ACTA MATHEMATICA VIETNAMICA 3
Volume 33, Number 1, 2008, pp. 3-16

SINGULARITY OF PROBABILITY MEASURE
IN FRACTAL GEOMETRY

VU THI HONG THANH, NGUYEN NHUY AND LE XUAN SON

ABSTRACT. Let pu be the probability measure induced by S = 3 37°X;, where

i=1
X1, Xa, ... are independent identically distributed random variables each tak-
ing integer values 0,1, a with equal probability 1/3, where a is a parameter.
Let a(s,a) (resp. «afs,a), a(s,a)) denote the local dimension (resp. lower,
upper local dimension) of s € supp u, and let
E(a) ={a: a(s,a) = « for some s € supp u},
a(a) = sup{a(s,a) : s € supp p}; a(a) =inf{a(s,a): s € supp p}.
In this paper, we prove that for a = 4 we have
_log(1+ V/5) — log 2

() =1, a(4) =1 e

and E = [a(4), a(4)].

1. INTRODUCTION

Let X1, Xs,... be a sequence of independent identically distributed random
variables each taking values ai,aq,... ,a, with respective probabilities p;, p2,
.oy Pm- For 0 < p < 1, let

0 .
§=2_ r'Xi
i=1
and let u (depending on p) be the probability measure induced by S, i.e.,

p(A) = Prob{w: S(w) € A}.

By Jessen and Wintner’s “pure theorem” [9], the measure p is either purely
singular or absolutely continuous.

If p is purely singular, the degree of singularities of p can be analyzed on a
pointwise basis by studying its local dimensions. In this case

i P(Br(2))

=0
h—0+ h

for almost all z in the support of u, where By (z) denotes the ball centered at x
with radius h.
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On the other hand, this value may be infinite at other points. Therefore, it is
natural to find a > 0 so that

B B
ot g BB )
h—0F he h—0+ he

If such an « exists, then for small h, u(Bp(x)) ~ Ch® for some constant C' > 0,

ora =~ %. This suggests the lower local dimension a(s) of u for s €
supp p
1 B
a(s) = lim inf log p1(Bn(s)) (1.1)
h—0+ log h

The upper local dimension, denoted by @(s), is defined similarly by using the
upper limit. If the two limits equal, then the common value is called the local
dimension of p at s, denoted by «(s). Thus, the local dimension is a function
defined on supp p. Denote
@ = sup{a(s):s € supp p}; a = inf{a(s): s € supp p};
a® =sup {a(s) : s € supp p}; ax =inf{a(s) : s € supp u};
E={a€eR:a(s) =a for some s € supp p}.

In this note we are interested in identifying the domain E in the special case
when m =3, p=p; =p2 =p3 =1/3, a1 =0,a2 = 1 and a3 = a is a parameter.
For a = 3 it is known [8] that E = [a, @] = [2/3, 1]. We prove

Theorem 1.1. (Main Theorem). For a = 4 we have

log (1 +v/5) — log 2
log 3

a=a"=lia=a,=1 and E = [a,q).
As in [8], the proof of our Main Theorem uses a combinatoric approach which
depends on some careful counting the multiple representations of n-partial sum
o0 .
sp of s = > 37"x; € supp p and the associated probabilities.
i=1
The paper is organized as follows. In Section 2 we derive some lemmas and
propositions, which will reduce the computation of a(s), s € supp p, to the
calculation of #(s,), s, = > i, 3 "z;, where #(s,) denotes the cardinality of
(sn). In Section 3 we establish some decomposition results for zero elements and
recurrence equation for computing #(sy,). The proof of Main Theorem will be
given in the last section.

2. SOME PRIMARY RESULTS

[ee) . n ,
Denote D = {0,1,4} and for s = »_ 37'x; € supp u,z; € D, let s, = > 37"z
i=1 i=1

be its n-partial sum. Let

(sn) = {(x1,... ,2,) € D" : ZB_imi = Sn}
i=1
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Because X1, Xo,... are independent,
pn(sn) = 37" #(sn),

n .
where py, is the probability measure induced by S, = > 37'X;.
i=1

Proposition 2.1. For s € supp u, we have

Oé(S) — hm |10an(5n)|

n—voo  nlog3d

provided that the limit exists. Otherwise, we can replace a(s) by @(s) (a(s)) and
consider the upper (the lower) limits respectively.

We first prove
Lemma 2.1. Let

k k
Sp = 23_%1 > s = 23_%; > 8] = 23_1 7
i=1 i=1

where z;, x}, xf € D fori=1,... k, be consecutive numbers in supp ur. Then

(i) if sk — s}, = 37F, then 2}, = 0.

(ii) either s — s}, # 37% or s} — s # 37k,
(iii) if Sg+1 = Sk, then #(sp11) = #(sk).
Proof. (i) Assume that s, = sp_1 + 3 %y, s, =81+ 3*’%2, then
L+ zp, — 3—(k-1)

3

Observe that for sy, s], € supp pn, we have s, — s, = t3~" for some t € Z, and if
(1+a—0)=0 (mod 3) and a, b € D, then
(2.2) a=0,be{l,4}.

(2.1) sk—sp,=3 o5 1 -5, =

Therefore, from (2 1) we have zj, = 0. Thus, (i) is proved.
Write sf = s{ | +37*2{. Assume on the contrary that sy — s}, = s
k= Sh-1 k
3~ k. Then by (2.1) and (2.2), xk € {1,4}. But, since s, —s), = 37%, by (i), x
a contradiction.
(iii) Let spp1 = s, = 53, + 3_(k+1)x§€+1, where x| € {1,4} and s}, € supp fu.
Then s; — s, = 5137% = ¢37%(t € N). This implies 2}, = 0 (mod 3) which
contradicts x}; € {1,4}. Hence #(sp11) = #(sk). O

From Lemma 2.1 we get

Corollary 2.1. (i) Any element sip11 € supp pr+1 has at most two representa-
tions in supp px, and if spr1 = sk then the representation is unique.

(ii) If sgy1 has two representations: spy1 = sp + 3~ R4 = ) + 37+ then
Sk, 32 are two consecutive points in supp -
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n n
Lemma 2.2. For any two consecutive points s, = > 3 'z; and s, = Y 37"z},
i=1 =1
we have

pin(Sn)
(23) () <"

Proof. We prove the lemma by induction. Clearly the inequality holds true for
n = 1. We consider the case n = k + 1, assuming that the inequality holds true
for all n < k. Let sgp11 > s, 41 be two arbitrary consecutive points in supp fig+1-
Writing sg41 = si + 3_(k+1)xk+1, we consider the following cases.

Case 1. zg+1 = 0. Then si41 = si. By Lemma 2.1(iii), #(sg+1) = #(sx). Now
we calculate the cardinality of (s} ;). Obviously, if s ; = s; + 3_(k+1)mz+1 €
supp pk+1 and sy | < Sg41, then s < si. Letting

s}, = max{sj € supp gy : sy < Sk}
we get s, > 5. are two consecutive points in supp puy. Observe that
If s, — s}, = 37%, then sy, = 53, = sp. + 37k > sp, + 3=+ Since Spp1 < Skil
are consecutive points, we have s}, = s; + 3=+ Observe that if Syl =
sp + 3_(k+1)mz+1 is another representation, then by Corollary 2.1(i), =, = 4.
Hence, s}, = s) 4+ 37+ = g* 4 3=(k+1)4 This implies s, — s, = 37 = 51, — s},
contradicting Lemma 2.1(ii). Therefore, #(s; ) = #(s},). Thus,

Pri1(Ske1) _ #(Skr1) _ #(sk) <k<n

ﬂk+1(5;g+1) #<S;c+1> #(52)

If s, — s}, > 2.37% then for any zy,, € D and sj, < si we have

Skl =Sk = sh+237F > sf 43 R4 > o 4 37(k+1)xz+1.
Thus, 32; + 3= (k14 ig the largest value in supp pg41 that is smaller than sg1.
Hence, s, = s}, + 3~ **14. This implies #(s),,) = #(s},). Therefore,

i (ske1) _ #(sk1) _ #(sk) <k<n

#k+1(32;+1) #<3;g+1> #(si)

Case 2. k11 =1 or 511 = 4. The proof of the two cases are the same, and so
we demonstrate the case zp 1 = 4 only.

When xy1 = 4, we have sg11 = sp+3~ (4. By Corollary 2.1(ii), if s} —sp =
37F for some sy, € supp i, then sy, s, are two consecutive points and sjy1 has
two representations sy = sy, + 3~ D4 = ¥ + 37+ Hence,

#(skt1) = #(sk) + #(sk)-
Since sp11 = s§ +3~*+D and spq > 83,41 are consecutive, we have s, = s}.
By Lemma 2.1(iii), #(s}, ) = #(s}). By inductive assumption,
prar(se1) _ #sern) _ #{sk) + #(sp)
i1 (Spq)  #(Shy1) #(s})

<k+1=n.
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The lemma, is proved. a

Proof of Proposition 2.1. Observe that for h > 0 and n € N with
3—(n+1) <h<3™™,

we have
(Bs—nt1)(5)) < w(Bn(s)) < p(Bz-n(s)).
Hence,
o |log pu(Bs-n(s))|
(2.4) a(s) = nh_{rolo nlog3 .
Since

(o]
4 1
|Sn — S| <374y 37 = 37 =237"
=1

we have (where r = 2)
pin(B(reryzs(5)) = Prob(s — (1+7)37 < S, < s+ (1+7)3™)
<Prob(s—(1+7m)3™"=r3"<S<s+(1+r)37"+r3™")
= 1(B(i12r)3-n(s))-
Similarly, u(Bz-n(s)) < pn(B(14r)3-n(s)). Thus,

(2.5) (B3=n(5)) < pin(B(14r)3-m (8)) < p(B(1420)3-1(5))-
Therefore,
2.6 [log (B« (s))| _, 1108 0B s (5))]

nlog3 nlog3

By Lemma 2.1(ii), B(14,)3-»(s) contains at most 5 consecutive points s, in
Supp ftn, SO we have

_ > A#(sn) 150 € B(1+r)3—” (s) Nsupp fin}

3n < 5n4ﬂn(3n)'

tn(B(147)3-7(5))
Thus, from (2.6) we get

|log po(By-n(s))| _ 108 tn(Brurs—n(s))| _ |log pin(sn) + log(5n?)|
nlog 3 - nlog 3 - nlog 3 '

Consequently, by (2.4) we have

. |log pn(sn)|
> L =27 0 0
(2.7) a(s) = n11_>1r010 nlog3
Now for h > 0 let n € N be such that
r+1)37"<h<(2r+1)3" .

2 37" <h< (2 g—ntl

Then
—logh > —log[(2r + 1)37""1] = nlog 3 — log[(2r + 1)3]

and by (2.5) we have

|log u(B(s))| < [1og u(B(112r)3-n(5))| < [10g pin(B(14.7)3-n(5))]-
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Hence,
log u(Bi(s) _ |log u(Bu(s))| _ 1108 #n(Brasns—=(s))|
log h —logh nlog3—log[(2r +1)3]’

which implies

| 1og pin (B(14r)3-(5))]
(2.8) a(s) < Jim, nlog 3 ‘
Observe that
1108 pin(Bierys (5| _ |10 un(50)
nlog3 = nlog3

Therefore, from (2.8) we get

1
a(s) < lim 18#n(sn)|

n—oo  nlog3d
Consequently, by (2.7)

1
a(s) = lim 18#n(sn)|
n—oo  nlog3
The proposition is proved. O

3. PRIME SEQUENCES AND MULTIPLE SEQUENCES

By Proposition 2.1, the key for calculating the local dimension is to determine
the rate of the growth of #(s,). Observe that if (y1,...,y,) and (21,... ,2y,) are
n

two elements in (s,), then > 37" (y; — z;) = 0.
i=1

Let ' = D — D = {0,+1,£3,+4}. We say that (z1,...,z,) € I'™ is a zero

n .
sequence if Y 37'xz; = 0. An easy calculation shows that

=1
+(1,-4,4,—4,...,4,—-4,3) or
—— ——
(3.1) +(-1,4,-4,...,4,-4,3)
—— ——
are zero sequences. We prove
Proposition 3.1. = = (x1,... ,x,) € I'™ is a zero sequence if and only if it can

be decomposed uniquely as a concatenation of sequences of (3.1).

Proof. Since a concatenation of zero sequences is a zero sequence, we need to
)
prove the “only if” part only.

Let x = (z1,... ,2n) be a zero sequence. Then

n
(3.2) ZB*ixi =0, wherex; e fori=1,...,n,
i=1
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which implies x,, = 0 (mod 3). Without loss of generality we may assume that
z, = 3. Multiplying (3.2) by 3"~! we obtain

(3.3) ZTp—1+ 1 =0 (mod 3),
S0 Xp—1 = —1 or x,_1 = —4.

If z,,_1 = —1, then (2,1, 2z,) = (-1, 3), which belongs to (3.1). Thus, we can
repeat the above argument for the remaining zero sequence (z1,... ,Zp—2).

If x,,—1 = —4, then (zy,—1, ) = (—4, 3), so from (3.2) it follows that z,_s—1 =
0 (mod 3). Hence, z,—2 = 1 or x,_2 = 4. Consider two cases

Case 1. z,—2 = 1. Then (zp_2,2n—1,2,) = (1,—4,3). Hence, from (3.1) we
get the assertion.

Case 2. xp_o =4. Then (52, xn—1,%,) = (4,—4,3) and from (3.2), it follows
that x,—3 + 1 = 0 (mod 3). Thus, the assertion follows from (3.3). Repeating
the above argument we get

(Xiy.o o yxn) = (—1,4,—4,...,4,—4,3) or
—— ——
(s an) = (1,—4,4,—4, ... ,4,—4,3)
—— ——
for some 7 > 1. O

By Proposition 2.1, the maximum (minimum) value of the local dimension will
n .
occur at a point z = (z1,22,...) € D* such that #(s,) (sn, = >, 37"xz;) attains
i=1
a minimum (maximum) value for all sufficient large n. So we will introduce some
notions which will be used to calculate the extreme local dimension.

Two sequences x = (21,... ,&p) € D" and y = (y1,... ,yn) € D™ are said to
be equivalent, denoted by x ~ vy, if x — y is a zero sequence. It is easy to see that
“~” is an equivalence relation. Let (z) denote the equivalence class of z. Note

n .
that if s, = > 37"x;, then (z) = (s,), so #(x) = #(sp).
i=1

We call © = (z1,...,2,) € D™ a prime sequence if #(z) = 1, and = =
(x1,x9,...) € D*® a prime sequence if every finite segment of x is a prime se-
quence, and by a segment of a sequence we mean a consecutive subsequence of
the form (x;, Zij+1,... ,Zitn). A sequence (finite or infinite) is called a multiple
sequence if it is not a prime sequence.

Proposition 3.2. © = (z1,...,x,) € D" is a prime sequence if and only if it
contains no segment of the form (0,4) or (1,1).

Proof. Since (0,4) ~ (1,1), if = contains (0,4) or (1,1) then #(x) > 2. Hence, x
is a multiple sequence.

Conversely, if #(z) > 2, then there is an y = (y1,...,yn) € D" with y # x
such that x — y is a zero sequence. Hence, by Proposition 3.1, x — y contains a
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segment of (3.1). Without loss of generality assume that

(3.4) x—y=(-1,4,-4,...,4,—-4,3) or
—— ——
(3.5) x—y=(1,-4,4,—-4,...,4,—4,3).
—— ——

If x — y belongs to (3.4), then
x=(0,4,...,0,4) and y = (1,0,4,...,0,4,1),
and if z — y belongs to (3.5), then
x=(1,0,4,...,0,4) and y=(0,4,0,4,...,0,4,1).

Thus, x always contains (0, 4). The proposition is proved. O

For n € N* let Z,, = {(x1,... ,zpn) € D"} which (z1,... ,z,) = (1,...,1), or
(z1,...,2n) = (0,4,...,0,4), or (x1,...,xy,) is concatenated by form segments
of (1,...,1) or (0,4).

Note that z contains a segment (0,4) or a segment (1,1) for every z € Z,,. By
Proposition 3.2, it is a multiple sequence.

The members of Z, are called basic multiple sequences of length n. Clearly,
Z, is an equivalence class in D™. Moreover, if x € Z,,, then (z) = Z,,. Hence,
#(m) = #Zn.

Observe that by placing a digit 1 at the beginning or at the end of a basic
multiple finite sequence, then we get another basic multiple sequence of larger
length. So we call an infinite sequence x = (z1,z2,...) € D> a basic multiple
sequence if x; = 1 for every ¢ € N or, if z; # 1 for some ¢ € N then (z;, x;41) =
(0,4), where ¢ is the smallest such that x; # 1.

A multiple segment of a sequence z = (21,2, ...) is mazimal if it contains no
other proper subsegments.

Proposition 3.3. Any sequence x = (x1,x2,...) € D™ is a unique concatena-
tion of maximal basic multiple segments and prime segments.

Proof. By Proposition 3.2, if  does not contain (0,4) or (1,1) then z is a prime
sequence. Otherwise, we check from z; to z2 and so on until we get (0,4) or
(1,1). Then we can write

(z1,...,2k,0,4, 2 43,...) Or
= (x1,... 2%, L, 1, 2pe3,...).
Thus, (z1,...,2k) is a prime segment by Proposition 3.2. Now we continue to

check from zj. 3. There are two cases.

Case 1. (g+3, Tkid, ... ) is a basic multiple infinite sequence. Then z is con-
catenated by two parts: the first one is a prime segment (z1,...,x;) and the
second is a basic multiple infinite sequence (g41,Zgt2,---)-
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Case 2. (Tk+t1,Tkt2,...) is not a basic multiple infinite sequence. Let gy
(t € N,t > 3) be the first co-ordinate with xpis # 1 or (Tprs, Tpres1) # (0,4).
Then

(Tha1y oo s Tpat—1) = (0,4,1,...,1) and (Tgi1y.-. s 2pe-1) = (1,...,1)

are maximal basic multiple segments. Thus, x is concatenated by three parts:
the prime sequence (x1, ... ,xr), the maximal basic multiple segment (g1, ...,
Zp+t—1) and the infinite subsequence (xg4¢, Tg+t+1, --.). Using the above argu-
ment, we continue to decompose the infinite part (zg4¢, Tk+t+1,- .. ) to obtain the
assertion. O

Proposition 3.4. For any basic multiple sequence x € Z,, let F,, = #7, =
#(x). Then

(3.6) F=1,F=2 and F,=F, 1+ F,_o for n>3.

Proof. We prove the proposition by induction. It is easy to check that F} =
1,Fy, = 2 and F5 = F; + F,. Suppose that (3.6) holds true for all n < k.

We will show that Fyp.1 = Fy + Fr—1. Let x = (x1,... ,241) € Zr11 and
k1

Sk+1 = 37 'x;. Then
i=1

#<3k+1> = #2211 = Fy1.

Without loss of generality we may assume that z = (z1,... ,2x+1) = (1,1,...,1).

Then we have
k+1

Sk+1 = Z 37y = sp, + 3~ (D),
=1

where (s;) = ((1,1,...,1)) = Z.
Let s}, = s, — 37%. Then
(i) = ((1,1,...,1,0)), spp1 = s +3" %4 and s}, = s,
where (s;,_;) = ((1,1,...,1)) = Z;_;. By Lemma 2.1(iii), we have
#(sk) = #(Sh_1) = #Zk—1 = Fr—1.
Consequently,
Fior = #(sk+1) = #(sk) + #(sk) = #(sx) + #(s_1) = Fo-1 + Fi.
The proposition is proved. O

From Proposition 3.4 it follows that if = is a basic multiple sequence of length
n, then by Fibonacci formula, we have

1

(3.7) Fn=#Z, = #<:IZ‘> = \/5 (

Proposition 3.5. For any n € N,;n # 0, we have
F, > #(tn) for all t, € supp pn.

14++5

n+1 1_\/5 n+1
2 ) -

(—5)
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Proof. We prove the proposition by induction. Clearly the inequality is true for
n = 1. We consider the case n = k + 1, assuming that the inequality is true for
all n < k. Let

k+1

Y= Y1, s Ykt1) € Zit1, thy1 = 23_iyi-
i=1

Write g1 = tx +37(k+1)yk+1, where tx € supp pi, yrr+1 € D. We consider the
following cases.

If yxy+1 = 0, then tx1 = tx. By Lemma 2.1(iii) and inductive assumption, we
have

# (k1) = #(tk) < Fi < Frya.
If ypo1 # 0, let tpo1 = te + 3=(k+1) — ty, + 3= (k+1)4 be two representations
k .
of tj41 in supp pg. Then ¢ =t} + 37%. Assume that ¢} = > 37/, then by
i=1

Lemma 2.1(i), y;, = 0. Hence, ¢ = t;_,, which implies #(t}) = #(t,_,). By the
induction assumption and by Proposition 3.4, we have

H#(thr1) < F#(tr) +#) = #te) + #(tp1) < Fo + Fro1 = Frq.

The proposition is proved. O
Proposition 3.6. If z = (z1,... ,x,) € D" is concatenated by prime segments
and m mazimal basic multiple sequences with lengths ly, ... ,l, respectively, I +
e+l < n, then
m
#(z) =] F < Fu
i=1

m
Proof. By the multiplication principle it is easy to see that #(z) = [[ F},. To
i=1
prove the inequality we first show that, for any n € N,n > 2 and for any ni,ns €
N with ny + ne = n, one has

(3.8) Fp, Fy, < Fy.

The inequality (3.8) can be proved by induction. The inequality holds trivially
for all n < 5. Suppose that it holds for all n < k, k > 5, we prove it also holds
for n =k + 1. Let k1 < kg be such that k1 + k9 = k 4+ 1. By Proposition 3.4 and
by the induction assumption, we get

Fio Fry = Fiy (Fry—1 + Fep—2)
= Fp Fry 1+ F Fr, 2
< Fioythg—1 + Fioy ko —2
= Fky+ky = Frt1
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From (3.8) we have

m m
HEZ < El-i-lg HE’ g s < El"r--."rlm < Fn
i =3

The proposition is proved. O

4. PROOF OF THE MAIN THEOREM

The following proposition establishes the values of o, a*, a, a, of Main The-
orem.

Proposition 4.1. The following equalities hold true:

log (1 ++/5) — log 2
log 3 ’

a=ao"=l,anda=a,=1-—

Proof. Observe that if z = (21, x2,...) € D> is a prime sequence, then #(sy,) =1

n .
for every n, where s, = > 37'x;. Hence, puy(s,) = 37 "#(s,) = 37" for every n.
i=1
o .
By Proposition 2.1, for s = ) 37'z; € supp p we have
i=1

a=ao" =a(s) =1

We prove the second equality. Let s = Z 3~ x; € supp p and s, = Z 37 €
=1
supp . By Propositions 2.1, 3.5 and (3. 7) we have

1 log3™"
(o) -t [0BEREn)] o [loB3 (s

n—oo  nlog3 n—00 nlog3
| log Je[(152)m! — (152)™1)]
>1— lim — Y5~ 2 2
n—r00 n10g3
_ log(1 4+ v/5) — log 2
N log 3 ’

Therefore,
log (1 +v/5) — log 2
log 3 )
On the other hand, let x = (x1,22,...) = (1,1,...) € D*®. Then #(s,) = F), for
n . o .
all n € N, where s, = > 37'z;. Hence, for s = >  37"z;, we have
i=1 i=1
log(1 5) —log2
a(s) =1 o8 +/5) —log2
log 3

Q,Oé*}l—

This shows that
log (1 +v/5) — log 2
log 3 '

g,a*él—
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Thus,
log (1 ++/5) — log 2
log 3 '
The second equality is proved. [l

Let a € (o, @). Write

loga loga
=r(l— 1—-r)l=1-
a=rl 10g3)+( ) Tlog3
for some r € (0,1), where a = l%ﬁ Let
2 if 7 is even
li = 2i(1—7)7 ..
[—-—] ifiis odd,

where [t] is the largest integer not exceeding than ¢. Let
Ej={i:i iseven,i < j};0; ={i:i isodd,i < j};

J
Z li; 0j = Z l;, and n; = Zli‘
i=1

i€lF; 1€0;
Then n; = e; + o;.
To complete the proof of Main Theorem, it remains to prove that for any
a € (a, @), there exists s in supp p for which a(s) = a. We prove

Claim 4.1. For

z=(e1, 29, ) = (4. 4,1,1,1,1,4,...,4,1,1,1,1,1,1,1,1,...) € D™,
e N e N e
I lo=4 I3 14=8

0 .
we have a(s) = a, where s = Y 37'x; € supp p.

i=1
Proof. Observe that any segment (z1,...,%,;) contains [%] maximal basic
multiple sequences with lengths la, Iy, ..., l2[ ] respectively, where Iy + I4 +
2

: nj
.+ ZQ[%-} = e; and contains (j — [4]) prime segments. Let s, = 2313*%1-. By
1=

Proposition 3.6, we have

, (=1)% 1
#(sn;) = [ Fu < Fo; = %(ae]“ o) < ﬁaeﬁ? (4.1)
i€Ej
Observe that
. —1)k I 1 1,
li \/g(a + alit+1 ) \/g(a + alﬁ'l) \/ga

for any 7 € N and 7 is even. Hence,

#(sn,) H F, > [ ] geit(3] (4.2)
1S
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For any n € N,n # 0 let j € N with n;_; <n < nj. Since #(s,) is an increasing
function with respect to n, by (4.1) and (4.2), we have

(%)j/2aejl+j/21 < #<sn]-_1> < #<8n> < #<snj> < Laej+2-

V5

Hence,
—nj (1 \j/2ei-1+5/2—1 —nj_1_L ej+2
|log 3 "J(\/E)J/ afi-113/2-1] y | 10g 1t (5n))| N |log 37" 1\/5(1@] ‘ 3)
nj_1log3 ~ nlog3 ~ njlog3 ’
Observe that '
lim L =0, lim =L =1
Jj—00 nj J—00 n]‘
Let
e — %li if 7 is even
" 3Ly ifdis odd,
and v; = $(l; + [;_1). An easy computation (see [8]) yields
lim < = lim < = (4.4)
J—0 Mg J—00 Vj
From (4.3), (4.4) and Proposition 2.1, we obtain
rloga
= ]_ — =
a(s) logsg
Thus «a(s) = «, which proves Claim 4.1 and consequently Main Theorem is
proved. O
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