SINGULARITY OF PROBABILITY MEASURE IN FRACTAL GEOMETRY

VU THI HONG THANH, NGUYEN NHUY AND LE XUAN SON

ABSTRACT. Let μ be the probability measure induced by $S = \sum^{\infty}$ $\sum_{i=1} 3^{-i} X_i$, where X_1, X_2, \ldots are independent identically distributed random variables each taking integer values $0, 1, a$ with equal probability $1/3$, where a is a parameter. Let $\alpha(s, a)$ (resp. $\alpha(s, a), \overline{\alpha}(s, a)$) denote the local dimension (resp. lower, upper local dimension) of $s \in \text{supp }\mu$, and let

$$
E(a) = \{ \alpha : \alpha(s, a) = \alpha \text{ for some } s \in \text{supp } \mu \},\
$$

$$
\overline{\alpha}(a) = \sup \{ \overline{\alpha}(s, a) : s \in \text{supp } \mu \}, \underline{\alpha}(a) = \inf \{ \underline{\alpha}(s, a) : s \in \text{supp } \mu \}.
$$

In this paper, we prove that for $a = 4$ we have

$$
\overline{\alpha}(4) = 1
$$
, $\underline{\alpha}(4) = 1 - \frac{\log(1 + \sqrt{5}) - \log 2}{\log 3}$ and $E = [\underline{\alpha}(4), \overline{\alpha}(4)].$

1. INTRODUCTION

Let X_1, X_2, \ldots be a sequence of independent identically distributed random variables each taking values a_1, a_2, \ldots, a_m with respective probabilities $p_1, p_2,$ \ldots , p_m . For $0 < \rho < 1$, let

$$
S = \sum_{i=1}^{\infty} \rho^i X_i,
$$

and let μ (depending on ρ) be the probability measure induced by S, i.e.,

$$
\mu(A) = \text{Prob}\{\omega : S(\omega) \in A\}.
$$

By Jessen and Wintner's "pure theorem" [9], the measure μ is either purely singular or absolutely continuous.

If μ is purely singular, the degree of singularities of μ can be analyzed on a pointwise basis by studying its local dimensions. In this case

$$
\lim_{h \to 0^+} \frac{\mu(B_h(x))}{h} = 0
$$

for almost all x in the support of μ , where $B_h(x)$ denotes the ball centered at x with radius h.

Received April 13, 2006; in revised form July 20, 2007.

On the other hand, this value may be infinite at other points. Therefore, it is natural to find $\alpha > 0$ so that

$$
0<\lim_{h\to 0^+}\;\,\inf\;\,\frac{\mu(B_h(x))}{h^{\alpha}}\leqslant\lim_{h\to 0^+}\;\,\sup\;\,\frac{\mu(B_h(x))}{h^{\alpha}}<\infty.
$$

If such an α exists, then for small h, $\mu(B_h(x)) \approx Ch^{\alpha}$ for some constant $C > 0$, or $\alpha \approx \frac{\log \mu(B_h(x))}{\log h}$. This suggests the *lower local dimension* $\underline{\alpha}(s)$ of μ for $s \in$ supp μ

$$
\underline{\alpha}(s) = \lim_{h \to 0^+} \inf \frac{\log \mu(B_h(s))}{\log h}.
$$
\n(1.1)

The upper local dimension, denoted by $\overline{\alpha}(s)$, is defined similarly by using the upper limit. If the two limits equal, then the common value is called the local dimension of μ at s, denoted by $\alpha(s)$. Thus, the local dimension is a function defined on supp μ . Denote

$$
\overline{\alpha} = \sup \{ \overline{\alpha}(s) : s \in \text{supp } \mu \}; \ \underline{\alpha} = \inf \{ \underline{\alpha}(s) : s \in \text{supp } \mu \};
$$
\n
$$
\alpha^* = \sup \{ \alpha(s) : s \in \text{supp } \mu \}; \ \alpha_* = \inf \{ \alpha(s) : s \in \text{supp } \mu \};
$$
\n
$$
E = \{ \alpha \in \mathbb{R} : \alpha(s) = \alpha \text{ for some } s \in \text{supp } \mu \}.
$$

In this note we are interested in identifying the domain E in the special case when $m = 3$, $\rho = p_1 = p_2 = p_3 = 1/3$, $a_1 = 0, a_2 = 1$ and $a_3 = a$ is a parameter. For $a = 3$ it is known [8] that $E = [\alpha, \overline{\alpha}] = [2/3, 1]$. We prove

Theorem 1.1. (Main Theorem). For $a = 4$ we have

$$
\overline{\alpha} = \alpha^* = 1; \underline{\alpha} = \alpha_* = 1 - \frac{\log(1 + \sqrt{5}) - \log 2}{\log 3} \text{ and } E = [\underline{\alpha}, \overline{\alpha}].
$$

As in [8], the proof of our Main Theorem uses a combinatoric approach which depends on some careful counting the multiple representations of n -partial sum s_n of $s = \sum_{n=1}^{\infty}$ $i=1$ $3^{-i}x_i \in \text{supp }\mu$ and the associated probabilities.

The paper is organized as follows. In Section 2 we derive some lemmas and propositions, which will reduce the computation of $\alpha(s)$, $s \in \text{supp }\mu$, to the calculation of $\#\langle s_n \rangle$, $s_n = \sum_{i=1}^n 3^{-i} x_i$, where $\#\langle s_n \rangle$ denotes the cardinality of $\langle s_n \rangle$. In Section 3 we establish some decomposition results for zero elements and recurrence equation for computing $\#(s_n)$. The proof of Main Theorem will be given in the last section.

2. Some primary results

Denote $D = \{0, 1, 4\}$ and for $s = \sum_{i=1}^{\infty}$ $i=1$ $3^{-i}x_i \in \text{supp }\mu, x_i \in D, \text{ let } s_n = \sum_{i=1}^n$ $i=1$ $3^{-i}x_i$ be its n -partial sum. Let

$$
\langle s_n \rangle = \{(x_1, \ldots, x_n) \in D^n : \sum_{i=1}^n 3^{-i} x_i = s_n\}.
$$

Because X_1, X_2, \ldots are independent,

$$
\mu_n(s_n) = 3^{-n} \# \langle s_n \rangle,
$$

where μ_n is the probability measure induced by $S_n = \sum_{n=1}^n$ $i=1$ $3^{-i}X_i$.

Proposition 2.1. For $s \in \text{supp } \mu$, we have

$$
\alpha(s) = \lim_{n \to \infty} \frac{|\log \mu_n(s_n)|}{n \log 3},
$$

provided that the limit exists. Otherwise, we can replace $\alpha(s)$ by $\overline{\alpha}(s)$ ($\alpha(s)$) and consider the upper (the lower) limits respectively.

We first prove

Lemma 2.1. Let

$$
s_k = \sum_{i=1}^k 3^{-i} x_i > s'_k = \sum_{i=1}^k 3^{-i} x'_i > s''_k = \sum_{i=1}^k 3^{-i} x''_i,
$$

where $x_i, x'_i, x''_i \in D$ for $i = 1, ..., k$, be consecutive numbers in supp μ_k . Then

(i) if $s_k - s'_k = 3^{-k}$, then $x'_k = 0$.

(ii) either $s_k - s'_k \neq 3^{-k}$ or $s'_k - s''_k \neq 3^{-k}$.

(iii) if $s_{k+1} = s_k$, then $\# \langle s_{k+1} \rangle = \# \langle s_k \rangle$.

Proof. (i) Assume that $s_k = s_{k-1} + 3^{-k}x_k$, $s'_k = s'_{k-1} + 3^{-k}x'_k$, then

(2.1)
$$
s_k - s'_k = 3^{-k} \Leftrightarrow s_{k-1} - s'_{k-1} = \frac{1 + x'_k - x_k}{3} 3^{-(k-1)}.
$$

Observe that for $s_n, s'_n \in \text{supp } \mu_n$, we have $s_n - s'_n = t3^{-n}$ for some $t \in \mathbb{Z}$, and if $(1 + a - b) \equiv 0 \pmod{3}$ and $a, b \in D$, then

$$
(2.2) \t a = 0, b \in \{1, 4\}.
$$

Therefore, from (2.1) we have $x'_{k} = 0$. Thus, (i) is proved.

(ii) Write $s_k'' = s_{k-1}'' + 3^{-k} x_k''$. Assume on the contrary that $s_k - s_k' = s_k' - s_k'' =$ 3^{-k} . Then by (2.1) and (2.2), $x'_{k} \in \{1, 4\}$. But, since $s_{k} - s'_{k} = 3^{-k}$, by (i), $x'_{k} = 0$, a contradiction.

(iii) Let $s_{k+1} = s_k = s'_k + 3^{-(k+1)}x'_{k+1}$, where $x'_{k+1} \in \{1, 4\}$ and $s'_k \in \text{supp } \mu_k$. Then $s_k - s'_k = \frac{x'_{k+1}}{3} 3^{-k} = t3^{-k} (t \in \mathbb{N})$. This implies $x'_{k+1} \equiv 0 \pmod{3}$ which contradicts $x'_{k+1} \in \{1, 4\}$. Hence $\# \langle s_{k+1} \rangle = \# \langle s_k \rangle$.

From Lemma 2.1 we get

Corollary 2.1. (i) Any element $s_{k+1} \in \text{supp } \mu_{k+1}$ has at most two representations in supp μ_k , and if $s_{k+1} = s_k$ then the representation is unique. (ii) If s_{k+1} has two representations: $s_{k+1} = s_k + 3^{-(k+1)}4 = s'_k + 3^{-(k+1)}$, then s_k, s'_k are two consecutive points in supp μ_k .

Lemma 2.2. For any two consecutive points $s_n = \sum^n$ $i=1$ $3^{-i}x_i$ and $s'_n = \sum^n$ $i=1$ $3^{-i}x_i',$ we have

$$
\frac{\mu_n(s_n)}{\mu_n(s'_n)} \leqslant n.
$$

Proof. We prove the lemma by induction. Clearly the inequality holds true for $n = 1$. We consider the case $n = k + 1$, assuming that the inequality holds true for all $n \leq k$. Let $s_{k+1} > s'_{k+1}$ be two arbitrary consecutive points in supp μ_{k+1} . Writing $s_{k+1} = s_k + 3^{-(k+1)}x_{k+1}$, we consider the following cases.

Case 1. $x_{k+1} = 0$. Then $s_{k+1} = s_k$. By Lemma 2.1(iii), $\# \langle s_{k+1} \rangle = \# \langle s_k \rangle$. Now we calculate the cardinality of $\langle s'_{k+1} \rangle$. Obviously, if $s^*_{k+1} = s^*_{k} + 3^{-(k+1)}x^*_{k+1} \in$ supp μ_{k+1} and $s_{k+1}^* < s_{k+1}$, then $s_k^* < s_k$. Letting

$$
s'_k = \max\{s_k^* \in \text{supp }\mu_k : s_k^* < s_k\}
$$

we get $s_k > s'_k$ are two consecutive points in supp μ_k . Observe that

If $s_k - s'_k = 3^{-k}$, then $s_{k+1} = s_k = s'_k + 3^{-k} > s'_k + 3^{-(k+1)}$. Since $s'_{k+1} < s_{k+1}$ are consecutive points, we have $s'_{k+1} = s'_{k} + 3^{-(k+1)}$. Observe that if $s'_{k+1} =$ $s_k^* + 3^{-(k+1)}x_{k+1}^*$ is another representation, then by Corollary 2.1(i), $x_{k+1}^* = 4$. Hence, $s'_{k+1} = s'_{k} + 3^{-(k+1)} = s_k^* + 3^{-(k+1)}4$. This implies $s'_{k} - s_k^* = 3^{-k} = s_k - s'_{k}$, contradicting Lemma 2.1(ii). Therefore, $\# \langle s'_{k+1} \rangle = \# \langle s'_{k} \rangle$. Thus,

$$
\frac{\mu_{k+1}(s_{k+1})}{\mu_{k+1}(s'_{k+1})} = \frac{\# \langle s_{k+1} \rangle}{\# \langle s'_{k+1} \rangle} = \frac{\# \langle s_k \rangle}{\# \langle s'_k \rangle} \leq k < n.
$$

If $s_k - s'_k \geqslant 2.3^{-k}$, then for any $x_{k+1}^* \in D$ and $s_k^* < s_k$ we have

$$
s_{k+1} = s_k \geqslant s'_k + 2 \cdot 3^{-k} > s'_k + 3^{-(k+1)}4 \geqslant s_k^* + 3^{-(k+1)}x_{k+1}^*.
$$

Thus, $s'_k + 3^{-(k+1)}4$ is the largest value in supp μ_{k+1} that is smaller than s_{k+1} . Hence, $s'_{k+1} = s'_{k} + 3^{-(k+1)}4$. This implies $\#\langle s'_{k+1} \rangle = \#\langle s'_{k} \rangle$. Therefore,

$$
\frac{\mu_{k+1}(s_{k+1})}{\mu_{k+1}(s'_{k+1})} = \frac{\# \langle s_{k+1} \rangle}{\# \langle s'_{k+1} \rangle} = \frac{\# \langle s_k \rangle}{\# \langle s'_k \rangle} \leq k < n.
$$

Case 2. $x_{k+1} = 1$ or $x_{k+1} = 4$. The proof of the two cases are the same, and so we demonstrate the case $x_{k+1} = 4$ only.

When $x_{k+1} = 4$, we have $s_{k+1} = s_k + 3^{-(k+1)}4$. By Corollary 2.1(ii), if $s_k^* - s_k =$ 3^{-k} for some $s_k^* \in \text{supp } \mu_k$, then s_k^*, s_k are two consecutive points and s_{k+1} has two representations $s_{k+1} = s_k + 3^{-(k+1)}4 = s_k^* + 3^{-(k+1)}$. Hence,

$$
\# \langle s_{k+1} \rangle = \# \langle s_k \rangle + \# \langle s_k^* \rangle.
$$

Since $s_{k+1} = s_k^* + 3^{-(k+1)}$ and $s_{k+1} > s_{k+1}'$ are consecutive, we have $s_{k+1}' = s_k^*$. By Lemma 2.1(iii), $\# \langle s_{k+1}^* \rangle = \# \langle s_k^* \rangle$. By inductive assumption,

$$
\frac{\mu_{k+1}(s_{k+1})}{\mu_{k+1}(s'_{k+1})} = \frac{\# \langle s_{k+1} \rangle}{\# \langle s'_{k+1} \rangle} = \frac{\# \langle s_k \rangle + \# \langle s_k^* \rangle}{\# \langle s_k^* \rangle} \leq k+1 = n.
$$

The lemma is proved.

Proof of Proposition 2.1. Observe that for $h > 0$ and $n \in \mathbb{N}$ with

$$
3^{-(n+1)} < h \leqslant 3^{-n},
$$

we have

$$
\mu(B_{3^{-(n+1)}}(s))\leqslant\mu(B_h(s))\leqslant\mu(B_{3^{-n}}(s)).
$$

Hence,

(2.4)
$$
\alpha(s) = \lim_{n \to \infty} \frac{|\log \mu(B_{3^{-n}}(s))|}{n \log 3}.
$$

Since

$$
|S_n - S| \leq 3^{-n} 4 \sum_{i=1}^{\infty} 3^{-i} = 3^{-n} 4 \frac{1}{2} = 2 \cdot 3^{-n}
$$

we have (where $r = 2$)

$$
\mu_n(B_{(1+r)3^{-n}}(s)) = \text{Prob}(s - (1+r)3^{-n} \leq S_n \leq s + (1+r)3^{-n})
$$

\$\leq \text{Prob}(s - (1+r)3^{-n} - r3^{-n} \leq S \leq s + (1+r)3^{-n} + r3^{-n})\$
= $\mu(B_{(1+2r)3^{-n}}(s)).$

Similarly, $\mu(B_{3^{-n}}(s)) \le \mu_n(B_{(1+r)3^{-n}}(s))$. Thus, (2.5) $\mu(B_{3^{-n}}(s)) \leq \mu_n(B_{(1+r)3^{-n}}(s)) \leq \mu(B_{(1+2r)3^{-n}}(s)).$

Therefore,

(2.6)
$$
\frac{|\log \mu(B_{3^{-n}}(s))|}{n \log 3} \geqslant \frac{|\log \mu_n(B_{(1+r)3^{-n}}(s))|}{n \log 3}.
$$

By Lemma 2.1(ii), $B_{(1+r)3^{-n}}(s)$ contains at most 5 consecutive points s_n in supp μ_n , so we have

$$
\mu_n(B_{(1+r)3^{-n}}(s)) = \frac{\sum \{ \# \langle s_n \rangle : s_n \in B_{(1+r)3^{-n}}(s) \cap \text{supp } \mu_n \}}{3^n} \leqslant 5n^4 \mu_n(s_n).
$$

Thus, from (2.6) we get

$$
\frac{|\log \mu(B_{3^{-n}}(s))|}{n\log 3}\geqslant \frac{|\log \mu_n(B_{(1+r)3^{-n}}(s))|}{n\log 3}\geqslant \frac{|\log \mu_n(s_n)+\log (5n^4)|}{n\log 3}.
$$

Consequently, by (2.4) we have

(2.7)
$$
\alpha(s) \geqslant \lim_{n \to \infty} \frac{|\log \mu_n(s_n)|}{n \log 3}.
$$

Now for $h > 0$ let $n \in \mathbb{N}$ be such that

$$
(2r+1)3^{-n} < h \leqslant (2r+1)3^{-n+1}.
$$

Then

$$
-\log h \ge -\log[(2r+1)3^{-n+1}] = n\log 3 - \log[(2r+1)3]
$$

and by (2.5) we have

$$
|\log \mu(B_h(s))| \leqslant |\log \mu(B_{(1+2r)3^{-n}}(s))| \leqslant |\log \mu_n(B_{(1+r)3^{-n}}(s))|.
$$

Hence,

$$
\frac{\log \mu(B_h(s))}{\log h} = \frac{|\log \mu(B_h(s))|}{-\log h} \leq \frac{|\log \mu_n(B_{(1+r)3^{-n}}(s))|}{n \log 3 - \log[(2r+1)3]},
$$

which implies

(2.8)
$$
\alpha(s) \leqslant \lim_{n \to \infty} \frac{|\log \mu_n(B_{(1+r)3^{-n}}(s))|}{n \log 3}.
$$

Observe that

$$
\frac{|\log \mu_n(B_{(1+r)3^{-n}}(s))|}{n \log 3} \leqslant \frac{|\log \mu_n(s_n)|}{n \log 3}.
$$

Therefore, from (2.8) we get

$$
\alpha(s) \leqslant \lim_{n \to \infty} \frac{|\log \mu_n(s_n)|}{n \log 3}.
$$

Consequently, by (2.7)

$$
\alpha(s) = \lim_{n \to \infty} \frac{|\log \mu_n(s_n)|}{n \log 3}.
$$

The proposition is proved.

3. Prime sequences and multiple sequences

By Proposition 2.1, the key for calculating the local dimension is to determine the rate of the growth of $\# \langle s_n \rangle$. Observe that if (y_1,\ldots,y_n) and (z_1,\ldots,z_n) are two elements in $\langle s_n \rangle$, then $\sum_{n=1}^n$ $i=1$ $3^{-i}(y_i - z_i) = 0.$

Let $\Gamma = D - D = \{0, \pm 1, \pm 3, \pm 4\}$. We say that $(x_1, \ldots, x_n) \in \Gamma^n$ is a zero sequence if $\sum_{n=1}^{\infty}$ $i=1$ $3^{-i}x_i = 0$. An easy calculation shows that

(3.1)
\n
$$
(0, \ldots, 0); \pm(-1, 3); \pm(1, -4, 3)
$$
\n
$$
\pm(1, -4, 4, -4, \ldots, 4, -4, 3) \text{ or }
$$
\n
$$
\pm(-1, 4, -4, \ldots, 4, -4, 3)
$$

are zero sequences. We prove

Proposition 3.1. $x = (x_1, \ldots, x_n) \in \Gamma^n$ is a zero sequence if and only if it can be decomposed uniquely as a concatenation of sequences of (3.1) .

Proof. Since a concatenation of zero sequences is a zero sequence, we need to prove the "only if" part only.

Let $x = (x_1, \ldots, x_n)$ be a zero sequence. Then

(3.2)
$$
\sum_{i=1}^{n} 3^{-i} x_i = 0, \text{ where } x_i \in \Gamma \text{ for } i = 1, ..., n,
$$

which implies $x_n \equiv 0 \pmod{3}$. Without loss of generality we may assume that $x_n = 3$. Multiplying (3.2) by 3^{n-1} we obtain

(3.3)
$$
x_{n-1} + 1 \equiv 0 \pmod{3}
$$
,

so $x_{n-1} = -1$ or $x_{n-1} = -4$.

If $x_{n-1} = -1$, then $(x_{n-1}, x_n) = (-1, 3)$, which belongs to (3.1). Thus, we can repeat the above argument for the remaining zero sequence (x_1, \ldots, x_{n-2}) .

If $x_{n-1} = -4$, then $(x_{n-1}, x_n) = (-4, 3)$, so from (3.2) it follows that $x_{n-2}-1 \equiv$ 0 (mod 3). Hence, $x_{n-2} = 1$ or $x_{n-2} = 4$. Consider two cases

Case 1. $x_{n-2} = 1$. Then $(x_{n-2}, x_{n-1}, x_n) = (1, -4, 3)$. Hence, from (3.1) we get the assertion.

Case 2. $x_{n-2} = 4$. Then $(x_{n-2}, x_{n-1}, x_n) = (4, -4, 3)$ and from (3.2) , it follows that $x_{n-3} + 1 \equiv 0 \pmod{3}$. Thus, the assertion follows from (3.3). Repeating the above argument we get

$$
(x_i, ..., x_n) = (-1, 4, -4, ..., 4, -4, 3)
$$
 or
 $(x_i, ..., x_n) = (1, -4, 4, -4, ..., 4, -4, 3)$

for some $i \geqslant 1$.

By Proposition 2.1, the maximum (minimum) value of the local dimension will occur at a point $x = (x_1, x_2,...) \in D^{\infty}$ such that $\# \langle s_n \rangle$ $(s_n = \sum_{i=1}^n$ $i=1$ $3^{-i}x_i)$ attains a minimum (maximum) value for all sufficient large n . So we will introduce some notions which will be used to calculate the extreme local dimension.

Two sequences $x = (x_1, \ldots, x_n) \in D^n$ and $y = (y_1, \ldots, y_n) \in D^n$ are said to be *equivalent*, denoted by $x \approx y$, if $x - y$ is a zero sequence. It is easy to see that " \approx " is an equivalence relation. Let $\langle x \rangle$ denote the equivalence class of x. Note that if $s_n = \sum_{n=1}^{n}$ $i=1$ $3^{-i}x_i$, then $\langle x \rangle = \langle s_n \rangle$, so $\#\langle x \rangle = \#\langle s_n \rangle$.

We call $x = (x_1, \ldots, x_n) \in D^n$ a prime sequence if $\#\langle x \rangle = 1$, and $x =$ $(x_1, x_2,...) \in D^{\infty}$ a prime sequence if every finite segment of x is a prime sequence, and by a *segment* of a sequence we mean a consecutive subsequence of the form $(x_i, x_{i+1}, \ldots, x_{i+n})$. A sequence (finite or infinite) is called a *multiple* sequence if it is not a prime sequence.

Proposition 3.2. $x = (x_1, \ldots, x_n) \in D^n$ is a prime sequence if and only if it contains no segment of the form $(0,4)$ or $(1,1)$.

Proof. Since $(0,4) \approx (1,1)$, if x contains $(0,4)$ or $(1,1)$ then $\#\langle x \rangle \geq 2$. Hence, x is a multiple sequence.

Conversely, if $\#\langle x \rangle \geq 2$, then there is an $y = (y_1, \dots, y_n) \in D^n$ with $y \neq x$ such that $x - y$ is a zero sequence. Hence, by Proposition 3.1, $x - y$ contains a

segment of (3.1). Without loss of generality assume that

(3.4)
$$
x - y = (-1, \underbrace{4, -4, \dots, 4, -4, 3})
$$
 or

(3.5)
$$
x - y = (1, -4, \underbrace{4, -4, \ldots, 4, -4, 3}).
$$

If $x - y$ belongs to (3.4), then

$$
x = (0, 4, ..., 0, 4)
$$
 and $y = (1, 0, 4, ..., 0, 4, 1)$,

and if $x - y$ belongs to (3.5), then

$$
x = (1, 0, 4, \ldots, 0, 4)
$$
 and $y = (0, 4, 0, 4, \ldots, 0, 4, 1).$

Thus, x always contains $(0, 4)$. The proposition is proved.

For $n \in \mathbb{N}^*$, let $Z_n = \{(x_1, \ldots, x_n) \in D^n\}$ which $(x_1, \ldots, x_n) = (1, \ldots, 1)$, or $(x_1,\ldots,x_n)=(0,4,\ldots,0,4)$, or (x_1,\ldots,x_n) is concatenated by form segments of $(1, \ldots, 1)$ or $(0, 4)$.

Note that x contains a segment $(0, 4)$ or a segment $(1, 1)$ for every $x \in Z_n$. By Proposition 3.2, it is a multiple sequence.

The members of Z_n are called *basic multiple sequences* of length n. Clearly, Z_n is an equivalence class in D^n . Moreover, if $x \in Z_n$, then $\langle x \rangle = Z_n$. Hence, $\#\langle x\rangle = \#Z_n.$

Observe that by placing a digit 1 at the beginning or at the end of a basic multiple finite sequence, then we get another basic multiple sequence of larger length. So we call an infinite sequence $x = (x_1, x_2,...) \in D^{\infty}$ a basic multiple sequence if $x_i = 1$ for every $i \in \mathbb{N}$ or, if $x_i \neq 1$ for some $i \in \mathbb{N}$ then $(x_i, x_{i+1}) =$ $(0, 4)$, where i is the smallest such that $x_i \neq 1$.

A multiple segment of a sequence $x = (x_1, x_2, \dots)$ is maximal if it contains no other proper subsegments.

Proposition 3.3. Any sequence $x = (x_1, x_2, ...) \in D^{\infty}$ is a unique concatenation of maximal basic multiple segments and prime segments.

Proof. By Proposition 3.2, if x does not contain $(0, 4)$ or $(1, 1)$ then x is a prime sequence. Otherwise, we check from x_1 to x_2 and so on until we get $(0, 4)$ or $(1, 1)$. Then we can write

$$
x = (x_1, \ldots, x_k, 0, 4, x_{k+3}, \ldots) \text{ or } x = (x_1, \ldots, x_k, 1, 1, x_{k+3}, \ldots).
$$

Thus, (x_1, \ldots, x_k) is a prime segment by Proposition 3.2. Now we continue to check from x_{k+3} . There are two cases.

Case 1. $(x_{k+3}, x_{k+4},...)$ is a basic multiple infinite sequence. Then x is concatenated by two parts: the first one is a prime segment (x_1,\ldots,x_k) and the second is a basic multiple infinite sequence $(x_{k+1}, x_{k+2}, \dots)$.

Case 2. $(x_{k+1}, x_{k+2},...)$ is not a basic multiple infinite sequence. Let x_{k+t} $(t \in \mathbb{N}, t \geq 3)$ be the first co-ordinate with $x_{k+t} \neq 1$ or $(x_{k+t}, x_{k+t+1}) \neq (0, 4)$. Then

$$
(x_{k+1},..., x_{k+t-1}) = (0, 4, 1,..., 1)
$$
 and $(x_{k+1},..., x_{k+t-1}) = (1,..., 1)$

are maximal basic multiple segments. Thus, x is concatenated by three parts: the prime sequence (x_1,\ldots,x_k) , the maximal basic multiple segment $(x_{k+1},\ldots,$ x_{k+t-1}) and the infinite subsequence $(x_{k+t}, x_{k+t+1}, \ldots)$. Using the above argument, we continue to decompose the infinite part $(x_{k+t}, x_{k+t+1},...)$ to obtain the assertion. \Box

Proposition 3.4. For any basic multiple sequence $x \in Z_n$, let $F_n = \#Z_n =$ $\# \langle x \rangle$. Then

(3.6)
$$
F_1 = 1, F_2 = 2
$$
 and $F_n = F_{n-1} + F_{n-2}$ for $n \ge 3$.

Proof. We prove the proposition by induction. It is easy to check that $F_1 =$ $1, F_2 = 2$ and $F_3 = F_1 + F_2$. Suppose that (3.6) holds true for all $n \leq k$. We will show that $F_{k+1} = F_k + F_{k-1}$. Let $x = (x_1, \ldots, x_{k+1}) \in Z_{k+1}$ and $s_{k+1} = \sum^{k+1}$ $i=1$ $3^{-i}x_i$. Then

$$
\# \langle s_{k+1} \rangle = \# Z_{k+1} = F_{k+1}.
$$

Without loss of generality we may assume that $x = (x_1, \ldots, x_{k+1}) = (1, 1, \ldots, 1)$. Then we have

$$
s_{k+1} = \sum_{i=1}^{k+1} 3^{-i} x_i = s_k + 3^{-(k+1)},
$$

where $\langle s_k \rangle = \langle (1, 1, \ldots, 1) \rangle = Z_k$. Let $s'_k = s_k - 3^{-k}$. Then

 $\langle s'_k \rangle = \langle (1, 1, \dots, 1, 0) \rangle, \ s_{k+1} = s'_k + 3^{-(k+1)}4 \text{ and } s'_k = s'_{k-1},$ where $\langle s'_{k-1} \rangle = \langle (1, 1, \ldots, 1) \rangle = Z_{k-1}$. By Lemma 2.1(iii), we have

$$
\# \langle s'_k \rangle = \# \langle s'_{k-1} \rangle = \# Z_{k-1} = F_{k-1}.
$$

Consequently,

$$
F_{k+1} = \# \langle s_{k+1} \rangle = \# \langle s_k \rangle + \# \langle s'_k \rangle = \# \langle s_k \rangle + \# \langle s'_{k-1} \rangle = F_{k-1} + F_k.
$$

The proposition is proved.

From Proposition 3.4 it follows that if x is a basic multiple sequence of length n , then by Fibonacci formula, we have

(3.7)
$$
F_n = \#Z_n = \# \langle x \rangle = \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^{n+1} - \left(\frac{1 - \sqrt{5}}{2} \right)^{n+1} \right].
$$

Proposition 3.5. For any $n \in \mathbb{N}, n \neq 0$, we have

$$
F_n \geq \#\langle t_n \rangle \text{ for all } t_n \in \text{supp }\mu_n.
$$

Proof. We prove the proposition by induction. Clearly the inequality is true for $n = 1$. We consider the case $n = k + 1$, assuming that the inequality is true for all $n \leq k$. Let

$$
y = (y_1, \ldots, y_{k+1}) \notin Z_{k+1}, t_{k+1} = \sum_{i=1}^{k+1} 3^{-i} y_i.
$$

Write $t_{k+1} = t_k + 3^{-(k+1)}y_{k+1}$, where $t_k \in \text{ supp }\mu_k, y_{k+1} \in D$. We consider the following cases.

If $y_{k+1} = 0$, then $t_{k+1} = t_k$. By Lemma 2.1(iii) and inductive assumption, we have

$$
\#\langle t_{k+1}\rangle = \#\langle t_k\rangle \leqslant F_k < F_{k+1}.
$$

If $y_{k+1} \neq 0$, let $t_{k+1} = t_k + 3^{-(k+1)} = t'_k + 3^{-(k+1)}4$ be two representations of t_{k+1} in supp μ_k . Then $t_k = t'_k + 3^{-k}$. Assume that $t'_k = \sum_{k=1}^k$ $i=1$ $3^{-i}y'_i$, then by Lemma 2.1(i), $y'_k = 0$. Hence, $t'_k = t'_{k-1}$, which implies $\# \langle t'_k \rangle = \# \langle t'_{k-1} \rangle$. By the induction assumption and by Proposition 3.4, we have

$$
\#\langle t_{k+1}\rangle \leqslant \#\langle t_k\rangle + \#\langle t'_k\rangle = \#\langle t_k\rangle + \#\langle t'_{k-1}\rangle \leqslant F_k + F_{k-1} = F_{k+1}.
$$

The proposition is proved.

Proposition 3.6. If $x = (x_1, \ldots, x_n) \in D^n$ is concatenated by prime segments and m maximal basic multiple sequences with lengths l_1, \ldots, l_m respectively, $l_1 +$ $\ldots + l_m \leqslant n$, then

$$
\#\langle x\rangle = \prod_{i=1}^m F_{l_i} \leqslant F_n.
$$

Proof. By the multiplication principle it is easy to see that $\#\langle x \rangle = \prod_{i=1}^{m}$ prove the inequality we first show that, for any $n \in \mathbb{N}, n \geqslant 2$ and for any $n_1, n_2 \in$ F_{l_i} . To N with $n_1 + n_2 = n$, one has

$$
(3.8) \t\t\t F_{n_1}F_{n_2} \leqslant F_n.
$$

The inequality (3.8) can be proved by induction. The inequality holds trivially for all $n \leqslant 5$. Suppose that it holds for all $n \leqslant k, k \geqslant 5$, we prove it also holds for $n = k + 1$. Let $k_1 \leq k_2$ be such that $k_1 + k_2 = k + 1$. By Proposition 3.4 and by the induction assumption, we get

$$
F_{k_1}F_{k_2} = F_{k_1}(F_{k_2-1} + F_{k_2-2})
$$

= $F_{k_1}F_{k_2-1} + F_{k_1}F_{k_2-2}$
 $\leq F_{k_1+k_2-1} + F_{k_1+k_2-2}$
= $F_{k_1+k_2} = F_{k+1}$.

From (3.8) we have

$$
\prod_{i=1}^{m} F_{l_i} \leqslant F_{l_1+l_2} \prod_{i=3}^{m} F_{l_i} \leqslant \ldots \leqslant F_{l_1+\ldots+l_m} \leqslant F_n.
$$

The proposition is proved.

4. Proof of the Main Theorem

The following proposition establishes the values of $\overline{\alpha}$, α^* , α , α_* of Main Theorem.

Proposition 4.1. The following equalities hold true:

$$
\overline{\alpha} = \alpha^* = 1, \text{ and } \underline{\alpha} = \alpha_* = 1 - \frac{\log(1 + \sqrt{5}) - \log 2}{\log 3}.
$$

Proof. Observe that if $x = (x_1, x_2, ...) \in D^{\infty}$ is a prime sequence, then $\# \langle s_n \rangle = 1$ for every *n*, where $s_n = \sum_{n=1}^n$ $i=1$ $3^{-i}x_i$. Hence, $\mu_n(s_n)=3^{-n}\# \langle s_n\rangle = 3^{-n}$ for every n. By Proposition 2.1, for $s = \sum_{n=1}^{\infty}$ $i=1$ $3^{-i}x_i \in \text{supp }\mu$ we have $\overline{\alpha} = \alpha^* = \alpha(s)=1.$

We prove the second equality. Let $s = \sum_{n=1}^{\infty}$ $i=1$ $3^{-i}x_i \in \text{supp }\mu \text{ and } s_n = \sum_{i=1}^n$ $i=1$ $3^{-i}x_i \in$ supp μ_n . By Propositions 2.1, 3.5 and (3.7), we have

$$
\alpha(s) = \lim_{n \to \infty} \frac{|\log \mu_n(s_n)|}{n \log 3} = \lim_{n \to \infty} \frac{|\log 3^{-n} \# \langle s_n \rangle|}{n \log 3}
$$

$$
\geq 1 - \lim_{n \to \infty} \frac{|\log \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^{n+1} - \left(\frac{1 - \sqrt{5}}{2} \right)^{n+1} \right] \vert}{n \log 3}
$$

$$
= 1 - \frac{\log(1 + \sqrt{5}) - \log 2}{\log 3}.
$$

Therefore,

$$
\underline{\alpha}, \alpha_* \geqslant 1 - \frac{\log\left(1 + \sqrt{5}\right) - \log 2}{\log 3}.
$$

On the other hand, let $x = (x_1, x_2, ...)$ = $(1, 1, ...)$ $\in D^{\infty}$. Then $\# \langle s_n \rangle = F_n$ for all $n \in \mathbb{N}$, where $s_n = \sum_{n=1}^n$ $i=1$ $3^{-i}x_i$. Hence, for $s = \sum_{i=1}^{\infty}$ $i=1$ $3^{-i}x_i$, we have

$$
\alpha(s) = 1 - \frac{\log(1 + \sqrt{5}) - \log 2}{\log 3}.
$$

This shows that

$$
\underline{\alpha}, \alpha_* \leqslant 1 - \frac{\log{(1+\sqrt{5})}-\log{2}}{\log{3}}.
$$

Thus,

$$
\underline{\alpha} = \alpha_* = 1 - \frac{\log\left(1 + \sqrt{5}\right) - \log 2}{\log 3}.
$$

The second equality is proved.

Let $\alpha \in (\underline{\alpha}, \overline{\alpha})$. Write

$$
\alpha = r(1 - \frac{\log a}{\log 3}) + (1 - r)1 = 1 - r \frac{\log a}{\log 3}
$$

for some $r \in (0, 1)$, where $a = \frac{1+\sqrt{5}}{2}$. Let

$$
l_i = \begin{cases} 2i & \text{if } i \text{ is even} \\ \left[\frac{2i(1-r)}{r}\right] & \text{if } i \text{ is odd,} \end{cases}
$$

where $[t]$ is the largest integer not exceeding than t . Let

$$
E_j = \{i : i \text{ is even}, i \leq j\}; O_j = \{i : i \text{ is odd}, i \leq j\};
$$

$$
e_j = \sum_{i \in E_j} l_i; o_j = \sum_{i \in O_j} l_i, \text{ and } n_j = \sum_{i=1}^j l_i.
$$

Then $n_j = e_j + o_j$.

To complete the proof of Main Theorem, it remains to prove that for any $\alpha \in (\underline{\alpha}, \overline{\alpha})$, there exists s in supp μ for which $\alpha(s) = \alpha$. We prove

Claim 4.1. For

$$
x = (x_1, x_2, \dots) = (\underbrace{4, \dots, 4}_{l_1}, \underbrace{1, 1, 1, 1, 1}_{l_2 = 4}, \underbrace{4, \dots, 4}_{l_3}, \underbrace{1, 1, 1, 1, 1, 1, 1, 1, 1}_{l_4 = 8}, \dots) \in D^{\infty},
$$

we have $\alpha(s) = \alpha$, where $s = \sum_{i=1}^{\infty} 3^{-i} x_i \in \text{supp } \mu$.

Proof. Observe that any segment (x_1, \ldots, x_{n_j}) contains $\left[\frac{j}{2}\right]$ maximal basic multiple sequences with lengths $l_2, l_4, \ldots, l_{2[\frac{j}{2}]}$ respectively, where $l_2 + l_4 +$ $\dots + l_{2[\frac{j}{2}]} = e_j$ and contains $(j - [\frac{j}{2}])$ prime segments. Let $s_{n_j} = \sum_{i=1}^{n_j}$ $i=1$ $3^{-i}x_i$. By Proposition 3.6, we have

$$
\# \langle s_{n_j} \rangle = \prod_{i \in E_j} F_{l_i} \leqslant F_{e_j} = \frac{1}{\sqrt{5}} (a^{e_j + 1} + \frac{(-1)^{e_j}}{a^{e_j + 1}}) < \frac{1}{\sqrt{5}} a^{e_j + 2}.
$$
\n(4.1)

Observe that

$$
F_{l_i} = \frac{1}{\sqrt{5}} (a^{l_i+1} + \frac{(-1)^{l_i}}{a^{l_i+1}}) = \frac{1}{\sqrt{5}} (a^{l_i+1} + \frac{1}{a^{l_i+1}}) > \frac{1}{\sqrt{5}} a^{l_i+1}
$$

for any $i \in \mathbb{N}$ and i is even. Hence,

$$
\# \langle s_{n_j} \rangle = \prod_{i \in E_j} F_{l_i} > \left(\frac{1}{\sqrt{5}}\right)^{\left[\frac{j}{2}\right]} a^{e_j + \left[\frac{j}{2}\right]}.
$$
 (4.2)

For any $n \in \mathbb{N}, n \neq 0$ let $j \in \mathbb{N}$ with $n_{j-1} \leq n \leq n_j$. Since $\#\langle s_n \rangle$ is an increasing function with respect to n , by (4.1) and (4.2) , we have

$$
\left(\frac{1}{\sqrt{5}}\right)^{j/2} a^{e_{j-1}+j/2-1} \leqslant \# \langle s_{n_{j-1}} \rangle \leqslant \# \langle s_n \rangle \leqslant \# \langle s_{n_j} \rangle \leqslant \frac{1}{\sqrt{5}} a^{e_j+2}.
$$

Hence,

$$
\frac{|\log 3^{-n_j}(\frac{1}{\sqrt{5}})^{j/2}a^{e_{j-1}+j/2-1}|}{n_{j-1}\log 3} \ge \frac{|\log \mu_n(s_n)|}{n\log 3} \ge \frac{|\log 3^{-n_{j-1}}\frac{1}{\sqrt{5}}a^{e_j+2}|}{n_j\log 3}.
$$
 (4.3)

Observe that

$$
\lim_{j \to \infty} \frac{j}{n_j} = 0, \quad \lim_{j \to \infty} \frac{n_{j-1}}{n_j} = 1.
$$

Let

$$
u_i = \begin{cases} \frac{1}{2}l_i & \text{if } i \text{ is even} \\ \frac{1}{2}l_{i-1} & \text{if } i \text{ is odd}, \end{cases}
$$

and $v_i = \frac{1}{2}(l_i + l_{i-1})$. An easy computation (see [8]) yields

$$
\lim_{j \to \infty} \frac{e_j}{n_j} = \lim_{j \to \infty} \frac{u_j}{v_j} = r.
$$
\n(4.4)

From (4.3), (4.4) and Proposition 2.1, we obtain

$$
\alpha(s) = 1 - \frac{r \log a}{\log 3} = \alpha.
$$

Thus $\alpha(s) = \alpha$, which proves Claim 4.1 and consequently Main Theorem is \Box

ACKNOWLEDGMENTS

The authors are grateful to Professor Nguyen To Nhu for his helpful suggestions and comments during the preparation of this paper.

REFERENCES

- [1] K. J. Falconer, Fractal Geometry-Mathematical Foundations and Applications, John Wiley, New York, 1990.
- [2] K. Falconner, Techniques in Fractal Gometry, John Wiley, New York, 1997.
- [3] K. J. Falconer, Random fractals, Math. Proc. Camb. Phil. Soc. 100 (1986), 559 582.
- [4] A. Fan, K. S. Lau, and S. M. Ngai, Interated function systems with overlaps, Asian J. Math. 4 (2000), 527-552.
- [5] T. Hu, The local dimensions of the Bernoulli convolution associated with the golder number, Trans. Amer. Math. Soc. 349, 2917 - 2940.
- [6] T. Hu, Some open questions related to Probability, Fractal, Wavelets, East-West J. Math. $2(1)(2000), 55 - 71.$
- [7] J. H. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), 713 747
- [8] Tian-You Hu, Nhu Nguyen, and Tony Wang, Local dimensions of the probability measure associated with (0, 1, 3)- Problem, Preprint.
- [9] B. Jessen and A. Wintner, Distribution functions and the Riemann zeta function, Trans. Amer. Math. Soc. 38 (1935), 48-88.

Department of Mathematics Pedagogical College of Nghe An Nghe An, Vietnam

 $E\text{-}mail\;address\colon\mathtt{Vu}_\mathtt{Homg}_\mathtt{Thanh@yahoo}$.com

JOURNAL OF SCIENCE Vietnam National University, Hanoi E-mail address: nnhuyna@yahoo.com

Department of Mathematics Vinh University, Nghe An E-mail address: Lexuanson@gmail.com