ON THE DIFFERENCE EQUATION xn+1=αxn−l+βxn−kAxn−l+Bxn−k
E. M. ELABBASY, H. EL-METWALLY, E. M. ELSAYED
In this paper we investigate the global convergence result, boundedness, and periodicity of solutions of the recursive sequence xn+1=αxn−l+βxn−kAxn−l+Bxn−k,n=0,1,… where the parameters α,β,A and B are positive real numbers and the initial conditions x−p,x−p+1,…,x−1 and x0∈(0,∞) where p=max{l,k}.