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AVERAGING OF NEUTRAL DIFFERENTIAL INCLUSIONS
WHEN THE AVERAGE VALUE OF THE RIGHT-HAND
SIDE DOES NOT EXIST

TERESA JANIAK AND ELZBIETA LUCZAK-KUMOREK

ABSTRACT. We consider the problem of applying the averaging method to
the asymptotic approximation of solutions of functional-differential equa-
tions of neutral type i(t)€eF(t,z+,2:) in the case where the average of
the right-hand side does not exist. Our paper generalizes results of W.
A. Plotnikow, W. M. Sawczenko from [8] where the generalized system
z(t)EeF(t,z) was investigated.

1. INTRODUCTION AND NOTATIONS

There has recently been a great deal of interest in the field of
Bogolubov’s type theorems. Many authors [1, 5, 6, 7] have discussed
the averaging theorem for differential equations or functional-differential
inclusions.

Let Cy and Ly denote the Banach spaces of all continuous and Lebesgue
integrable functions of [—r, 0] into R™ with the norms ||z|o = sup |z(t)]

r<t<0

0
and |ylo = [ |y(t)|dt for x € Cy and y € Lo, respectively, where | - |

denotes the Euclidean norm. For a given function v : [-r,T] — R"
and fixed t € [0,T], we denote us(s) = u(t + s) and a.(s) = a(t + s)
for s € [-r,0], » > 0, T > 0. Finally let us denote by (comp R", H)
and (conv R™, H) the metric spaces of all nonempty compact and convex
subsets of n-dimensional Euclidean space R™ with the Hausdorff metric
H, respectively.

In this paper we shall study the functional-differential inclusions of the
form:

1) { x(t) € eF(t,xzy, Ty) for a.e. t >0

x(t) = o(t) for t € [—r,0]
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where € > 0 is a small parameter, ¢ : [—7,0] — R™ is a given absolutely
continuous function and F' : [0,00) X Cy x Ly — conv R™ satisfies the
following conditions:
(a) F(.,u,v) : [0,00) — conv R™ is measurable for fixed (u,v) € Cyx Lo;
(b) F(t,.,.) : Co x Ly — conv R™ satisfies for fixed ¢t € [0,00) the
Lipschitz conditions of the form:

H(F(t,u,v), F(t,%,0)) < k(|lu—1allo + [v — o)

where £ > 0, u, uw € Cy and v, U € Ly;

(c) there exists a M > 0 such that H(F(t,u,v),{0}) < M for (¢t,u,v) €
[0, OO) X CO X Lo.
By a solution of (1) we mean a function x : [—r,00) — R" that is absolutely
continuous on [0, 7] and satisfies the first of the conditions in (1) at almost
all t € [0,00) such that x(t) = p(t) for t € [—r,0].

In the method of averaging [3] we considered (1) together with the
averaged inclusions:

{ y(t) € eFo(ys, )  forae. t >0,

2) y(t) = o(t) for t € [—r,0],

where Fy : Cg X Lo — conv R™ and
(3) Fo(uo) = lim ~ [ F(t,u,v)dt
o(u.v) = lim — , U, U

uniformly with respect to (u,v) € Cy x Lo, where the integral is meant in
Aumann’s-Hukuhara’s sense.

The aim of this paper is to consider the application of the averaging
method to the asymptotic approximation of solutions of (1) in the case
where the limit (3) does not exist.

Let F~, Ft : Cy x Ly — conv R™ denote a multifunctions such that

(d) F~ and Ft are Lipschitzean with respect to (u,v) € Cy x Lo with
constant k£ > 0.

(e) F~ and F'* satisfy the following conditions uniformly with respect
to (u,v) € Cy X Ly:

) C

L
%/Ftuvdt—FS()
0

L
1/FtuvdtCF+(u v) 4+ 5,(0)
0
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for every n > 0.
We shall consider (1) together with the following inclusions:

y(t) = p(t) for t € [—r, 0],
(5) { y(t) € eF~ (ys, Ut) for a.e. t > 0,
and

z(t) = o(t) for t € [-r,0],
(©) { 2(t) € eF T (z,2)  forae t>0.

2. THE THEOREM OF AVERAGING FOR
NEUTRAL DIFFERENTIAL INCLUSIONS

The main result of this paper is contained in the following theorem.

Theorem 1. Let F : [0,00)xCox Ly — convR"™ and F~, FT : Cyx Ly —
conv R™ satisfy the conditions (a)-(c) and (d)-(c), respectively. Suppose
that given are problems (1), (5) and (6) together with the initial conditions
x(t) = y(t) = 2(t) = @(t) = const. Then for each n > 0 and T > 0 there
exists a €%(n, T) > 0 such that for every e € (0,&%) the following conditions
are satisfied:

(i) for each solution y(-) of (5) there exists a solution x(-) of (1) such
that

7) y(0) —a() <n for te[-r2],

(i) for each solution x(-) of (1) there exists a solution z(-) of (6) such
that

(8) lx(t) — 2(t)| <n for te [—r, g}

To prove this theorem we shall use a Filippov’s type theorem for functional-
differential equations of neutral type of the form:

Theorem 2 [4]. Let 6 : [0,T] — R be a nonnegative Lebesque integrable
function and let p € Cy be absolutely continuous. Suppose F : [0,T] x
Co x Lo — comp R™ satisfies (a), (b) and (c) of the form

H(F(t,u,v), F(t,%,0)) < k(t)([lu—alo+ [v =)o),
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where k : [0,T] — RT is a Lebesgue integrable function, u, u € Cy and
v, U € Lg. Furthermore let z : [—r,T] — R™ be an absolutely continuous
mapping such that:

(f) 2(t) = (t) fort € [—r,0],
(g) d(2(t), F(t,2,2)) < 6(t) fora.e. te]0,T).
Then there is a solution x(-) of an initial-value problem
x(t) € F(t,xy, ) for a.e. t € [0,T],
x(t) = @(t) fort e [—r,0]

such that

z(t) — 2(t)] < &§(8)  fort €]0,T],
12(t) — 2(t)| < 6(t) + 2k(t)E(t)  for a.e. t €[0,T),

¢ ¢
where (t) = /5(8)62[m(t)m(8)]d8 and m(s) = /k:(r)dr.
0 0

Proof of the Theorem 1. Observe that the mappings F'~, F'™ are bounded,
i.e. there exists a M > 0 such that H(F~ (u,v),{0}) < M and H(F*(u,v),{0}) <
M for (u,v) € Cy x L.

Let y(+) be a solution of (5). To prove Theorem 1 we shall consider the
solution x(-) of the inclusion (1) such that for ¢ € [—r, 0], z(t) = y(t) = @(t)

T
(hence |z(t) — y(t)] = 0 < n) and, for t € [O, ;], the inequality (7) is

T
satisfied too. To do this let us divide the interval [O, —] on m-subintervals
, €

T
[ti, tiv1], where t; = Z—, i=0,1,...,m — 1, and write the solution y(-)
em
in the form
y(t) = const for t € [—r,0],

¢
y(t) = y(t;) + €/U(T)d7' for t € [t;, tiy1],
t;

where v(t) € F~ (y¢, Ur).
Let us consider a function y*(-) defined by

(10) { y1(t) = const for t € [—r,0],

yr(t) =yl (t;) +eul ()t — ;) for t € [t;, tiv1],
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where u'(-) is measurable functions such that u'(t) € F~(y;,,9¢.) and

ti+1 ti+1
T T
St — tdt): {——/ tdt‘ F- 1.,'1.}.
)= [ o] =min{| e [ o] 2 e Poal)
t; t;

The mapping u' exists because the set-valued function F~ is measurable
and has compact and convex values [2]. Let & = |y(t;) — y'(t:)|, i =
1,2,...,m — 1. Then, by virtue of (9), for every t € [t;,t;11] we have

t

(1) 6~y 1) = [u(e) +< [ o(ryir - y'(t)

t;

< 0 +eM(t —t;).

Furthermore,

0):

Adopting now the procedure presented in the proof of Theorem 1 of [3]
we have

[o(8) = u' (t)] < H(F™ (e, 9¢), F~ (e, 94,)) < k(llye — e, llo + 19 — w1,

MT
0 < — 4+ 6; +2eMr,
m

lye — s,
|9 — 9. [0 < 2eM-

Hence for t € [t;,t;11] we obtain

(12) lv(t) —ul(t;)] < k(% +0; + 4€M7°).

By virtue of (9), (10) and (12) it follows

5: = ly(ts) -y ()] < y(tios) — 4 (tio)] + € / fo(r) — ! (i) |dr

MT
S 52',1 + 6]{7(— + (51',1 + 4€M’r‘) (tz - tifl)
m
MT T
= 52',1 —f—él{?(— +6i,1 +4€M1")—
m

gm
() ek
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MT
where a = kT and b = k—(T + 4emr). Hence
m
a b
(13) b <G (1+2) +
m m

<1+ )1+ 5) + 2]+ 5

%)2(51_2 + (1 + ﬂ) b

I
/~/ N

—_

+

m/m
<
i -2} b
<1+ 2) oo+ (1+2) D
m m m m
b a a.\i—
= (14 () e (1)
m m m
b i
= - (1+3) —1)
a m
b
< —(e* -1
<)
M
0t demr) (T - 1),
where i =0,1,...,m — 1. For t € [t;, t;—1] we have

y(H) — y(ta)| = |e / o(mr| < Mt - 1) <

t;

MT
m
and MT

' () — ' ()] = Jeu' (t:)(t — )] < o

Hence we obtain

ly(t) =y ()] < ly(t) — y(ta)| + ly(t:) — y* ()] + [y' (t:) — y' (2)]
MT M

(14) <S——+—(T+ 4emr)(eFT —1).

Now we shall consider the function
y2(t) = const for t € [—r, 0],

(%) PO =7t + < [wP(r)dr for t€ [t o),

t;
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T
where t; = Z—, i=0,1,...,m—1, and u*(t) € F(t,ys,, ¥s,)-
em
Let us notice that by virtue of condition (d), for each n > 0 there exists
a Lo(n) such that for every L > Ly we have the inclusion

L
_ . 1 .
F~ (Y, 9;,) C Z/F(t,yi,yi)dHSn(O)
0
. T .
In particular, for — > Lg and for every i € {0,1,...,m} we have
eEm
1T
_ . em )
(16) Frhoil) © S [ Pl + 5,00
0
(i+1)T
A7) F W) © s [ F(tyl )t + S 0).
t;r Jt; (Z+ 1)T y It Ity n
0
A+4T

T
Let us observe that ¢,11 = and t; = ey By (16), (17) and the
em em

Hausdorff metric condition (see Lemma 3 (vi) of [1]) we have

tir1

1( [ Pl abyin )
t;
t; t;
<( [Pkt [ Foab)+
0 0
tir1 ti
1 -1 — 1 -1
0 0
T i
1 Em . _ .
0
tir1

N (1+i)TH<( em

Ft,yt,gl)dt, F~(y} '1)
1—|—Z)T/ (7ytiayti) ) (ytiayti)

0
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< —1 n=—(2i+1)
em em em
T

< —n(2m +1)
em

Hence
tit1 T
. _ . m
H( / F(t,y,,9;,)dt, F (yi,yi)) <

t;

where 71 = (2m + 1)n for

T T
—>L< )
eEm 0 2m + 1

T

€<€0(U1,m):mL< m )
0 2m + 1
It follows that
tit
mT
18 ‘ 2(r) — ot dt‘<—,
(13) [ e -] <™

t;

tir1

9 (t) — P (ta)] <10 — 00| +e| [ ule) - wPr)ar

T
<y (t;) — 2 (¢, m-
< ly*(8) =y ()l + =
T
(19) <-o<mBE — T,
m

where 1 =0,1,...,m — 1.
Using the inequality (19) and the fact that for t € [t;, t;41],

MT

2 2
t)—y (L) £ —
(0 — ()] < =
MT

v (6~ v ) < =
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we have
' () — 2 (O] < ly' (1) — v @)l + [y () — > (8] + P (t:) — v (1)
(20) <2

By the assumption (b) it follows that

Using the definitions of the norms || - ||o, | - |0 and properties of F'~ and
making use of the inequality (20) we obtain
3MT
7 =i lo < —— +mT,

7,

97 — yti‘O < 2€M7°,
H(F(t v, 57), Pt e, 92,)) < k(% +mT +2eMr).
Hence, by virtue of (15) we have
d(y(t),eF(t.y7,47))
< d(y(t), eF(t,ys,,92,)) + H(eF (8 vy, 00,), 6 F (497, 57))

3MT
€k<— +mT + 25M7°).
m

IN

Now, on the ground of Theorem 2 there exists a solution z(-) of (1) such

that for ¢ [0, Z],

t
|2 (t ()] < /d{: — —|— mT + 25M1"> e R(t=3)

0
<3M an

(21) +—+ 5Mr> (e%T —1).

IA

em
By the inequalities (21), (20) and (1 ) it follows that

|z(t) — y(?)]
< la(t) —y* (0] + ly*(t) =y O] + |y (£) — (1))

2MT
< <— + ——|—5M7“)(e2kT—1) +— +mT

(22) + o + E(T + demr) (e

< OMT oy L) KTy e (2T 1),
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Therefore, choosing
15MT(1 + eT)

> ,
_ 2
T 371 1 kT
e< 1

15Mr(e2kT — 1)

T
we get the inequality |z(t) — y(¢)] < n for t € [O, —]. The proof of the
€

condition (i) is now complete.
Adopting the procedure presented above we will get condition (ii). O

Corollary 3. In the case where there exists a limit

L
Fo(u,v) = lim [ F(t,u,v)dt

L—o0
0

we have F~(u,v) = F*(u,v) = Fy(u,v), where

L
1
F~(u,v) = L—»ooz/ (t,u,v)d
0
L
1
- — Tim —
F+(u,v) LILH;OL/F(t,u,v)dt.
0
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