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SINGULARITY OF PROBABILITY MEASURE

IN FRACTAL GEOMETRY

VU THI HONG THANH, NGUYEN NHUY AND LE XUAN SON

Abstract. Let µ be the probability measure induced by S =
∞∑
i=1

3−iXi, where

X1, X2, . . . are independent identically distributed random variables each tak-
ing integer values 0, 1, a with equal probability 1/3, where a is a parameter.
Let α(s, a) (resp. α(s, a), α(s, a)) denote the local dimension (resp. lower,
upper local dimension) of s ∈ supp µ, and let

E(a) = {α : α(s, a) = α for some s ∈ supp µ},
α(a) = sup{α(s, a) : s ∈ supp µ}; α(a) = inf{α(s, a) : s ∈ supp µ}.

In this paper, we prove that for a = 4 we have

α(4) = 1, α(4) = 1− log (1 +
√
5)− log 2

log 3
and E = [α(4), α(4)].

1. Introduction

Let X1,X2, . . . be a sequence of independent identically distributed random
variables each taking values a1, a2, . . . , am with respective probabilities p1, p2,
. . . , pm. For 0 < ρ < 1, let

S =

∞∑

i=1

ρiXi,

and let µ (depending on ρ) be the probability measure induced by S, i.e.,

µ(A) = Prob{ω : S(ω) ∈ A}.

By Jessen and Wintner’s “pure theorem” [9], the measure µ is either purely
singular or absolutely continuous.

If µ is purely singular, the degree of singularities of µ can be analyzed on a
pointwise basis by studying its local dimensions. In this case

lim
h→0+

µ(Bh(x))

h
= 0

for almost all x in the support of µ, where Bh(x) denotes the ball centered at x
with radius h.
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On the other hand, this value may be infinite at other points. Therefore, it is
natural to find α > 0 so that

0 < lim
h→0+

inf
µ(Bh(x))

hα
� lim
h→0+

sup
µ(Bh(x))

hα
<∞.

If such an α exists, then for small h, µ(Bh(x)) ≈ Chα for some constant C > 0,
or α ≈ logµ(Bh(x))

log h . This suggests the lower local dimension α(s) of µ for s ∈
supp µ

α(s) = lim
h→0+

inf
log µ(Bh(s))

log h
. (1.1)

The upper local dimension, denoted by α(s), is defined similarly by using the
upper limit. If the two limits equal, then the common value is called the local
dimension of µ at s, denoted by α(s). Thus, the local dimension is a function
defined on supp µ. Denote

α = sup{α(s) : s ∈ supp µ}; α = inf{α(s) : s ∈ supp µ};

α∗ = sup {α(s) : s ∈ supp µ}; α∗ = inf{α(s) : s ∈ supp µ};
E = {α ∈ R : α(s) = α for some s ∈ supp µ}.

In this note we are interested in identifying the domain E in the special case
when m = 3, ρ = p1 = p2 = p3 = 1/3, a1 = 0, a2 = 1 and a3 = a is a parameter.
For a = 3 it is known [8] that E = [α, α] = [2/3, 1]. We prove

Theorem 1.1. (Main Theorem). For a = 4 we have

α = α∗ = 1;α = α∗ = 1−
log (1 +

√
5)− log 2

log 3
and E = [α,α].

As in [8], the proof of our Main Theorem uses a combinatoric approach which
depends on some careful counting the multiple representations of n-partial sum

sn of s =
∞∑
i=1
3−ixi ∈ supp µ and the associated probabilities.

The paper is organized as follows. In Section 2 we derive some lemmas and
propositions, which will reduce the computation of α(s), s ∈ supp µ, to the
calculation of #〈sn〉, sn =

∑n
i=1 3

−ixi, where #〈sn〉 denotes the cardinality of
〈sn〉. In Section 3 we establish some decomposition results for zero elements and
recurrence equation for computing #〈sn〉. The proof of Main Theorem will be
given in the last section.

2. Some primary results

Denote D = {0, 1, 4} and for s =
∞∑
i=1
3−ixi ∈ supp µ, xi ∈ D, let sn =

n∑
i=1
3−ixi

be its n-partial sum. Let

〈sn〉 = {(x1, . . . , xn) ∈ Dn :
n∑

i=1

3−ixi = sn}.
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Because X1,X2, . . . are independent,

µn(sn) = 3
−n#〈sn〉,

where µn is the probability measure induced by Sn =
n∑
i=1
3−iXi.

Proposition 2.1. For s ∈ supp µ, we have

α(s) = lim
n→∞

| log µn(sn)|
n log 3

,

provided that the limit exists. Otherwise, we can replace α(s) by α(s) (α(s)) and
consider the upper (the lower) limits respectively.

We first prove

Lemma 2.1. Let

sk =

k∑

i=1

3−ixi > s
′
k =

k∑

i=1

3−ix′i > s
′′
k =

k∑

i=1

3−ix′′i ,

where xi, x
′
i, x

′′
i ∈ D for i = 1, . . . , k, be consecutive numbers in supp µk. Then

(i) if sk − s′k = 3−k, then x′k = 0.
(ii) either sk − s′k �= 3−k or s′k − s′′k �= 3−k.
(iii) if sk+1 = sk, then #〈sk+1〉 = #〈sk〉.

Proof. (i) Assume that sk = sk−1 + 3
−kxk, s

′
k = s

′
k−1 + 3

−kx′k, then

sk − s′k = 3−k ⇔ sk−1 − s′k−1 =
1 + x′k − xk

3
3−(k−1).(2.1)

Observe that for sn, s
′
n ∈ supp µn, we have sn− s′n = t3−n for some t ∈ Z, and if

(1 + a− b) ≡ 0 (mod 3) and a, b ∈ D, then
a = 0, b ∈ {1, 4}.(2.2)

Therefore, from (2.1) we have x′k = 0. Thus, (i) is proved.

(ii) Write s′′k = s
′′
k−1+3

−kx′′k. Assume on the contrary that sk−s′k = s′k−s′′k =
3−k. Then by (2.1) and (2.2), x′k ∈ {1, 4}. But, since sk−s′k = 3−k, by (i), x′k = 0,
a contradiction.

(iii) Let sk+1 = sk = s
′
k + 3

−(k+1)x′k+1, where x
′
k+1 ∈ {1, 4} and s′k ∈ supp µk.

Then sk − s′k =
x′k+1
3 3−k = t3−k(t ∈ N). This implies x′k+1 ≡ 0 (mod 3) which

contradicts x′k+1 ∈ {1, 4}. Hence #〈sk+1〉 = #〈sk〉.

From Lemma 2.1 we get

Corollary 2.1. (i) Any element sk+1 ∈ supp µk+1 has at most two representa-
tions in supp µk, and if sk+1 = sk then the representation is unique.
(ii) If sk+1 has two representations: sk+1 = sk + 3

−(k+1)4 = s′k + 3
−(k+1), then

sk, s
′
k are two consecutive points in supp µk.
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Lemma 2.2. For any two consecutive points sn =
n∑
i=1
3−ixi and s′n =

n∑
i=1
3−ix′i,

we have

µn(sn)

µn(s′n)
� n.(2.3)

Proof. We prove the lemma by induction. Clearly the inequality holds true for
n = 1. We consider the case n = k + 1, assuming that the inequality holds true
for all n � k. Let sk+1 > s′k+1 be two arbitrary consecutive points in supp µk+1.
Writing sk+1 = sk + 3

−(k+1)xk+1, we consider the following cases.
Case 1. xk+1 = 0. Then sk+1 = sk. By Lemma 2.1(iii), #〈sk+1〉 = #〈sk〉. Now
we calculate the cardinality of 〈s′k+1〉. Obviously, if s∗k+1 = s∗k + 3

−(k+1)x∗k+1 ∈
supp µk+1 and s

∗
k+1 < sk+1, then s

∗
k < sk. Letting

s′k = max{s∗k ∈ supp µk : s∗k < sk}
we get sk > s

′
k are two consecutive points in supp µk. Observe that

If sk− s′k = 3−k, then sk+1 = sk = s′k +3−k > s′k+3−(k+1). Since s′k+1 < sk+1
are consecutive points, we have s′k+1 = s′k + 3

−(k+1). Observe that if s′k+1 =

s∗k + 3
−(k+1)x∗k+1 is another representation, then by Corollary 2.1(i), x

∗
k+1 = 4.

Hence, s′k+1 = s
′
k+3

−(k+1) = s∗k+3
−(k+1)4. This implies s′k−s∗k = 3−k = sk−s′k,

contradicting Lemma 2.1(ii). Therefore, #〈s′k+1〉 = #〈s′k〉. Thus,
µk+1(sk+1)

µk+1(s
′
k+1)

=
#〈sk+1〉
#〈s′k+1〉

=
#〈sk〉
#〈s′k〉

� k < n.

If sk − s′k � 2.3−k, then for any x∗k+1 ∈ D and s∗k < sk we have

sk+1 = sk � s′k + 2.3−k > s′k + 3−(k+1)4 � s∗k + 3−(k+1)x∗k+1.
Thus, s′k + 3

−(k+1)4 is the largest value in supp µk+1 that is smaller than sk+1.

Hence, s′k+1 = s
′
k + 3

−(k+1)4. This implies #〈s′k+1〉 = #〈s′k〉. Therefore,
µk+1(sk+1)

µk+1(s
′
k+1)

=
#〈sk+1〉
#〈s′k+1〉

=
#〈sk〉
#〈s′k〉

� k < n.

Case 2. xk+1 = 1 or xk+1 = 4. The proof of the two cases are the same, and so
we demonstrate the case xk+1 = 4 only.

When xk+1 = 4, we have sk+1 = sk+3
−(k+1)4. By Corollary 2.1(ii), if s∗k−sk =

3−k for some s∗k ∈ supp µk, then s∗k, sk are two consecutive points and sk+1 has
two representations sk+1 = sk + 3

−(k+1)4 = s∗k + 3
−(k+1). Hence,

#〈sk+1〉 = #〈sk〉+#〈s∗k〉.
Since sk+1 = s

∗
k + 3

−(k+1) and sk+1 > s′k+1 are consecutive, we have s
′
k+1 = s

∗
k.

By Lemma 2.1(iii), #〈s′k+1〉 = #〈s∗k〉. By inductive assumption,
µk+1(sk+1)

µk+1(s
′
k+1)

=
#〈sk+1〉
#〈s′k+1〉

=
#〈sk〉+#〈s∗k〉

#〈s∗k〉
� k + 1 = n.
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The lemma is proved.

Proof of Proposition 2.1. Observe that for h > 0 and n ∈ N with
3−(n+1) < h � 3−n,

we have
µ(B3−(n+1)(s)) � µ(Bh(s)) � µ(B3−n(s)).

Hence,

α(s) = lim
n→∞

| logµ(B3−n(s))|
n log 3

.(2.4)

Since

|Sn − S| � 3−n4
∞∑

i=1

3−i = 3−n4
1

2
= 2.3−n

we have (where r = 2)

µn(B(1+r)3−n(s)) = Prob(s− (1 + r)3−n � Sn � s+ (1 + r)3−n)
� Prob(s− (1 + r)3−n − r3−n � S � s+ (1 + r)3−n + r3−n)
= µ(B(1+2r)3−n(s)).

Similarly, µ(B3−n(s)) � µn(B(1+r)3−n(s)). Thus,
µ(B3−n(s)) � µn(B(1+r)3−n)(s)) � µ(B(1+2r)3−n(s)).(2.5)

Therefore,

| log µ(B3−n(s))|
n log 3

�
| log µn(B(1+r)3−n(s))|

n log 3
.(2.6)

By Lemma 2.1(ii), B(1+r)3−n(s) contains at most 5 consecutive points sn in
supp µn, so we have

µn(B(1+r)3−n(s)) =

∑
{#〈sn〉 : sn ∈ B(1+r)3−n(s) ∩ supp µn}

3n
� 5n4µn(sn).

Thus, from (2.6) we get

| log µ(B3−n(s))|
n log 3

�
| log µn(B(1+r)3−n(s))|

n log 3
� | log µn(sn) + log(5n4)|

n log 3
.

Consequently, by (2.4) we have

α(s) � lim
n→∞

| log µn(sn)|
n log 3

.(2.7)

Now for h > 0 let n ∈ N be such that
(2r + 1)3−n < h � (2r + 1)3−n+1.

Then
− log h � − log[(2r + 1)3−n+1] = n log 3− log[(2r + 1)3]

and by (2.5) we have

| log µ(Bh(s))| � | log µ(B(1+2r)3−n(s))| � | log µn(B(1+r)3−n(s))|.
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Hence,

log µ(Bh(s))

log h
=
| log µ(Bh(s))|

− log h �
| log µn(B(1+r)3−n(s))|
n log 3− log[(2r + 1)3] ,

which implies

α(s) � lim
n→∞

| log µn(B(1+r)3−n(s))|
n log 3

.(2.8)

Observe that
| log µn(B(1+r)3−n(s))|

n log 3
� | log µn(sn)|

n log 3
.

Therefore, from (2.8) we get

α(s) � lim
n→∞

| log µn(sn)|
n log 3

.

Consequently, by (2.7)

α(s) = lim
n→∞

| log µn(sn)|
n log 3

.

The proposition is proved.

3. Prime sequences and multiple sequences

By Proposition 2.1, the key for calculating the local dimension is to determine
the rate of the growth of #〈sn〉. Observe that if (y1, . . . , yn) and (z1, . . . , zn) are
two elements in 〈sn〉, then

n∑
i=1
3−i(yi − zi) = 0.

Let Γ = D − D = {0,±1,±3,±4}. We say that (x1, . . . , xn) ∈ Γn is a zero
sequence if

n∑
i=1
3−ixi = 0. An easy calculation shows that

(0, . . . , 0);±(−1, 3);±(1,−4, 3)

±(1,−4, 4,−4︸ ︷︷ ︸, . . . , 4,−4︸ ︷︷ ︸, 3) or

±(−1, 4,−4︸ ︷︷ ︸, . . . , 4,−4︸ ︷︷ ︸, 3)(3.1)

are zero sequences. We prove

Proposition 3.1. x = (x1, . . . , xn) ∈ Γn is a zero sequence if and only if it can
be decomposed uniquely as a concatenation of sequences of (3.1).

Proof. Since a concatenation of zero sequences is a zero sequence, we need to
prove the “only if” part only.

Let x = (x1, . . . , xn) be a zero sequence. Then

n∑

i=1

3−ixi = 0, where xi ∈ Γ for i = 1, . . . , n,(3.2)
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which implies xn ≡ 0 (mod 3). Without loss of generality we may assume that
xn = 3. Multiplying (3.2) by 3

n−1 we obtain

xn−1 + 1 ≡ 0 (mod 3),(3.3)

so xn−1 = −1 or xn−1 = −4.
If xn−1 = −1, then (xn−1, xn) = (−1, 3), which belongs to (3.1). Thus, we can

repeat the above argument for the remaining zero sequence (x1, . . . , xn−2).

If xn−1 = −4, then (xn−1, xn) = (−4, 3), so from (3.2) it follows that xn−2−1 ≡
0 (mod 3). Hence, xn−2 = 1 or xn−2 = 4. Consider two cases

Case 1. xn−2 = 1. Then (xn−2, xn−1, xn) = (1,−4, 3). Hence, from (3.1) we
get the assertion.

Case 2. xn−2 = 4. Then (xn−2, xn−1, xn) = (4,−4, 3) and from (3.2), it follows
that xn−3 + 1 ≡ 0 (mod 3). Thus, the assertion follows from (3.3). Repeating
the above argument we get

(xi, . . . , xn) = (−1, 4,−4︸ ︷︷ ︸, . . . , 4,−4︸ ︷︷ ︸, 3) or

(xi, . . . , xn) = (1,−4, 4,−4︸ ︷︷ ︸, . . . , 4,−4︸ ︷︷ ︸, 3)

for some i � 1.

By Proposition 2.1, the maximum (minimum) value of the local dimension will

occur at a point x = (x1, x2, . . . ) ∈ D∞ such that #〈sn〉 (sn =
n∑
i=1
3−ixi) attains

a minimum (maximum) value for all sufficient large n. So we will introduce some
notions which will be used to calculate the extreme local dimension.

Two sequences x = (x1, . . . , xn) ∈ Dn and y = (y1, . . . , yn) ∈ Dn are said to
be equivalent, denoted by x ≈ y, if x− y is a zero sequence. It is easy to see that
“≈” is an equivalence relation. Let 〈x〉 denote the equivalence class of x. Note
that if sn =

n∑
i=1
3−ixi, then 〈x〉 = 〈sn〉, so #〈x〉 = #〈sn〉.

We call x = (x1, . . . , xn) ∈ Dn a prime sequence if #〈x〉 = 1, and x =
(x1, x2, . . . ) ∈ D∞ a prime sequence if every finite segment of x is a prime se-
quence, and by a segment of a sequence we mean a consecutive subsequence of
the form (xi, xi+1, . . . , xi+n). A sequence (finite or infinite) is called a multiple
sequence if it is not a prime sequence.

Proposition 3.2. x = (x1, . . . , xn) ∈ Dn is a prime sequence if and only if it
contains no segment of the form (0,4) or (1,1).

Proof. Since (0,4) ≈ (1,1), if x contains (0,4) or (1,1) then #〈x〉 � 2. Hence, x
is a multiple sequence.

Conversely, if #〈x〉 � 2, then there is an y = (y1, . . . , yn) ∈ Dn with y �= x
such that x − y is a zero sequence. Hence, by Proposition 3.1, x − y contains a
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segment of (3.1). Without loss of generality assume that

x− y = (−1, 4,−4︸ ︷︷ ︸, . . . , 4,−4︸ ︷︷ ︸, 3) or(3.4)

x− y = (1,−4, 4,−4︸ ︷︷ ︸, . . . , 4,−4︸ ︷︷ ︸, 3).(3.5)

If x− y belongs to (3.4), then

x = (0, 4, . . . , 0, 4) and y = (1, 0, 4, . . . , 0, 4, 1),

and if x− y belongs to (3.5), then

x = (1, 0, 4, . . . , 0, 4) and y = (0, 4, 0, 4, . . . , 0, 4, 1).

Thus, x always contains (0, 4). The proposition is proved.

For n ∈ N∗, let Zn = {(x1, . . . , xn) ∈ Dn} which (x1, . . . , xn) = (1, . . . , 1), or
(x1, . . . , xn) = (0, 4, . . . , 0, 4), or (x1, . . . , xn) is concatenated by form segments
of (1, . . . , 1) or (0, 4).

Note that x contains a segment (0, 4) or a segment (1, 1) for every x ∈ Zn. By
Proposition 3.2, it is a multiple sequence.

The members of Zn are called basic multiple sequences of length n. Clearly,
Zn is an equivalence class in D

n. Moreover, if x ∈ Zn, then 〈x〉 = Zn. Hence,
#〈x〉 = #Zn.
Observe that by placing a digit 1 at the beginning or at the end of a basic

multiple finite sequence, then we get another basic multiple sequence of larger
length. So we call an infinite sequence x = (x1, x2, . . . ) ∈ D∞ a basic multiple
sequence if xi = 1 for every i ∈ N or, if xi �= 1 for some i ∈ N then (xi, xi+1) =
(0, 4), where i is the smallest such that xi �= 1.
A multiple segment of a sequence x = (x1, x2, . . . ) is maximal if it contains no

other proper subsegments.

Proposition 3.3. Any sequence x = (x1, x2, . . . ) ∈ D∞ is a unique concatena-
tion of maximal basic multiple segments and prime segments.

Proof. By Proposition 3.2, if x does not contain (0, 4) or (1, 1) then x is a prime
sequence. Otherwise, we check from x1 to x2 and so on until we get (0, 4) or
(1, 1). Then we can write

x = (x1, . . . , xk, 0, 4, xk+3, . . . ) or

x = (x1, . . . , xk, 1, 1, xk+3, . . . ).

Thus, (x1, . . . , xk) is a prime segment by Proposition 3.2. Now we continue to
check from xk+3. There are two cases.

Case 1. (xk+3, xk+4, . . . ) is a basic multiple infinite sequence. Then x is con-
catenated by two parts: the first one is a prime segment (x1, . . . , xk) and the
second is a basic multiple infinite sequence (xk+1, xk+2, . . . ).
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Case 2. (xk+1, xk+2, . . . ) is not a basic multiple infinite sequence. Let xk+t
(t ∈ N, t � 3) be the first co-ordinate with xk+t �= 1 or (xk+t, xk+t+1) �= (0, 4).
Then

(xk+1, . . . , xk+t−1) = (0, 4, 1, . . . , 1) and (xk+1, . . . , xk+t−1) = (1, . . . , 1)

are maximal basic multiple segments. Thus, x is concatenated by three parts:
the prime sequence (x1, . . . , xk), the maximal basic multiple segment (xk+1, . . . ,
xk+t−1) and the infinite subsequence (xk+t, xk+t+1, . . . ). Using the above argu-
ment, we continue to decompose the infinite part (xk+t, xk+t+1, . . . ) to obtain the
assertion.

Proposition 3.4. For any basic multiple sequence x ∈ Zn, let Fn = #Zn =
#〈x〉. Then

F1 = 1, F2 = 2 and Fn = Fn−1 + Fn−2 for n � 3.(3.6)

Proof. We prove the proposition by induction. It is easy to check that F1 =
1, F2 = 2 and F3 = F1 + F2. Suppose that (3.6) holds true for all n � k.
We will show that Fk+1 = Fk + Fk−1. Let x = (x1, . . . , xk+1) ∈ Zk+1 and

sk+1 =
k+1∑
i=1

3−ixi. Then

#〈sk+1〉 = #Zk+1 = Fk+1.

Without loss of generality we may assume that x = (x1, . . . , xk+1) = (1, 1, . . . , 1).
Then we have

sk+1 =

k+1∑

i=1

3−ixi = sk + 3
−(k+1),

where 〈sk〉 = 〈(1, 1, . . . , 1)〉 = Zk.
Let s′k = sk − 3−k. Then

〈s′k〉 = 〈(1, 1, . . . , 1, 0)〉, sk+1 = s′k + 3−(k+1)4 and s′k = s
′
k−1,

where 〈s′k−1〉 = 〈(1, 1, . . . , 1)〉 = Zk−1. By Lemma 2.1(iii), we have
#〈s′k〉 = #〈s′k−1〉 = #Zk−1 = Fk−1.

Consequently,

Fk+1 = #〈sk+1〉 = #〈sk〉+#〈s′k〉 = #〈sk〉+#〈s′k−1〉 = Fk−1 + Fk.
The proposition is proved.

From Proposition 3.4 it follows that if x is a basic multiple sequence of length
n, then by Fibonacci formula, we have

Fn = #Zn = #〈x〉 =
1√
5

[
(
1 +

√
5

2
)

n+1

− (1−
√
5

2
)

n+1
]
.(3.7)

Proposition 3.5. For any n ∈ N, n �= 0, we have
Fn � #〈tn〉 for all tn ∈ supp µn.



12 VU THI HONG THANH, NGUYEN NHUY AND LE XUAN SON

Proof. We prove the proposition by induction. Clearly the inequality is true for
n = 1. We consider the case n = k + 1, assuming that the inequality is true for
all n � k. Let

y = (y1, . . . , yk+1) /∈ Zk+1, tk+1 =
k+1∑

i=1

3−iyi.

Write tk+1 = tk+3
−(k+1)yk+1, where tk ∈ supp µk, yk+1 ∈ D. We consider the

following cases.

If yk+1 = 0, then tk+1 = tk. By Lemma 2.1(iii) and inductive assumption, we
have

#〈tk+1〉 = #〈tk〉 � Fk < Fk+1.

If yk+1 �= 0, let tk+1 = tk + 3
−(k+1) = t′k + 3

−(k+1)4 be two representations

of tk+1 in supp µk. Then tk = t′k + 3
−k. Assume that t′k =

k∑
i=1
3−iy′i, then by

Lemma 2.1(i), y′k = 0. Hence, t
′
k = t

′
k−1, which implies #〈t′k〉 = #〈t′k−1〉. By the

induction assumption and by Proposition 3.4, we have

#〈tk+1〉 � #〈tk〉+#〈t′k〉 = #〈tk〉+#〈t′k−1〉 � Fk + Fk−1 = Fk+1.

The proposition is proved.

Proposition 3.6. If x = (x1, . . . , xn) ∈ Dn is concatenated by prime segments
and m maximal basic multiple sequences with lengths l1, . . . , lm respectively, l1 +
. . .+ lm � n, then

#〈x〉 =
m∏

i=1

Fli � Fn.

Proof. By the multiplication principle it is easy to see that #〈x〉 =
m∏
i=1
Fli . To

prove the inequality we first show that, for any n ∈ N, n � 2 and for any n1, n2 ∈
N with n1 + n2 = n, one has

Fn1Fn2 � Fn.(3.8)

The inequality (3.8) can be proved by induction. The inequality holds trivially
for all n � 5. Suppose that it holds for all n � k, k � 5, we prove it also holds
for n = k + 1. Let k1 � k2 be such that k1 + k2 = k + 1. By Proposition 3.4 and
by the induction assumption, we get

Fk1Fk2 = Fk1(Fk2−1 + Fk2−2)

= Fk1Fk2−1 + Fk1Fk2−2

� Fk1+k2−1 + Fk1+k2−2
= Fk1+k2 = Fk+1.
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From (3.8) we have

m∏

i=1

Fli � Fl1+l2
m∏

i=3

Fli � . . . � Fl1+...+lm � Fn.

The proposition is proved.

4. Proof of the Main Theorem

The following proposition establishes the values of α, α∗, α, α∗ of Main The-
orem.

Proposition 4.1. The following equalities hold true:

α = α∗ = 1, and α = α∗ = 1−
log (1 +

√
5)− log 2

log 3
.

Proof. Observe that if x = (x1, x2, . . . ) ∈ D∞ is a prime sequence, then #〈sn〉 = 1
for every n, where sn =

n∑
i=1
3−ixi. Hence, µn(sn) = 3−n#〈sn〉 = 3−n for every n.

By Proposition 2.1, for s =
∞∑
i=1
3−ixi ∈ supp µ we have

α = α∗ = α(s) = 1.

We prove the second equality. Let s =
∞∑
i=1
3−ixi ∈ supp µ and sn =

n∑
i=1
3−ixi ∈

supp µn. By Propositions 2.1, 3.5 and (3.7), we have

α(s) = lim
n→∞

| log µn(sn)|
n log 3

= lim
n→∞

| log 3−n#〈sn〉|
n log 3

� 1− lim
n→∞

| log 1√
5
[(1+

√
5

2 )n+1 − (1−
√
5

2 )n+1]|
n log 3

= 1− log(1 +
√
5)− log 2

log 3
.

Therefore,

α,α∗ � 1−
log (1 +

√
5)− log 2

log 3
.

On the other hand, let x = (x1, x2, . . . ) = (1, 1, . . . ) ∈ D∞. Then #〈sn〉 = Fn for
all n ∈ N, where sn =

n∑
i=1
3−ixi. Hence, for s =

∞∑
i=1
3−ixi, we have

α(s) = 1− log(1 +
√
5)− log 2

log 3
.

This shows that

α,α∗ � 1−
log (1 +

√
5)− log 2

log 3
.
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Thus,

α = α∗ = 1−
log (1 +

√
5)− log 2

log 3
.

The second equality is proved.

Let α ∈ (α,α). Write

α = r(1− log a
log 3

) + (1− r)1 = 1− r log a
log 3

for some r ∈ (0, 1), where a = 1+
√
5

2 . Let

li =

{
2i if i is even

[2i(1−r)r ] if i is odd,

where [t] is the largest integer not exceeding than t. Let

Ej = {i : i is even, i � j};Oj = {i : i is odd, i � j};

ej =
∑

i∈Ej

li; oj =
∑

i∈Oj

li, and nj =

j∑

i=1

li.

Then nj = ej + oj .

To complete the proof of Main Theorem, it remains to prove that for any
α ∈ (α,α), there exists s in supp µ for which α(s) = α. We prove

Claim 4.1. For

x = (x1, x2, . . . ) = (4, . . . , 4︸ ︷︷ ︸
l1

, 1, 1, 1, 1︸ ︷︷ ︸
l2=4

, 4, . . . , 4︸ ︷︷ ︸
l3

, 1, 1, 1, 1, 1, 1, 1, 1︸ ︷︷ ︸
l4=8

, . . . ) ∈ D∞,

we have α(s) = α, where s =
∞∑
i=1
3−ixi ∈ supp µ.

Proof. Observe that any segment (x1, . . . , xnj) contains [
j
2 ] maximal basic

multiple sequences with lengths l2, l4, . . . , l2[ j
2
] respectively, where l2 + l4 +

. . . + l2[ j
2
] = ej and contains (j − [

j
2 ]) prime segments. Let snj =

nj∑
i=1
3−ixi. By

Proposition 3.6, we have

#〈snj 〉 =
∏

i∈Ej

Fli � Fej =
1√
5
(aej+1 +

(−1)ej
aej+1

) <
1√
5
aej+2. (4.1)

Observe that

Fli =
1√
5
(ali+1 +

(−1)li
ali+1

) =
1√
5
(ali+1 +

1

ali+1
) >

1√
5
ali+1

for any i ∈ N and i is even. Hence,

#〈snj 〉 =
∏

i∈Ej

Fli > (
1√
5
)[
j
2
]aej+[

j
2
]. (4.2)
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For any n ∈ N, n �= 0 let j ∈ N with nj−1 � n < nj. Since #〈sn〉 is an increasing
function with respect to n, by (4.1) and (4.2), we have

(
1√
5
)j/2aej−1+j/2−1 � #〈snj−1〉 � #〈sn〉 � #〈snj 〉 �

1√
5
aej+2.

Hence,

| log 3−nj ( 1√
5
)j/2aej−1+j/2−1|

nj−1 log 3
� | log µn(sn)|

n log 3
�
| log 3−nj−1 1√

5
aej+2|

nj log 3
. (4.3)

Observe that

lim
j→∞

j

nj
= 0, lim

j→∞

nj−1
nj

= 1.

Let

ui =

{
1
2 li if i is even
1
2 li−1 if i is odd,

and vi =
1
2 (li + li−1). An easy computation (see [8]) yields

lim
j→∞

ej
nj
= lim
j→∞

uj
vj
= r. (4.4)

From (4.3), (4.4) and Proposition 2.1, we obtain

α(s) = 1− r log a
log3

= α.

Thus α(s) = α, which proves Claim 4.1 and consequently Main Theorem is
proved. 2
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