive integer k, let nf (r,D,6 k) be the number of zeros
having multiplicity 6 k of Q ◦ f in the disk |z| 6 r, counting multiplicity and let
nf (r,D,> k) be the number of zeros having multiplicity > k of Q ◦ f in the disk
|z| 6 r, counting multiplicity. The integrated counting functions are defined by

Nf (r,D) =
∫ r

0

nf (t,D)− nf (0, D)
t

dt+ nf (0, D) log r;

Nf,6k(r,D) =
∫ r

0

nf (t,D,6 k)− nf (0, D,6 k)
t

dt+ nf (0, D,6 k) log r;

Nf,>k(r,D) =
∫ r

0

nf (t,D,> k)− nf (0, D,> k)
t

dt+ nf (0, D,> k) log r.

For any positive integers ∆, k, let n∆
f (r,D) be the number of zeros of Q ◦ f in

the disk |z| 6 r, where any zero is counted with multiplicity if its multiplicity
is less than or equal to ∆, and ∆ times otherwise. Let n∆

f (r,D,6 k) (resp.
n∆
f (r,D,> k)) be the number of zeros having multiplicity 6 k (resp. > k) of Q◦f

in the disk |z| 6 r, where any zero is counted with multiplicity if its multiplicity
is less than or equal to ∆, and ∆ times otherwise, too. The integrated truncated
counting functions are defined by

N∆
f (r,D) =

∫ r

0

n∆
f (t,D)− n∆

f (0, D)
t

dt+ n∆
f (0, D) log r;

N∆
f,6k(r,D) =

∫ r

0

n∆
f (t,D,6 k)− n∆

f (0, D,6 k)
t

dt+ n∆
f (0, D,6 k) log r;

N∆
f,>k(r,D) =

∫ r

0

n∆
f (t,D,> k)− n∆

f (0, D,> k)
t

dt+ n∆
f (0, D,> k) log r.

We have the following lemma about properties of integrated counting functions
and integrated truncated counting ones.
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Lemma 2.1. With the above notations we have

1)Nf (r,D) = Nf,6k(r,D) +Nf,>k(r,D);

2)N∆
f (r,D) = N∆

f,6k(r,D) +N∆
f,>k(r,D);

3)N∆
f (r,D) 6 Nf (r,D);

4)N1
f (r,D) 6 N∆

f (r,D) 6 ∆N1
f (r,D);

5)N1
f,6k(r,D) 6 N∆

f,6k(r,D) 6 ∆N1
f,6k(r,D);

6)N1
f,>k(r,D) 6 N∆

f,>k(r,D) 6 ∆N1
f,>k(r,D);

7)
1

k + 1
N∆
f,6k(r,D) +N∆

f,>k(r,D) 6
∆

k + 1
Nf (r,D).

Proof. 1), 2), 3), 4), 5) and 6) are obvious by definitions of integrated counting
functions and integrated truncated counting functions. We prove 7). We have

1
k + 1

N∆
f,6k(r,D) +N∆

f,>k(r,D) 6
∆

k + 1
N1
f,6k(r,D) + ∆N1

f,>k(r,D)

6
∆

k + 1
Nf,6k(r,D) +

∆
k + 1

Nf,>k(r,D)

=
∆

k + 1
Nf (r,D).

�

A consequence of the Poisson-Jensen formula is the following:

First Main Theorem. Let f : C → Pn(C) be a holomorphic map, and D be
a hypersurface in Pn(C) of degree d. If f(C) 6⊂ D, then for every real number r
with 0 < r <∞,

mf (r,D) +Nf (r,D) = dTf (r) +O(1),

where O(1) is a constant independent of r.
In 2007, An and Phuong (see [1]) proved the following theorem

Theorem 2.2. Let f : C → Pn(C) be an algebraically non-degenerate holomor-
phic map, and let Dj , 1 6 j 6 q, be hypersurfaces in Pn(C) of degree dj in general
position. Let d be the least common multiple of the dj. Let 0 < ε < 1 and let

∆ > 2d
[
2n(n+ 1)n(d+ 1)ε−1

]n
.

Then

(q − (n+ 1)− ε)Tf (r) 6
q∑
j=1

d−1
j N∆

f (r,Dj),

where inequality holds for all large r outside a set of finite Lebesgue measure.
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3. Proofs of Theorem 1 and Theorem 2

To prove our theorems we need the following lemma.

Lemma 3.1 Let f : C → Pn(C) be an algebraically non-degenerate holomorphic
map and D1, . . . , Dq be hypersurfaces in Pn(C) of degree dj in general position.
Let d be the least common multiple of the dj. Then for any positive integer k and
0 < ε < 1, we have

q(k + 1−∆)− (n+ 1 + ε)(k + 1)
k

Tf (r) 6
q∑
j=1

1
dj
N∆
f,6k(r,Dj) +O(1),(3.1)

where ∆ = ∆(ε) = 2d
[
2n(n+ 1)n(d+ 1)ε−1

]n
and the inequality (3.1) holds for

all large r outside a set of finite Lebesgue measure.

Proof. Set D = {D1, . . . , Dq}, then for any Dj ∈ D, by Lemma 2.1 and First
Main Theorem we have

N∆
f (r,Dj) = N∆

f,6k(r,Dj) +N∆
f,>k(r,Dj)

=
k

k + 1
N∆
f,6k(r,Dj) +

1
k + 1

N∆
f,6k(r,Dj) +N∆

f,>k(r,Dj)

6
k

k + 1
N∆
f,6k(r,Dj) +

∆
k + 1

Nf (r,Dj)

6
k

k + 1
N∆
f,6k(r,Dj) +

∆dj
k + 1

Tf (r) +O(1),

so
1
dj
N∆
f (r,Dj) 6

k

dj(k + 1)
N∆
f,6k(r,Dj) +

∆
k + 1

Tf (r) +O(1).

This implies that
q∑
j=1

1
dj
N∆
f (r,Dj) 6

k

k + 1

q∑
j=1

1
dj
N∆
f,6k(r,Dj) +

q∆
k + 1

Tf (r) +O(1).(3.2)

On the other hand, by Theorem 2.2, we have

(q − n− 1− ε)Tf (r) 6
q∑
j=1

1
dj
N∆
f (r,Dj).(3.3)

Combining the formulas (3.2) and (3.3) together, we have(
q − q∆

k + 1
− n− 1− ε

)
Tf (r) 6

k

k + 1

q∑
j=1

1
dj
N∆
f,6k(r,Dj) +O(1).

This concludes the proof of the lemma. �
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Proof of Theorem 1. We will prove g ≡ h for any pair of maps g, h ∈ F(D, f)
such that Eg(D) = Eh(D) by the indirect method. Assume for the sake of
contradiction that there exist two maps g, h ∈ F(D, f) such that Eg(D) = Eh(D)
and g 6≡ h. Then there are two numbers α, β ∈ {0, . . . , n}, α 6= β such that
gαhβ 6≡ gβhα. Let dj be the degree of Dj , j = 1, . . . , q, and let d be the least
common multiple of the dj . Let k be a sufficiently large positive integer, ε be a

real number such that 0 < ε < 1 and ∆ = ∆(ε) = 2d
[
2n(n + 1)n(d + 1)ε−1

]n
.

With the hypothesis in Theorem 1 and using Lemma 3.1, we have(
q(k + 1−∆)− (n+ 1 + ε)(k + 1)

)
Tg(r)(3.4)

6 k
q∑
j=1

1
dj
N∆
g,6k(r,Dj) +O(1)

6 ∆k
q∑
j=1

1
dj
N1
g,6k(r,Dj) +O(1)

6
∆k
δ

q∑
j=1

N1
g,6k(r,Dj) +O(1).

Assume that z0 ∈ C is a zero of Dj ◦ g with multiplicity less than or equal

to k, then z0 ∈ Eg(D) =
q⋃
j=1

Eg(Dj). Because g ∈ F(D, f), this implies that

g(z0) = f(z0). Since Eg(D) = Eh(D) we have z0 ∈ Eh(D) =
q⋃
j=1

Eh(Dj), so

h(z0) = f(z0). Hence g(z0) = h(z0), so
gα(z0)
gβ(z0)

=
hα(z0)
hβ(z0)

, namely z0 is a zero of

the function
gα
gβ
− hα
hβ

. Note that by the hypothesis that the hypersurfaces in D

are in general position, then there exist at most n hypersurfaces Dj in D such
that Dj ◦ g(z0) = 0. This implies that

q∑
j=1

N1
g,6k(r,Dj) 6 nN gα

gβ
−hα
hβ

(r, 0),

where N gα
gβ
−hα
hβ

(r, 0) is the counting function of zeros of gα
gβ
− hα

hβ
. We have by

properties of counting functions,

N gα
gβ
−hα
hβ

(r, 0) 6 Tg(r) + Th(r) +O(1).

Therefore, (3.4) becomes(
q(k + 1−∆)− (n+ 1 + ε)(k + 1)

)
Tg(r)(3.5)

6
∆nk
δ

(Tg(r) + Th(r)) +O(1).
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Similarly for the holomorphic map h we have(
q(k + 1−∆)− (n+ 1 + ε)(k + 1)

)
Th(r)(3.6)

6
∆nk
δ

(Tg(r) + Th(r)) +O(1).

Adding the inequalities (3.5) and (3.6) together, we have(
q(k + 1−∆)− (n+ 1 + ε)(k + 1)

)
(Tg(r) + Th(r))

6
2∆nk
δ

(Tg(r) + Th(r)) +O(1).

This concludes that

q(k + 1−∆)− (n+ 1 + ε)(k + 1)− 2∆nk
δ
6

O(1)
Tg(r) + Th(r)

holds for a sufficiently large positive real number r. Let r →∞ we have

q(k + 1−∆)− (n+ 1 + ε)(k + 1)− 2∆nk
δ
6 0.

This is equivalent to

k(qδ − (n+ 1 + ε)δ − 2∆n) + (q − q∆− (n+ 1 + ε))δ 6 0.(3.7)

If we take ε =
1
2

and

k >
(qBn(D)− q + n+ 3

2)δ
qδ − (n+ 3

2)δ − 2nBn(D)
,

then from the hypothesis that q > n + 2 +
2nBn(D)

δ
we have a contradiction.

Hence gihj ≡ gjhi for any i 6= j ∈ {0, . . . , n}, namely g ≡ h. This is the conclusion
of Theorem 1. �

Proof of Theorem 2. We prove Theorem 2 by the indirect method too. Assume
for the sake of contradiction that there exist two maps g, h ∈ F(D, f) such that
Eg(D) = Eh(D) and g 6≡ h. Then there are two numbers α, β ∈ {0, . . . , n}, α 6= β
such that gαhβ 6≡ gβhα. Let dj be the degree of Dj , j = 1, . . . , q, and let d be the
least common multiple of the dj . Let k be a sufficiently large positive integer, ε be

a real number such that 0 < ε < 1 and ∆ = ∆(ε) = 2d
[
2n(n+ 1)n(d+ 1)ε−1

]n
.

With the hypothesis in Theorem 2 and the proof of Theorem 1, we have by
Lemma 3.1 (

q(k + 1−∆)− (n+ 1 + ε)(k + 1)
)
Tg(r)(3.8)

6
∆k
δ

q∑
j=1

N1
g,6k(r,Dj) +O(1).

From the hypothesis that

Eg(Di) ∩ Eg(Dj) = ∅
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for any pair i 6= j ∈ {1, . . . , q} and arguments in the proof of Theorem 1, we have

q∑
j=1

N1
g,6k(r,Dj) 6 N gα

gβ
−hα
hβ

(r, 0) 6 Tg(r) + Th(r) +O(1).

This implies that(
q(k + 1−∆)− (n+ 1 + ε)(k + 1)

)
Tg(r)(3.9)

6
∆k
δ

(Tg(r) + Th(r)) +O(1).

Similarly for the holomorphic map h we have(
q(k + 1−∆)− (n+ 1 + ε)(k + 1)

)
Th(r)(3.10)

6
∆k
δ

(Tg(r) + Th(r)) +O(1).

From the inequalities (3.9) and (3.10), we have(
q(k + 1−∆)− (n+ 1 + ε)(k + 1)

)
(Tg(r) + Th(r))

6
2∆k
δ

(Tg(r) + Th(r)) +O(1).

Hence

q(k + 1−∆)− (n+ 1 + ε)(k + 1)− 2∆k
δ
6

O(1)
Tg(r) + Th(r)

holds for a sufficiently large positive real number r. Letting r →∞ we have

k(qδ − (n+ 1 + ε)δ − 2∆) + (q − q∆− (n+ 1 + ε))δ 6 0.(3.11)

If we take ε =
1
2

and

k >
(qBn(D)− q + n+ 3

2)δ
qδ − (n+ 3

2)δ − 2Bn(D)
,

then from the hypothesis that q > n + 2 +
2Bn(D)

δ
we have a contradiction.

Hence gihj ≡ gjhi for any i 6= j ∈ {0, . . . , n}, namely g ≡ h. This finishes the
proof of Theorem 2. �
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