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Abstract

We consider a local version of the assignment problem for the dichotomy spec-

trum of linear continuous time-varying systems defined on the half-line. Our

aim is to show that uniform complete controllability is a sufficient condition to

place the dichotomy spectrum of the closed-loop system in an arbitrary position

within some Hausdorff neighborhood of the dichotomy spectrum of the free sys-

tem using an appropriate time-varying linear feedback. Moreover, we assume

that the norm of the matrix of the linear feedback should be bounded from

above by the Hausdorff distance between these two spectra with some constant

multiplier.
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1. Introduction

The concept of the dichotomy of linear differential equations with variable

coefficients has a long history, beginning with the work of O. Perron [21], then
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formalized, developed and summarized in [17], [18] and [8]. The effectiveness

of the notion of exponential dichotomy and the corresponding spectrum both

in the study of the asymptotics of solutions of nonlinear systems, the first ap-

proximation of which is exponentially dichotomous, and in its applications to

dynamical systems analysis, has caused that it entered the theory of dynamical

systems including control theory as a classical tool.

On the other hand, in control theory, one of the basic methods of designing

controls for systems described by linear equations with constant coefficients is

the pole placement method, also known as pole-shifting or spectrum assign-

ment method [28]. This method selects the feedback so that the poles of the

closed loop system have a predetermined position. The theoretical basis for this

method is that the controllability of a linear time-invariant system is equivalent

to the fact that for each set of complex numbers with cardinality equal to the

dimension of the state vector and symmetric relative to the real axis, there is a

stationary feedback such that the poles of the closed-loop system form this set

[10].

There have long been attempts in the literature to generalize this methodol-

ogy to systems with variable coefficients and it has not been completed yet (see

[2], [14], [16], [19], [3] and [23]). Even the formulation of the problem for time-

varying systems encountered many difficulties. Firstly, because for time-varying

systems we have many non-equivalent concepts of controllability. Secondly, be-

cause we have no proper replacement for the concept of poles, but their role, to

a certain extent, is played by some numerical characteristics as the Lyapunov

and the Bohl exponents or the dichotomy spectrum. This work fits into this

topic and examines the problem of the so-called local proportional assignability

of the dichotomy spectrum.

The benefits of dichotomy spectrum placement come directly from the im-

portance of the dichotomy spectrum in the qualitative theory of nonautonomous

dynamical systems generated by time-varying differential equations. To mention

only a few results of this theory, note firstly the linearized asymptotic stabil-

ity theorem of nonlinear systems which holds if the dichotomy spectrum of the
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linearized equation is negative, see [4]. Secondly, the nonautonomous Hartman-

Grobman theorem requires the fact that the spectrum of the linear part does not

contain zero, see [20]. Finally, in [27] a version of nonautonomous normal form

theory was established in which all non-resonant terms of the Taylor expansion

of the vector field (defined in terms of the location of the dichotomy spectrum

of the linear part) can be eliminated.

Here, we consider a local version of the dichotomy spectrum assignment

problem for linear continuous time-varying systems, whereas in [3] a global

version was investigated. Our aim is to obtain sufficient conditions to place the

dichotomy spectrum of the closed-loop system in an arbitrary position within

some neighborhood of the dichotomy spectrum of the free system, i.e. the free

system, using some time-varying linear feedback. Moreover, we require that the

norm of the feedback should be bounded from above by the Hausdorff distance

between these two spectra, with some constant coefficient. We say that the

dichotomy spectrum is proportionally locally assignable if all these requirements

are satisfied. Our main result is to show that uniform complete controllability

is a sufficient condition for proportional local assignability of the dichotomy

spectrum.

The paper is organized as follows. In the rest of this section, we introduce

the notation used in the work. In the next section we introduce the definitions of

exponential dichotomy, dichotomy and repeated dichotomy spectrum. We also

formulate and prove a reducibility theorem which is important for our further

considerations. The third section contains a formal definition of the problem of

proportional local assignability of the dichotomy spectrum and the formulation

and a proof of the main result of this paper Theorem 11.

The following notations will be used throughout this paper: Let K denote

the set of all compact subsets of R. For U, V ∈ K, the Hausdorff distance dH is

defined as

dH(U, V ) := max

{
max
x∈U

min
y∈V
|x− y|,max

y∈V
min
x∈U
|x− y|

}
.

For matrices M1 ∈ Rd1×d1 , . . . ,Mk ∈ Rdk×dk , let diag(M1, . . . ,Mk) denote the
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square matrix of dimension d1 + · · ·+ dk of the form

diag(M1, . . . ,Mk) =


M1 · · · 0

...
. . .

...

0 · · · Mk

 .

Let Rd be endowed with the standard Euclidean norm. For s, d ∈ N, let

KCs,d(R+) be the set of all bounded and piecewise continuous matrix-valued

functions M : R+ → Rs×d such that

‖M‖∞ := sup
t∈R+

‖M(t)‖ <∞

and Cs,d(R+) the set of all bounded continuous matrix-valued functions M :

R+ → Rs×d.

2. Repeated dichotomy spectra and reducibility for linear one-sided

continuous time-varying systems

In this section, we consider a one-sided continuous time-varying linear system

ẋ = M(t)x for t ∈ R+, (1)

where M ∈ KCd,d(R+). Denote by XM (·, ·) : R+ × R+ → Rd×d the transition

matrix of (1), i.e. XM (·, s)ξ solves (1) with the initial value condition x(s) = ξ.

We now recall the notion of exponential dichotomy which is also known as

uniform hyperbolicity for time-varying systems, see e.g. [7] and the notion of

dichotomy spectrum, see e.g. [24].

Definition 1 (Exponential dichotomy and dichotomy spectrum). System (1)

is said to admit an exponential dichotomy (ED) on R+ if there exist K, ε > 0

and an invariant family of projections P : R+ → Rd×d, i.e. P (t)XM (t, s) =

XM (t, s)P (s) if s, t ∈ R+, satisfying the following inequalities

‖XM (t, s)P (s)‖ ≤ Ke−ε(t−s) if s ≤ t, s, t ∈ R+, (2)
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and

‖XM (t, s)(I − P (s))‖ ≤ Keε(t−s) if t ≤ s, s, t ∈ R+. (3)

The dichotomy spectrum of (1) is defined by

ΣED(M) :=
{
γ ∈ R : ẋ = (M(t)− γI)x has no ED on R+

}
.

It is known that ΣED(M) is the union of at most d disjoint compact intervals

(called spectral intervals), see [15, Theorem 5.12]. We now state and prove a

result on how to decouple, via Lyapunov transformations, the system (1) into

a block diagonal system with blocks corresponding to these spectral intervals.

This type of result was established in [26] for two-sided continuous time-varying

systems. Before doing this, we recall the notions of Lyapunov transformations,

asymptotic equivalence (also known in the literature as kinematic similarity,

Lyapunov similarity or simply equivalence) and reducibility. We refer the read-

ers to [1] and the references therein for details.

Definition 2 (Lyapunov transformations, asymptotic equivalence and reducibil-

ity). Lyapunov transformations: The linear transformation y = T (t)x, where

T : R+ → Rd×d, is called a Lyapunov transformation if T is piecewise continu-

ously differentiable and T , T−1, Ṫ are bounded.

Asymptotic equivalence: System (1) is said to be asymptotically equivalent to

ẏ = N(t)y, where N ∈ KCd,d(R+) (4)

if there exists a Lyapunov transformation y = T (t)x, where T : R+ → Rd×d,

such that

Ṫ (t) = N(t)T (t)− T (t)M(t) for t ∈ R+.

Reducibility: System (1) is reducible if there exist M1 ∈ KCd1,d1(R+),M2 ∈

KCd2,d2(R+) such that (1) is asymptotically equivalent to

ẏ = diag(M1(t),M2(t))y. (5)

Remark 3. Assume that (1) is asymptotically equivalent to (4) via the Lya-

punov transformation y = T (t)x. Denote by XM and XN the transition matrices
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of (1) and (4), respectively. Then, it is well known, for e.g. see [26, Lemma

2.1], that

XN (t, s)T (s) = T (t)XM (t, s) for t, s ∈ R+. (6)

Theorem 4 (Spectral theory and reducibility). Suppose that M ∈ KCd,d(R+).

The dichotomy spectrum ΣED(M) of (1) is nonempty and consists of at most d

disjoint closed intervals. Let

ΣED(M) =

k⋃
i=1

[αi, βi],

where −∞ < α1 ≤ β1 < α2 ≤ β2 < · · · < αk ≤ βk < ∞ and k ≤ d. Then, the

following statements hold:

(i) Let i ∈ {0, 1, . . . , k} be arbitrary. Then, for any γ ∈ (βi, αi+1), with the

convention that β0 = −∞, αk+1 =∞, the subspace

Wγ
i (s) :=

{
ξ ∈ Rd : lim sup

t→∞
e−γt‖XM (t, s)ξ‖ <∞

}
(7)

is independent of the choice of γ (then we can write Wγ
i (s) simply as

Wi(s)), invariant, i.e. XM (t, s)Wi(s) =Wi(t) and the dimension ofWi(t)

is independent of t ∈ R+.

(ii) Let ni be the dimension of the subspace Wi(t) for t ∈ R+. Define di :=

ni − ni−1 for i = 1, . . . , k (with the convention that n0 := 0). Then,

there exist Mi ∈ KCdi,di(R+) for i = 1, . . . , k such that system (1) is

asymptotically equivalent to

ẏ = diag(M1(t), . . . ,Mk(t))y

and

ΣED(Mi) = [αi, βi], i = 1, ..., k.

Before going to the proof of the preceding theorem, we need a result on

decoupling a linear system when this system has an invariant bounded family of

projections. This result is stated in the Introduction of [6, Lemma 2] but without
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a proof. It is also proved in [26, Theorem 3.1] but in this paper the author

considers wider classes of systems – systems with locally integrable coefficients

and wider classes of Lyapunov transformations which are assumed there to be

absolutely continuous. Moreover, in the last paper the dichotomy is considered

on the whole line.

Proposition 5. Suppose that M ∈ KCd,d(R+) and there exists an invariant

bounded family of projections P (t), t ∈ R+ for (1). Then (1) is asymptotically

equivalent to a system

ẋ =

 M1(t) 0

0 M2(t)

x for t ∈ R+, (8)

where d1 = dim imP (t) is independent of t ∈ R+, M1 ∈ KCd1,d1(R+) and

M2 ∈ KCd−d1,d−d1(R+). Moreover, the Lyapunov transformation establishing

the equivalence of (1) and (8) may be chosen such that

T (t)P (t)T−1(t) =

 Id1 0

0 0

 for t ∈ R+. (9)

The main ingredient of the proof of the proposition is from [6, Lemma 2].

In fact, this result has been shown for systems (1) with M ∈ Cd,d(R+) but the

arguments may be repeated for M ∈ KCd,d(R+).

Lemma 6. Suppose that M ∈ KCd,d(R+) and there exists a projector matrix

P ∈ Rd×d such that XM (t, 0)PXM (0, t) is bounded on R+. Then (1) is asymp-

totically equivalent to a system ẋ = B(t)x for t ∈ R+, where B ∈ KCd,d(R+)

satisfies that PB(t) = B(t)P for t ∈ R+.

Proof of Proposition 5. Since P (t), t ∈ R+ is an invariant family of projections

for (1), it follows that P = XM (0, t)P (t)XM (t, 0) is a projector matrix that

does not depend on t ∈ R+. Furthermore, by boundedness of P (t) we have that

P (t) = XM (t, 0)PXM (0, t) is bounded. Then, by Lemma 6 there exists a Lya-

punov transformation T : R+ → Rd×d establishing the asymptotic equivalence

of (1) and the system

ẋ = B(t)x for t ∈ R+, (10)
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where B ∈ KCd,d(R+) satisfies that

PB(t) = B(t)P for t ∈ R+. (11)

Let S ∈ Rd×d be an invertible matrix such that

SPS−1 =

 Id1 0

0 0

 =: P0,

where d1 = dim imP . Then T : R+ → Rd×d, T (t) = ST (t) for t ∈ R+, is a

Lyapunov transformation that establishes the asymptotic equivalence of (1) and

ẋ = C(t)x for t ∈ R+,

where

C(t) = ST (t)M(t)T−1(t)S−1 + S
.

T (t)T−1(t)S−1 = SB(t)S−1.

Moreover, (11) implies that P0C(t) = C(t)P0 for all t ∈ R+. This equality

implies that

C(t) =

 C1(t) 0

0 C2(t)

 ,

where C1 ∈ KCd1,d1(R+) and C2 ∈ KCd−d1,d−d1(R+). The proof is complete.

Proof of Theorem 4. (i) The fact that the dichotomy spectrum ΣED(M) is the

union of at most d closed intervals can be seen in [15, Theorem 5.12]. For each

γ ∈ (βi, αi+1), the subspace Wi(s) coincides with the range of the projection

Pγ(s), where Pγ is an invariant family of projections corresponding to the ED

of the shifted system

ẋ = (M(t)− γI)x,

see [15, Proposition 5.5]. Hence, invariance of Pγ implies that Wi(s) is also

invariant and hence the dimension ofWi(s) is independent of s. Finally, rankPγ

is independent on the choice of γ ∈ (βi, αi+1), thus the dimension of Wi(s) is

also independent on the choice of γ ∈ (βi, αi+1) and thus by definition of Wi(s)

we conclude that Wi(s) is independent of the choice of γ ∈ (βi, αi+1).
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(ii) Let γ ∈ (βk−1, αk). Then, the shifted system ẋ(t) = (M(t) − γI)x(t)

has an ED, i.e. there exist K, ε > 0 and an invariant family of projections

Pγ : R+ → Rd×d satisfying the following inequalities

‖XM−γI(t, s)Pγ(s)‖ ≤ Ke−ε(t−s) if s ≤ t, s, t ∈ R+, (12)

and

‖XM−γI(t, s)(I − Pγ(s))‖ ≤ Keε(t−s) if t ≤ s, s, t ∈ R+. (13)

In particular, Pγ(s) is bounded with respect to s ∈ R+ and therefore by Propo-

sition 5 there exists a Lyapunov transformation T : R+ → Rd×d such that

Ṫ (t) = N(t)T (t)− T (t) (M(t)− γI) for t ∈ R+, (14)

where

N(t) =

 N1(t) 0

0 N2(t)

 for t ∈ R+,

where N1(t) ∈ Rnk−1×nk−1 and

nk−1 := dimWk−1(t) = dim imPγ(t).

From (14) we have

Ṫ (t) =

 N1(t) + γI 0

0 N2(t) + γI

T (t)− T (t)M(t) for t ∈ R+,

which shows that system (1) is asymptotically equivalent to system

ẋ =

 M1(t) 0

0 M2(t)

x for t ∈ R+,

where M1(t) = N1(t) + γI ∈ Rnk−1×nk−1 and M2(t) = N2(t) + γI ∈ Rdk×dk .

Then, from Remark 3 we derive that XM1(t, s) 0

0 XM2
(t, s)

 = T (t)XM (t, s)T (s)−1.
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Note that by Proposition 5 the Lyapunov transformation T satisfies (9) with

nk−1 instead of d1 and Pγ(t) instead of P (t). Therefore, we have XM1
(t, s) 0

0 XM2(t, s)

 Id1 0

0 0

 = T (t)XM (t, s)T (s)−1T (s)Pγ(s)T−1(s)

and hence XM1(t, s) 0

0 0

 = T (t)XM (t, s)Pγ(s)T−1(s)

= eγ(t−s)T (t)XM−γI(t, s)Pγ(s)T−1(s).

Thus, the inequalities (12) and (13) imply

‖XM1(t, s)‖ ≤ K ‖T‖
∥∥T−1∥∥ e(γ−ε)(t−s) if s ≤ t, s, t ∈ R+,

and

‖XM2
(t, s)‖ ≤ K ‖T‖

∥∥T−1∥∥ e(γ+ε)(t−s) if t ≤ s, s, t ∈ R+.

Thus

ΣED(M1) ⊂ (−∞, γ) and ΣED(M2) ⊂ (γ,∞) . (15)

On the other hand, it is known that

ΣED(M) = ΣED(M2) ∪ ΣED(M1) =

k⋃
i=1

[αi, βi],

see [5]. This together with (15) implies that

ΣED(M2) = [αk, βk] and ΣED(M1) =

k−1⋃
i=1

[αi, βi].

Using this procedure and reapplying it to subsystems, we complete the proof by

induction.

When we also want to emphasize the information of dimension of subspaces

corresponding to the dichotomy spectral intervals, we arrive at the following

definition of the repeated dichotomy spectrum. We refer the readers to [9, 12]

for a similar definition of repeated Lyapunov spectrum with the same meaning.
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Definition 7. The repeated dichotomy spectrum ΣrED(M) of (1) is defined by

ΣrED(M) =
(

[α1, β1], . . . , [α1, β1]︸ ︷︷ ︸
d1times

, . . . , [αk, βk], . . . , [αk, βk]︸ ︷︷ ︸
dktimes

)
, (16)

where d1, . . . , dk are the dimensions of the subsystems corresponding to the spec-

tral intervals [α1, β1], . . . , [αk, βk], respectively.

Remark 8. From Definition 7, two spectral intervals of a repeated dichotomy

spectrum are either disjoint or the same. Then, a collection of d closed intervals

[α1, β1], . . . , [αd, βd] is said to be admissible for repeated dichotomy spectrum

of a linear continuous time-varying system on Rd (for short admissible closed

intervals) if for i 6= j

[αi, βi] = [αj , βj ] or [αi, βi] ∩ [αj , βj ] = ∅.

3. Proportional local assignability of repeated dichotomy spectrum

3.1. Time-varying control systems and the statement of the main result

Consider a linear time-varying control system described by the following

equation

ẋ = A(t)x+B(t)u for t ∈ R+, (17)

where A ∈ KCd,d(R+), B ∈ KCd,m(R+) and u ∈ KCm,1(R+) is the control.

For (t0, x0) ∈ R+ × Rd the solution of system (17) satisfying x(t0) = x0, will

be denoted by x(·, t0, x0, u). Now we will introduce the definition of uniform

complete controllability, see e.g. [23] and the references therein.

Definition 9 (Uniform complete controllability). System (17) is called uni-

formly completely controllable on R+ if there exist α,K > 0 such that for

all (t0, ξ) ∈ R+ × Rd there exists a control u ∈ KCm,1(R+) such that x(t0 +

K, t0, 0, u) = ξ and

‖u(t)‖ ≤ α‖ξ‖ for t ∈ [t0, t0 +K].
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If in system (17) we apply a control of the form

u(t) = F (t)x(t),

where the feedback F ∈ KCm,d(R+), we obtain a so-called closed loop system

ẋ = (A(t) +B(t)F (t))x. (18)

Our interest in this paper is to know the possibility of proportional local as-

signing of ΣrED(A+BF ). We have the following definition of proportional local

assignability of dichotomy spectrum (cf. [23, Definition 16.2] for the definition of

the proportional local assignability of an arbitrary Lyapunov invariant of linear

time-varying control systems).

Definition 10. Denote the repeated dichotomy spectrum of the free system

ẋ = A(t)x (19)

by ΣrED(A) =
(

[a1, b1], . . . , [ad, bd]
)

, where [a1, b1], . . . , [ad, bd] are admissible

closed intervals. The repeated dichotomy spectrum of (18) is called proportion-

ally locally assignable if there exist δ, ` > 0 such that for arbitrary admissible

closed intervals [â1, b̂1], . . . , [âd, b̂d] with max1≤i≤d dH([âi, b̂i], [ai, bi]) ≤ δ there

exists F ∈ KCm,d(R+) satisfying that ‖F‖∞ ≤ `max1≤i≤d dH([âi, b̂i], [ai, bi]))

and

ΣrED(A+BF ) =
(

[â1, b̂1], . . . , [âd, b̂d]
)
.

We now state the main result of this paper about the fact that uniform

complete controllability implies proportional local assignability of repeated di-

chotomy spectrum.

Theorem 11 (Proportional local assignability of repeated dichotomy spec-

trum). Suppose that system (17) is uniformly completely controllable. Then,

the repeated dichotomy spectrum of (18) is proportionally locally assignable.
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3.2. Proportional local assignability of repeated dichotomy spectrum by additive

perturbation

Together with system (19), we will consider the additively perturbed system

ẏ = (A(t) +Q(t))y for t ∈ R+. (20)

The perturbation Q ∈ KCd,d(R+) will be called an additive perturbation of the

system (19). The following theorem from [22, Theorem 2] will play an important

role in our further consideration.

Theorem 12. If system (17) is uniformly completely controllable, then there ex-

ist β > 0 and `1 > 0 such that for an arbitrary matrix Q ∈ KCd,d(R), ‖Q‖∞ ≤ β,

there exists a control F ∈ KCm,d(R+), ‖F‖∞ ≤ `1‖Q‖∞ providing the asymp-

totic equivalence of the system (20) and system (18).

Definition 13 (Proportional local assignability of spectrum by additive per-

turbation). The repeated dichotomy spectrum of (1) is called proportionally

locally assignable by additive perturbation if there exist positive numbers δ, ` >

0 such that for arbitrary admissible closed intervals [α̂1, β̂1], . . . , [α̂d, β̂d] with

max1≤i≤d dH([α̂i, β̂i], [αi, βi]) ≤ δ there exists a function Q ∈ KCd,d(R+) such

that

‖Q‖∞ ≤ ` max
1≤i≤d

dH([α̂i, β̂i], [αi, βi]), ΣrED(M +Q) =
(

[α̂1, β̂1], . . . , [α̂d, β̂d]
)
.

(21)

In the following proposition, we show the persistence of proportional lo-

cal assignability of repeated dichotomy spectrum by additive perturbation via

asymptotic equivalence.

Proposition 14. Proportional local assignment of repeated dichotomy spectrum

by additive perturbation persists via asymptotic equivalence.

Proof. Consider a system

ẏ = N(t)y for t ∈ R+
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which is asymptotically equivalent to (1) via the Lyapunov transformation T =

(T (t))t∈R+ , i.e.

Ṫ (t) = N(t)T (t)− T (t)M(t) for t ∈ R+.

Suppose that the repeated dichotomy spectrum of (1) is proportionally lo-

cally assignable by additive perturbation with respect to δ, ` as in Definition

13. Let [α̂1, β̂1], . . . , [α̂d, β̂d] be arbitrary admissible closed intervals satisfying

max1≤i≤d dH([α̂i, β̂i], [αi, βi]) ≤ δ. Then, by Definition 13 there exists a function

Q ∈ KCd,d(R+) satisfying ‖Q‖∞ ≤ `max1≤i≤d dH([α̂i, β̂i], [αi, βi]) and

ΣrED(M +Q) =
(

[α̂1, β̂1], . . . , [α̂d, β̂d]
)
. (22)

Let

Q̂(t) = T (t)Q(t)T−1(t) for t ∈ R+. (23)

Then, we have the following claims

‖Q̂‖∞ ≤ `‖T‖∞‖T−1‖∞ max
1≤i≤d

dH([α̂i, β̂i], [αi, βi])

and

ΣrED(N + Q̂) =
(

[α̂1, β̂1], . . . , [α̂d, β̂d]
)
.

The first claim follows from the inequality

‖Q̂‖∞ ≤ ‖T‖∞‖Q‖∞‖T−1‖∞

≤ `‖T‖∞‖T−1‖∞ max
1≤i≤d

dH([α̂i, β̂i], [αi, βi]).

The second one is deduced from (22) and the fact that M(t) +Q(t) and N(t) +

Q̂(t) are asymptotically equivalent, since for t ∈ R+

T−1(t)
(
N(t) + Q̂(t)

)
T (t)− T−1(t)Ṫ (t)

= T−1(t)
(
N(t) + T (t)Q(t)T−1(t)

)
T (t)− T−1(t)Ṫ (t)

= T−1(t)N(t)T (t)− T−1(t)Ṫ (t) +Q(t)

= M(t) +Q(t).

The proof is complete.
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We now state and prove the main result of this subsection in which we

describe a relation between proportional local assignability of the dichotomy

spectrum of (20) by additive perturbation and proportional local assignability

of (18).

Proposition 15. Suppose that system (17) is uniformly completely controllable.

If the repeated dichotomy spectrum of the associated free system (19) is propor-

tionally locally assignable by additive perturbation, then the dichotomy spectrum

of (18) is proportionally locally assignable.

Proof. From the proportional local assignability of the dichotomy spectrum of

(19) by additive perturbation, there exist δ1, `1 > 0 such that for any admissible

closed intervals [â1, b̂1], . . . , [âd, b̂d] with max1≤i≤d dH([âi, b̂i], [ai, bi]) ≤ δ1 there

exists a function Q ∈ KCd,d(R+) satisfying the estimate

‖Q‖∞ ≤ `1 max
1≤i≤d

dH([âi, b̂i], [ai, bi])

and providing the relation

ΣrED(A+Q) =
(

[â1, b̂1], . . . , [âd, b̂d]
)
. (24)

According to Theorem 12, there exist δ2 > 0 and `2 > 0 such that for each

system (20) with Q ∈ KCd,d(R+), ‖Q‖∞ ≤ δ2 there exists a feedback control

F ∈ KCm,d(R+), such that ‖F‖∞ ≤ `2‖Q‖∞ and the corresponding closed-loop

system (18) is asymptotically equivalent to system (20). Let

δ := min

{
δ2
`1
, δ1

}
, ` := `1`2. (25)

To conclude the proof, choose and fix arbitrary admissible closed intervals

[â1, b̂1], . . . , [âd, b̂d] such that

max
1≤i≤d

dH([âi, b̂i], [ai, bi]) ≤ δ.

By definition of δ and δ1, there exists a function Q ∈ KCd,d(R+) such that

‖Q‖∞ ≤ `1 max
1≤i≤d

dH([âi, b̂i], [ai, bi]) ≤ `1δ ≤ δ2

15



and (24) is satisfied. For this function Q and by definition of δ2 there exists a

feedback control F ∈ KCm,d(R+) for system (18) such that

‖F‖∞ ≤ `2‖Q‖∞ ≤ `2`1 max
1≤i≤d

dH([âi, b̂i], [ai, bi])

= ` max
1≤i≤d

dH([âi, b̂i], [ai, bi]),

and such that systems (20) and (18) are asymptotically equivalent. Since equiv-

alent systems have the same dichotomy spectrum the proof is completed.

3.3. Proof of proportional local assignability by additive perturbation for systems

with one dichotomy spectral interval

We now state and prove the main result of this subsection about proportional

local assignability by additive perturbation for the system

ẋ = A(t)x (26)

under the assumption that the dichotomy spectrum ΣED(A) consists of only one

spectral interval.

Theorem 16. Consider system (26) and suppose that its dichotomy spectrum

consists of only one spectral interval. Then, the repeated dichotomy spectrum of

(26) is proportionally locally assignable by additive perturbation.

The main idea of the proof of the above theorem is to transform (26) into an

upper triangular system and to use the following result on an explicit form of

dichotomy spectrum of an upper-triangular system. A proof of (i) can be seen

in [13] and a proof of (ii) can be seen in [5].

Proposition 17. Consider an upper-triangular system

ẋ = U(t)x, where U(t) =



u11(t) u12(t) · · · u1d(t)

0 u22(t) · · · u2d(t)
...

...
. . .

...

0 0 · · · udd(t)


∈ KCd,d(R+).

Then, the following statements hold:

16



(i) The dichotomy spectrum [αi, βi] := ΣED(uii) of the subsystem ẋi = uii(t)xi

is given by

αi = lim inf
t−s→∞

1

t− s

∫ t

s

uii(τ)dτ and βi = lim sup
t−s→∞

1

t− s

∫ t

s

uii(τ)dτ. (27)

(ii) ΣED(U) =
⋃d
i=1 ΣED(uii).

Proof of Theorem 16. It is known that there exists an upper triangular system

ẏ = U(t)y, (28)

where U ∈ KCd,d, which is asymptotically equivalent to (26) (see e.g. [1, The-

orem 3.3.1]). Since proportional local assignment of repeated dichotomy spec-

trum by additive perturbation persists via asymptotic equivalence (Proposition

14), it is sufficient to prove the proportional local assignment of repeated di-

chotomy spectrum for (28) under the assumption that ΣED(U) = [a, b], where

a ≤ b. In what follows, we consider two separate cases:

Case 1 : a < b. Let

δ :=
b− a

3 + |a|+ |b|
and ` :=

max(2, |a|+ |b|)
b− a

(1 + max
1≤i≤d

(‖uii‖∞)). (29)

Now, let [α̂1, β̂1], . . . , [α̂d, β̂d] be arbitrary admissible closed intervals satisfying

that max1≤i≤d dH([α̂i, β̂i], [a, b]) ≤ δ. By (29) and dH([α̂i, β̂i], [a, b]) ≤ δ, we

have [ 2a+b3 , a+2b
3 ] ⊂ [α̂i, β̂i] for all i = 1, . . . , d. Thus, by virtue of Remark 8 all

intervals [α̂1, β̂1], . . . , [α̂d, β̂d] coincide and let α̂ := α̂i and β̂ := β̂i. Let

η :=
β̂ − α̂
b− a

, ζ :=
α̂b− aβ̂
b− a

. (30)

Define Q ∈ KCd,d(R+) by

Q(t) := diag((η − 1)u11(t) + ζ, . . . , (η − 1)udd(t) + ζ) for all t ∈ R+.

By Definition 13, to complete the proof of the theorem in this case it is sufficient

to show that

‖Q‖∞ ≤ `max{|α̂− a|, |β̂ − b|}, ΣED(M +Q) = [α̂, β̂]. (31)
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Concerning the estimate on ‖Q‖∞, from the definition of Q we have

‖Q‖∞ = max
1≤i≤d

|(η − 1) ‖uii‖∞ + ζ| ≤ max
1≤i≤d

(|η − 1| ‖uii‖∞ + |ζ|).

By (30), we have

|η − 1| ≤ 2

b− a
max{|α̂− a|, |β̂ − b|}, |ζ| ≤ |a|+ |b|

b− a
max{|α̂− a|, |β̂ − b|}.

Thus,

‖Q‖∞ ≤ max(|η − 1|, |ζ|)(1 + max
1≤i≤d

‖uii‖∞)

≤ max(2, |a|+ |b|)
b− a

(
1 + max

1≤i≤d
‖uii‖∞

)
dH([a, b], [α̂, β̂]),

which together with (29) proves the first part of (31). Concerning the remaining

part of (31), by using Proposition 17 we obtain

ΣED(U +Q)

=

d⋃
i=1

ΣED(ηuii + ζ)

=

d⋃
i=1

[
lim inf
t−s→∞

1

t− s

∫ t

s

ηuii(τ) + ζ dτ, lim sup
t−s→∞

1

t− s

∫ t

s

ηuii(τ) + ζ dτ

]

=

d⋃
i=1

[
η lim inf
t−s→∞

1

t− s

∫ t

s

uii(τ) dτ + ζ, η lim sup
t−s→∞

1

t− s

∫ t

s

uii(τ) dτ + ζ

]

=

d⋃
i=1

ηΣED(uii) + ζ = [ηa+ ζ, ηb+ ζ],

which together with the definition of η and ζ as in (30) shows that ΣED(U+Q) =

[α̂, β̂]. The proof of the theorem is complete in this case.

Case 2 : a = b. By virtue of Proposition 28, we arrive at ΣED(uii) = {a} and

a = lim
t−s→∞

1

t− s

∫ t

s

uii(τ)dτ for i = 1, . . . , d. (32)

Let [α̂1, β̂1], . . . , [α̂d, β̂d] be arbitrary admissible closed intervals of the form(
[a1, b1], . . . , [a1, b1]︸ ︷︷ ︸

d1times

, . . . , [ak, bk], . . . , [ak, bk]︸ ︷︷ ︸
dktimes

)
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satisfying that max1≤j≤k dH([aj , bj ], {a}) ≤ 1 and b1 < a2, . . . , bk−1 < ak. Let

j ∈ {1, . . . , k} be arbitrary and define a function pj ∈ KC1,1(R+) by

pj(t) :=


bj − a, if t ∈ [(2m)2, (2m+ 1)2), where m ∈ Z≥0;

aj − a, if t ∈ [(2m+ 1)2, (2m+ 2)2), where m ∈ Z≥0.
(33)

By definition of pj , we have

lim sup
t−s→∞

1

t− s

∫ t

s

pj(τ) dτ = bj − a, lim inf
t−s→∞

1

t− s

∫ t

s

pj(τ) dτ = aj − a. (34)

We now define Q(t) := diag(q1(t), . . . , qd(t)) where

qi(t) := pj(t) for i ∈ {d1 + · · ·+ dj−1 + 1, d1 + · · ·+ dj}, j = 1, . . . , k.5

To conclude the proof, we will estimate ‖Q‖∞ and compute ΣrED(U+Q). Firstly,

by definition of Q and (33) we have

sup
t∈R+

‖Q(t)‖ ≤ max
1≤j≤k

dH ([aj , bj ], {a}) .

Finally, from (32) and (34) we derive that for i ∈ {d1+· · ·+dj−1+1, d1+· · ·+dj},

where j ∈ {1, . . . , k}

lim sup
t−s→∞

1

t− s

∫ t

s

uii(τ) + qi(τ) dτ = bj , lim inf
t−s→∞

1

t− s

∫ t

s

uii(τ) + qi(τ) dτ = aj .

In view of Proposition 17(i), we have ΣED(uii + qi) = [aj , bj ] and thus

ΣrED(U +Q) =
(

[a1, b1], . . . , [a1, b1]︸ ︷︷ ︸
d1times

, . . . , [ak, bk], . . . , [ak, bk]︸ ︷︷ ︸
dktimes

)
.

The proof is complete.

3.4. Proof of the main results

Proof of Theorem 11. Thanks to Proposition 15, to show the proportional lo-

cal assignability of the dichotomy spectrum of (18) it is sufficient to verify the

5Throughout the paper, we use the convention that d1 + · · ·+ dj−1 = 0 when j = 1.
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proportional local assignability of the dichotomy spectrum by additive pertur-

bation of system (19). Let the repeated dichotomy spectrum ΣrED(A) be of the

following form

ΣrED(A) =
(

[a1, b1], . . . , [ad, bd]
)

=
(

[a∗1, b
∗
1], . . . , [a∗1, b

∗
1]︸ ︷︷ ︸

d1times

, . . . , [a∗k, b
∗
k], . . . , [a∗k, b

∗
k]︸ ︷︷ ︸

dktimes

)
,

where

a1 ≤ b1 ≤ a2 ≤ b2 ≤ · · · ≤ ad ≤ bd

and

a∗1 ≤ b∗1 < a∗2 ≤ b∗2 · · · < a∗k ≤ b∗k.

Then, we have for all i = 1, . . . , k

[a∗i , b
∗
i ] = [aj , bj ] for d1 + · · ·+ di−1 + 1 ≤ j ≤ d1 + · · ·+ di. (35)

In light of Theorem 4, system (19) is asymptotically equivalent to a block-

diagonal system

ẏ = diag(A1(t), . . . , Ak(t))y for t ∈ R+, (36)

where Ai ∈ KCdi,di(R+) for i = 1, . . . , k satisfies that

ΣED(Ai) = [a∗i , b
∗
i ] for i = 1, . . . , k.

By Proposition 14, to conclude the proof we verify proportional local assignabil-

ity of the dichotomy spectrum by additive perturbation of (36). Note that by

virtue of Theorem 16, for i = 1, . . . , k the repeated dichotomy spectrum of each

subsystem

ẏi = Ai(t)yi, (37)

is proportionally locally assignable by additive perturbation. This implies that

for each i = 1, . . . , k there exist δi and `i such that for each admissible intervals

[ai1, b
i
1], . . . , [aidi , b

i
di

] satisfying sup1≤j≤di dH([aij , b
i
j ], [a

∗
i , b
∗
i ]) ≤ δi there exists

Qi ∈ KCdi,di(R+) such that ‖Qi‖∞ ≤ `i max1≤j≤di dH([aij , b
i
j ], [a

∗
i , b
∗
i ]) and

ΣrED(Ai +Qi) =
(

[ai1, b
i
1], . . . , [aidi , b

i
di ]
)
.

20



Define

δ := min

{
min

1≤i≤k
δi, min

1≤i≤k−1

(a∗i+1 − b∗i )
3

}
, ` := max

1≤i≤k
`i. (38)

To complete the proof, let [â1, b̂1], . . . , [âd, b̂d] be arbitrary admissible closed in-

tervals satisfying that max1≤i≤d dH([âi, b̂i], [ai, bi]) ≤ δ. Using the fact that

δ ≤ min1≤i≤k−1
(a∗i+1−b

∗
i )

3 , for i = 1, . . . , k, there exist exactly di intervals

[â1, b̂1], . . . , [âd, b̂d] whose Hausdorff distance to [a∗i , b
∗
i ] is smaller than δ. More

precisely, for i = 1, . . . , k we have

max
d1+···+di−1+1≤j≤d1+···+di

dH([âj , b̂j ], [a
∗
i , b
∗
i ]) ≤ δ.

Since δ ≤ δi, it follows that there exists Qi(t) such that

‖Qi‖∞ ≤ `i max
d1+···+di−1+1≤j≤d1+···+di

dH([âj , b̂j ], [a
∗
i , b
∗
i ]) (39)

and

ΣrED(Ai +Qi) =
(

[âd1+···+di−1+1, b̂d1+···+di−1+1], . . . , [âd1+···+di , b̂d1+···+di ]
)
.

(40)

Let Q(t) = diag(Q1(t), . . . , Qk(t)). Then, by (39) and (35) we have

‖Q‖∞ ≤ max
1≤i≤k

`i max
d1+···+di−1+1≤j≤d1+···+di

dH([âj , b̂j ], [a
∗
i , b
∗
i ])

≤ ` max
1≤j≤d

dH([âj , b̂j ], [aj , bj ]).

Furthermore, by (40) we have

ΣrED(A+Q) =

k⋃
i=1

ΣrED(Ai +Qi) =
(

[â1, b̂1], . . . , [âd, b̂d]
)
.

The proof is complete.

4. Examples

In this section, we consider several time-varying linear planar control systems

whose free systems have dichotomy spectrum consisting either of two spectral

intervals (Example 18) or of one spectral interval (Example 19). When dealing
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these examples, we explain how to use the developed theoretical results in the

previous section in constructing desired linear state feedbacks in the propor-

tional local assigment of dichotomy spectrum problem.

Before going to these examples, we recall Kalman’s characterization for uniform

complete controllability, see e.g. [23], for linear time-varying control systems

ẋ = A(t)x+B(t)u for t ∈ R+. (41)

The characterization is stated as that system (41) is uniformly completely con-

trollable if and only if there exist positive constants ρ and ϑ such that the

controllability matrix W (t0, t0 + ϑ) :=
∫ t0+ϑ
t0

XA(t0, s)B(s)B(s)TXA(t0, s)
T ds

satisfies the inequality

ξTW (t0, t0 + ϑ)ξ ≥ ρ‖ξ‖2 for any t0 ∈ R+, ξ ∈ Rd. (42)

When we take B(t) = I and the time-varying matrix A(t) is bounded, then sys-

tem (41) is uniformly complete controllable. To see this, letm := supt∈R+ ‖A(t)‖.

Then, we have |XA(t, s)| ≤ em|t−s| for all t, s ∈ R+. Consequently, for a fixed

ϑ > 0 and for all t0 ∈ R+ we have

ξTW (t0, t0 + ϑ)ξ =

∫ t0+ϑ

t0

‖XA(t0, s)ξ‖2 ds

≥
∫ t0+ϑ

t0

e2m(t0−s) ds‖ξ‖2

=
1− e−2mϑ

2m
‖ξ‖2,

which together with (42) shows the uniform complete controllability of (41) in

this case.

Example 18. Consider a linear time-varying control system of the following

form

ẋ = A(t)x+B(t)u for t ∈ R+, (43)

where

A(t) =

 sin t 0

0 1
2

 , B(t) = I.
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By using the Proposition 17, the dichotomy spectrum of the free system can

be computed explicitly as ΣED(A) = {0, 12}. We now apply the procedure in

Case 2 in the proof of Theorem 16 to verify that the dichotomy spectrum of

the free system is proportionally locally assignable with two constants δ = 1
6 and

` = 1. Let [a, b], [c, d] be arbitrary admissible closed intervals with dH([a, b], {0}),

dH([c, d], { 12}) ≤ δ. Then, since δ ≤ 1
6 , two intervals [a, b] and [c, d] are disjoint

and [a, b] ⊆ [−δ, δ] and [c, d] ⊆ [ 12 − δ, 12 + δ]. We construct the linear state

feedback F ∈ KC2,2(R+) of the form F (t) = diag(f1(t), f2(t)), where

f1(t) :=


a, if t ∈ [(2m)2, (2m+ 1)2), where m ∈ Z≥0;

b, if t ∈ [(2m+ 1)2, (2m+ 2)2), where m ∈ Z≥0;

and

f2(t) :=


c− 1

2 , if t ∈ [(2m)2, (2m+ 1)2), where m ∈ Z≥0;

d− 1
2 , if t ∈ [(2m+ 1)2, (2m+ 2)2), where m ∈ Z≥0.

Then, ‖F‖∞ ≤ max{dH([a, b], {0}), dH([c, d], { 12})} and as it is shown in the

proof of Theorem 16 the dichotomy spectrum ΣED(A + BF ) of the closed loop

system ẋ = (A(t) +B(t)F (t))x is [a, b] ∪ [c, d].

Example 19. Consider a linear time-varying control system of the following

form

ẋ = A(t)x+B(t)u for t ∈ R+, (44)

where

A(t) =

 sin(log(1 + t)) + cos(log(1 + t)) −1

0 0

 , B(t) = I.

The free system ẋ = A(t)x is considered in [1, p. 95] and [11, Example 3.3]

(after a shift of the time by 1). It is shown in these references that the Lyapunov

exponents are unstable and the dichotomy spectrum of the free system is given

by ΣED(A) = [−
√

2,
√

2]. We now apply the construction in Case 1 in the

proof of Theorem 16 to show that the dichotomy spectrum of the free system is
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proportionally locally assignable with two positive constants (cf. (29))

δ =
2
√

2

3 + 2
√

2
and ` = 1 +

√
2.

Let [a, b], [c, d] be arbitrary admissible closed intervals with

dH([a, b], [−
√

2,
√

2]), dH([c, d], [−
√

2,
√

2]) ≤ δ.

Then, [a, b] ≡ [c, d]. As was proved in Case 1 in the proof of Theorem 16, the

linear state feedback F ∈ KC2,2(R+) of the form F (t) = diag(f1(t), f2(t)), where

f1(t) =
(b− a

2
√

2
− 1
)(

sin(log(1 + t)) + cos(log(1 + t))
)

+
a+ b

2

f2(t) =
a+ b

2

satisfies that ΣED(A+BF ) = [a, b] and ‖F‖∞ ≤ `dH([a, b], [−
√

2,
√

2]).
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