logo_acta

Acta Mathematica Vietnamica

SINGULARITY OF PROBABILITY MEASURE IN FRACTAL GEOMETRY

VU THI HONG THANH, NGUYEN NHUY, LE XUAN SON

Abstract

Let μ be the probability measure induced by S=i=13iXi, where X1,X2, are independent identically distributed random variables each taking integer values 0,1,a with equal probability 1/3, where a is a parameter. Let α(s,a) (resp. α(s,a), α(s,a)) denote the local dimension (resp. lower, upper local dimension) of ssuppμ, and let

E(a)={α:α(s,a)=α for some ssuppμ},

α=sup{α(s,a):ssuppμ};α(a)=inf{α(s,a):ssuppμ}.

 In this paper, we prove that for a=4 we have 

α(4)=1,α(4)=11log(1+5)log2log3 and E=[α(4),α(4)].