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AVERAGING OF NEUTRAL DIFFERENTIAL INCLUSIONS

WHEN THE AVERAGE VALUE OF THE RIGHT-HAND

SIDE DOES NOT EXIST

TERESA JANIAK AND ELŻBIETA LUCZAK-KUMOREK

Abstract. We consider the problem of applying the averaging method to
the asymptotic approximation of solutions of functional-differential equa-

tions of neutral type ẋ(t)∈εF (t,xt,ẋt) in the case where the average of

the right-hand side does not exist. Our paper generalizes results of W.
A. Plotnikow, W. M. Sawczenko from [8] where the generalized system

ẋ(t)∈εF (t,x) was investigated.

1. Introduction and notations

There has recently been a great deal of interest in the field of
Bogolubov’s type theorems. Many authors [1, 5, 6, 7] have discussed
the averaging theorem for differential equations or functional-differential
inclusions.

Let C0 and L0 denote the Banach spaces of all continuous and Lebesgue
integrable functions of [−r, 0] into Rn with the norms ‖x‖0 = sup

−r≤t≤0
|x(t)|

and |y|0 =
0
∫

−r

|y(t)|dt for x ∈ C0 and y ∈ L0, respectively, where | · |

denotes the Euclidean norm. For a given function u : [−r, T ] → Rn

and fixed t ∈ [0, T ], we denote ut(s) = u(t + s) and u̇t(s) = u̇(t + s)
for s ∈ [−r, 0], r ≥ 0, T > 0. Finally let us denote by (compRn, H)
and (conv Rn, H) the metric spaces of all nonempty compact and convex
subsets of n-dimensional Euclidean space Rn with the Hausdorff metric
H, respectively.

In this paper we shall study the functional-differential inclusions of the
form:

(1)

{

ẋ(t) ∈ εF (t, xt, ẋt) for a.e. t ≥ 0

x(t) = ϕ(t) for t ∈ [−r, 0]

Received February 5, 1998; in revised form February 25, 1999.
1991 Mathematics Subject Classification. 34C29, 34A60, 34K15
Key words and phrases. Multifunction, differential inclusions.



2 TERESA JANIAK AND ELZBIETA LUCZAK-KUMOREK

where ε > 0 is a small parameter, ϕ : [−r, 0] → Rn is a given absolutely
continuous function and F : [0,∞) × C0 × L0 → conv Rn satisfies the
following conditions:

(a) F (., u, v) : [0,∞) → conv Rn is measurable for fixed (u, v) ∈ C0×L0;
(b) F (t, ., .) : C0 × L0 → conv Rn satisfies for fixed t ∈ [0,∞) the

Lipschitz conditions of the form:

H(F (t, u, v), F (t, u, v)) ≤ k
(

‖u − u‖0 + |v − v|0
)

where k > 0, u, u ∈ C0 and v, v ∈ L0;
(c) there exists a M > 0 such that H(F (t, u, v), {0}) ≤ M for (t, u, v) ∈

[0,∞)× C0 × L0.
By a solution of (1) we mean a function x : [−r,∞) → Rn that is absolutely
continuous on [0, T ] and satisfies the first of the conditions in (1) at almost
all t ∈ [0,∞) such that x(t) = ϕ(t) for t ∈ [−r, 0].

In the method of averaging [3] we considered (1) together with the
averaged inclusions:

(2)

{

ẏ(t) ∈ εF0(yt, ẏt) for a.e. t ≥ 0,

y(t) = ϕ(t) for t ∈ [−r, 0],

where F0 : C0 × L0 → conv Rn and

(3) F0(u.v) = lim
L→∞

1

L

L
∫

0

F (t, u, v)dt

uniformly with respect to (u, v) ∈ C0 ×L0, where the integral is meant in
Aumann’s-Hukuhara’s sense.

The aim of this paper is to consider the application of the averaging
method to the asymptotic approximation of solutions of (1) in the case
where the limit (3) does not exist.

Let F−, F+ : C0 × L0 → conv Rn denote a multifunctions such that
(d) F− and F+ are Lipschitzean with respect to (u, v) ∈ C0 × L0 with

constant k > 0.
(e) F− and F+ satisfy the following conditions uniformly with respect

to (u, v) ∈ C0 × L0:

(4)

F−(u, v) ⊂
1

L

L
∫

0

F (t, u, v)dt + Sη(0)

1

L

L
∫

0

F (t, u, v)dt ⊂ F+(u, v) + Sη(0)
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for every η > 0.
We shall consider (1) together with the following inclusions:

(5)

{

y(t) = ϕ(t) for t ∈ [−r, 0],

ẏ(t) ∈ εF−(yt, ẏt) for a.e. t ≥ 0,

and

(6)

{

z(t) = ϕ(t) for t ∈ [−r, 0],

ż(t) ∈ εF+(zt, żt) for a.e. t ≥ 0.

2. The theorem of averaging for

neutral differential inclusions

The main result of this paper is contained in the following theorem.

Theorem 1. Let F : [0,∞)×C0×L0 → convRn and F−, F+ : C0×L0 →
convRn satisfy the conditions (a)-(c) and (d)-(c), respectively. Suppose

that given are problems (1), (5) and (6) together with the initial conditions

x(t) = y(t) = z(t) = ϕ(t) = const. Then for each η > 0 and T > 0 there

exists a ε0(η, T ) > 0 such that for every ε ∈ (0, ε0) the following conditions

are satisfied:

(i) for each solution y(·) of (5) there exists a solution x(·) of (1) such

that

(7) |y(t) − x(t)| ≤ η for t ∈
[

− r,
T

ε

]

,

(ii) for each solution x(·) of (1) there exists a solution z(·) of (6) such

that

(8) |x(t) − z(t)| ≤ η for t ∈
[

− r,
T

ε

]

.

To prove this theorem we shall use a Filippov’s type theorem for functional-
differential equations of neutral type of the form:

Theorem 2 [4]. Let δ : [0, T ] → R be a nonnegative Lebesgue integrable

function and let ϕ ∈ C0 be absolutely continuous. Suppose F : [0, T ] ×
C0 × L0 → compRn satisfies (a), (b) and (c) of the form

H(F (t, u, v), F (t, u, v)) ≤ k(t)
(

‖u − u‖0 + |v − v|0
)

,
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where k : [0, T ] → R+ is a Lebesgue integrable function, u, u ∈ C0 and

v, v ∈ L0. Furthermore let z : [−r, T ] → Rn be an absolutely continuous

mapping such that:

(f) z(t) = ϕ(t) for t ∈ [−r, 0],
(g) d(ż(t), F (t, zt, żt)) ≤ δ(t) for a.e. t ∈ [0, T ].

Then there is a solution x(·) of an initial-value problem

ẋ(t) ∈ F (t, xt, ẋt) for a.e. t ∈ [0, T ],

x(t) = ϕ(t) for t ∈ [−r, 0]

such that

|x(t) − z(t)| ≤ ξ(t) for t ∈ [0, T ],

|ẋ(t) − ż(t)| ≤ δ(t) + 2k(t)ξ(t) for a.e. t ∈ [0, T ],

where ξ(t) =

t
∫

0

δ(s)e2[m(t)−m(s)]ds and m(s) =

t
∫

0

k(r)dr.

Proof of the Theorem 1. Observe that the mappings F−, F+ are bounded,
i.e. there exists a M > 0 such that H(F−(u, v), {0}) ≤ M and H(F+(u, v), {0}) ≤
M for (u, v) ∈ C0 × L0.

Let y(·) be a solution of (5). To prove Theorem 1 we shall consider the
solution x(·) of the inclusion (1) such that for t ∈ [−r, 0], x(t) = y(t) = ϕ(t)

(hence |x(t) − y(t)| = 0 < η) and, for t ∈
[

0,
T

ε

]

, the inequality (7) is

satisfied too. To do this let us divide the interval
[

0,
T

ε

]

on m-subintervals

[ti, ti+1], where ti =
iT

εm
, i = 0, 1, . . . , m − 1, and write the solution y(·)

in the form

(9)















y(t) = const for t ∈ [−r, 0],

y(t) = y(ti) + ε

t
∫

ti

v(τ)dτ for t ∈ [ti, ti+1],

where v(t) ∈ F−(yt, ẏt).
Let us consider a function y1(·) defined by

(10)

{

y1(t) = const for t ∈ [−r, 0],

y1(t) = y1(ti) + εu1(ti)(t − ti) for t ∈ [ti, ti+1],
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where u1(·) is measurable functions such that u1(t) ∈ F−(y1
ti
, ẏ1

ti
) and

∣

∣

∣

T

εm
u1(ti) −

ti+1
∫

ti

v(t)dt
∣

∣

∣
= min

{
∣

∣

∣

T

εm
z −

ti+1
∫

ti

v(t)dt
∣

∣

∣

∣

∣

∣
z ∈ F−(y1

ti
, ẏ1

ti
)
}

.

The mapping u1 exists because the set-valued function F− is measurable
and has compact and convex values [2]. Let δi = |y(ti) − y1(ti)|, i =
1, 2, . . . , m − 1. Then, by virtue of (9), for every t ∈ [ti, ti+1] we have

(11) |y(t)− y1(ti)| =
∣

∣

∣
y(ti) + ε

t
∫

ti

v(τ)dτ − y1(ti)
∣

∣

∣
≤ δi + εM(t − ti).

Furthermore,

|v(t)− u1(ti)| ≤ H
(

F−(yt, ẏt), F
−(y1

ti
, ẏ1

ti
)
)

≤ k
(

‖yt − y1
ti
‖0 + |ẏt − ẏ1

ti
|0

)

.

Adopting now the procedure presented in the proof of Theorem 1 of [3]
we have

‖yt − y1
ti
‖0 ≤

MT

m
+ δi + 2εMr,

|ẏt − ẏ1
ti
|0 ≤ 2εMr.

Hence for t ∈ [ti, ti+1] we obtain

(12) |v(t) − u1(ti)| ≤ k
(MT

m
+ δi + 4εMr

)

.

By virtue of (9), (10) and (12) it follows

δi = |y(ti) − y1(ti)| ≤ |y(ti−1) − y1(ti−1)| + ε

ti
∫

ti−1

|v(τ) − u1(ti−1)|dτ

≤ δi−1 + εk
(MT

m
+ δi−1 + 4εMr

)

(ti − ti−1)

= δi−1 + εk
(MT

m
+ δi−1 + 4εMr

) T

εm

= δi−1

(

1 +
a

m

)

+
b

m
,
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where a = kT and b =
kMT

m
(T + 4εmr). Hence

δi ≤ δi−1

(

1 +
a

m

)

+
b

m
(13)

≤
(

1 +
a

m

)[

δi−2

(

1 +
a

m

)

+
b

m

]

+
b

m

=
(

1 +
a

m

)2

δi−2 +
(

1 +
a

m

) b

m
≤ . . .

≤
(

1 +
a

m

)i

δ0 +
(

1 +
a

m

)i−2 b

m
+ · · ·+

b

m

=
b

m

(

1 +
(

1 +
a

m

)

+ · · · +
(

1 +
a

m

)i−1
)

=
b

a

(

(

1 +
a

m

)i
− 1

)

≤
b

a
(ea − 1)

=
M

m
(T + 4εmr)(ekT − 1),

where i = 0, 1, . . . , m − 1. For t ∈ [ti, ti−1] we have

|y(t) − y(ti)| =
∣

∣

∣
ε

t
∫

ti

v(τ)dτ
∣

∣

∣
≤ εM(t − ti) ≤

MT

m

and

|y1(t) − y1(ti)| = |εu1(ti)(t − ti)| ≤
MT

m
·

Hence we obtain

|y(t) − y1(t)| ≤ |y(t) − y(ti)| + |y(ti) − y1(ti)| + |y1(ti) − y1(t)|

≤
2MT

m
+

M

m
(T + 4εmr)(ekT − 1).(14)

Now we shall consider the function

(15)















y2(t) = const for t ∈ [−r, 0],

y2(t) = y2(ti) + ε

t
∫

ti

u2(τ)dτ for t ∈ [ti, ti+1],
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where ti =
iT

εm
, i = 0, 1, . . . , m − 1, and u2(t) ∈ F (t, yti

, ẏti
).

Let us notice that by virtue of condition (d), for each η > 0 there exists
a L0(η) such that for every L > L0 we have the inclusion

F−(y1
ti

, ẏ1
ti
) ⊂

1

L

L
∫

0

F (t, y1
ti
, ẏ1

ti
)dt + Sη(0).

In particular, for
T

εm
> L0 and for every i ∈ {0, 1, . . . , m} we have

(16) F−(y1
ti
, ẏ1

ti
) ⊂

εm

iT

iT

εm
∫

0

F (t, y1
ti
, ẏ1

ti
)dt + Sη(0),

(17) F−(y1
ti
, ẏ1

ti
) ⊂

εm

(i + 1)T

(i+1)T

εm
∫

0

F (t, y1
ti
, ẏ1

ti
)dt + Sη(0).

Let us observe that ti+1 =
(1 + i)T

εm
and ti =

iT

εm
. By (16), (17) and the

Hausdorff metric condition (see Lemma 3 (vi) of [1]) we have

H
(

ti+1
∫

ti

F (t, y1
ti
, ẏ1

ti
)dt, F−(y1

ti
, ẏ1

ti
)
)

≤ H
(

ti
∫

0

F (t, y1
ti
, ẏ1

ti
)dt,

ti
∫

0

F−(y1
ti
, ẏ1

ti
)
)

+

+ H
(

ti+1
∫

0

F (t, y1
ti
, ẏ1

ti
)dt,

ti
∫

0

F−(y1
ti
, ẏ1

ti
)dt

)

=
iT

εm
H

(εm

iT

ti
∫

0

F (t, y1
ti
, ẏ1

ti
)dt, F−(y1

ti
, ẏ1

ti
)
)

+

+
(1 + i)T

εm
H

( εm

(1 + i)T

ti+1
∫

0

F (t, y1
ti
, ẏ1

ti
)dt, F−(y1

ti
, ẏ1

ti
)
)
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≤
iT

εm
η +

(1 + i)T

εm
η =

Tη

εm
(2i + 1)

≤
Tη

εm
(2m + 1).

Hence

H
(

ti+1
∫

ti

F (t, y1
ti
, ẏ1

ti
)dt, F−(y1

ti
, ẏ1

ti
)
)

≤
η1T

εm
,

where η1 = (2m + 1)η for

T

εm
> L0

( η1

2m + 1

)

,

ε < ε0(η1, m) =
T

mL0

( η1

2m + 1

) ·

It follows that

(18)
∣

∣

∣

ti+1
∫

ti

u2(τ) − u1(τ)dt
∣

∣

∣
≤

η1T

εm
,

|y1(ti+1) − y2(ti+1)| ≤ |y1(ti) − y2(ti)| + ε
∣

∣

∣

ti+1
∫

ti

u1(ti) − u2(τ)dτ
∣

∣

∣

≤ |y1(ti) − y2(ti)| +
η1T

m

≤ · · · ≤ m
η1T

m
= η1T,(19)

where i = 0, 1, . . . , m − 1.
Using the inequality (19) and the fact that for t ∈ [ti, ti+1],

|y2(t) − y2(ti)| ≤
MT

m
,

|y1(t) − y1(ti)| ≤
MT

m
,
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we have

|y1(t) − y2(t)| ≤ |y1(t) − y1(ti)| + |y1(ti) − y2(ti)| + |y2(ti) − y2(t)|

≤
2MT

m
+ η1T.(20)

By the assumption (b) it follows that

H
(

F (t, y2
t , ẏ

2
t ), F (t, y1

ti
, ẏ1

ti
)
)

≤ k
(

‖y2
t − y1

ti
‖0 + |ẏ2

t − ẏ1
ti
|0

)

.

Using the definitions of the norms ‖ · ‖0, | · |0 and properties of F− and
making use of the inequality (20) we obtain

‖y2
t − y1

ti
‖0 ≤

3MT

m
+ η1T,

|ẏ2
t − ẏ1

ti
|0 ≤ 2εMr,

H
(

F (t, y2
t , ẏ

2
t ), F (t, y1

ti
, ẏ1

ti
)
)

≤ k
(3MT

m
+ η1T + 2εMr

)

.

Hence, by virtue of (15) we have

d
(

ẏ(t), εF (t, y2
t , ẏ

2
t )

)

≤ d
(

ẏ(t), εF (t, y1
ti
, ẏ1

ti
)
)

+ H
(

εF (t, y1
ti
, ẏ1

ti
), εF (t, y2

t , ẏ
2
t )

)

≤ εk
(3MT

m
+ η1T + 2εMr

)

.

Now, on the ground of Theorem 2 there exists a solution x(·) of (1) such

that for t ∈
[

0,
T

ε

]

,

|y2(t) − x(t)| ≤

t
∫

0

εk
(3MT

m
+ η1T + 2εMr

)

e2εk(t−s)ds

≤
(3MT

εm
+

η1T

2
+ εMr

)

(

e2kT − 1
)

.(21)

By the inequalities (21), (20) and (14) it follows that

|x(t) − y(t)|

≤ |x(t) − y2(t)| + |y2(t) − y1(t)| + |y1(t) − y(t)|

≤
(3MT

2m
+

η1T

2
+ εMr

)

(

e2kT − 1
)

+
2MT

m
+ η1T

+
2MT

m
+

M

m
(T + 4εmr)

(

e2kT − 1
)

(22)

≤
5MT

2m

(

1 + e2kT
)

+
η1T

2

(

1 + ekT
)

+ 5Mεr
(

e2kT − 1
)

.
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Therefore, choosing

m >
15MT (1 + e2kT )

2η
,

η1 =
2η

3T (1 + ekT )
,

ε <
η

15Mr(e2kT − 1)
,

we get the inequality |x(t) − y(t)| ≤ η for t ∈
[

0,
T

ε

]

. The proof of the

condition (i) is now complete.
Adopting the procedure presented above we will get condition (ii).

Corollary 3. In the case where there exists a limit

F0(u, v) = lim
L→∞

L
∫

0

F (t, u, v)dt

we have F−(u, v) = F+(u, v) = F0(u, v), where

F−(u, v) = lim
L→∞

1

L

L
∫

0

F (t, u, v)dt,

F+(u, v) = lim
L→∞

1

L

L
∫

0

F (t, u, v)dt.
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