
MULTIPLE EULERIAN POLYNOMIALS

TA THI HOAI AN AND NGO QUOC HOAN

Abstract. In this page, we give some related properties of a class of
polynomials which are said the multiple Eulerian polynomials. After
that, we use these polynomials to regularize the polyzetas at non-positive
integer multi-indices.

1. Introduction

The Eulerian polynomials1, denoted by An(z), n ∈ N, play an in-

teresting role in the theory of quadrature formulas and the enumerative

combinatorics, as well as in other areas since they first appeared in the

works of Euler about the alternating sums
N∑

n=1

(−1)nnk for any N ∈ N∗ and

k ∈ Z [16, 17] (also see in [14, 15, 19]). In these works, Euler gave the

following general result:
N∑

n=1

nkzn =
k∑

i=1

(−1)k+i

(
k

i

)
zN+1N i

(z − 1)k−i+1
Ak−i(z) + (−1)k

z(zk − 1)

(z − 1)k+1
Ak(z)

where the Eulerian polynomials {Ak(z)}k∈N are recursively defined by

A0(z) = 1 and Ak(z) =
k−1∑
j=0

(
k

j

)
Aj(z)(z − 1)k−1−j. (1.1)

Moreover, as N → +∞, for any k ∈ N, we have [15]:

Li−k(z) =
zAk(z)

(1− z)k+1
(1.2)

where Lis(z) denotes the polylogarithm at the index s ∈ C, i.e.,

Lis(z) =
+∞∑
n=1

zn

ns
, for any |z| < 1. (1.3)
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In addition, for any k ∈ N, Euler also stated that the kth−Eulerian polyno-

mial Ak(z) can be rewritten as a generating polynomial of Eulerian numbers,

denoted by {Ak,i | i = 0, . . . , k − 1} [17], as follows:

Ak(z) =
k−1∑
i=0

Ak,i z
i. (1.4)

On the other hand, there is a combinatorial definition of Eulerian poly-

nomial2 [14, 28]. The kth−Eulerian polynomial can be understood as the

generating function of the descent statistic over the symmetric group Gk:

Ak(z) =
∑
σ∈Gk

zdes(σ)+1 (1.5)

where des(σ) = ♯ {1 ≤ i ≤ k − 1 | σ(i) > σ(i+ 1)}. By this way, we can

show that all the roots of Eulerian polynomials are real, distinct, and neg-

ative. This was already noted by Frobenius3 [12], and is not an isolated

phenomenon as surprisingly many polynomials appearing in combinatorics

are real-rooted [4, 5, 7, 32]. Furthermore, another intersting result is that

the polynomials Pk(z) are conjectured irreducible over Q where Pk(z) de-

note Ak(z) if k is odd and
Ak(z)

z + 1
if k is even. To date it has not been

possible either to verify this conjecture completely or to give a counterex-

ample. However, the works of Heidrich in 1982 proved that for k > 3, even

if Pk(z) is not irreducible over Q, it must nevertheless possess an irreducible

factor of degreed d ≥ p−1 where p is the largest prime not exceeding k [19].

Up to the present, the Eulerian polynomials have been extended by many

different directions.

We must mention the results of Stanley in his thesis [33] in 1972. In those

works, he introduced an extension of the Eulerian polynomials to labeled

posets P which were called the P−Eulerian polynomials and denoted by

AP (z). After that, these polynomials were studied in [4, 5, 7]. The Neggers-

Stanley conjecture asserted that for each labeled poset P , AP (x) is also

real-rooted [4]. In fact, this conjecture was disproved by Brändén in [6], and

for natural labelings it was disproved by Stembrigde in [34]. However, the

2The definition of Eulerian numbers in this way was introduced by Riordan in the
1950’s [37].

3In fact, Frobenius also stated that −1 is a root of Ak(z) if k is even, and that when
k > 2 the roots of Ak+1(z) are separated by those of Ak(z) [12, 19].
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conjecture was proved for several classes of posets by Brenti [7] and Wagner

[35].

In 1974, Carlitz also gave an extension of Eulerian polynomials which

associcate to an arithmetic progression [9] {a, a + d, a + 2d, a + 3d, . . .} for

any a, d ∈ R. After that, the properties of these polynomials have been

completed by some other mathematicians as Foata [15] or Tingyao Xiong

and al. [37].

Another interesting result was claimed by Gérard and al. in 2017 when

they studied about the polygarithms at negative multi-indices [10, 11]. In

that work, they showed that, for any s1, . . . , sr ∈ N, there exists a family of

polylomials, denoted by As1,...,sr(z), such that

Li−s1,...,−sr(z) =
zr

(1− z)s1+...+sr+r
As1,...,sr(z), |z| < 1 (1.6)

where Lit1,...,tr(z) is denoted the polylogarithm at (t1, . . . , tr) ∈ Cr and de-

fined by4

Lit1,...,tr(z) =
∑

n1>...>nr>0

zn1

nt1
1 . . . ntr

r

, |z| < 1. (1.7)

The polynomials As1,...,sr(z) for any s1, . . . , sr ∈ N as in (1.6) are called the

multiple Eulerian polynomials.

In this paper, we will clarify the properties of the class of polynomials

as in (1.6). Specifically, like the traditional Eulerian polynomials, we are

concerned with the description of a recursive formula of multiple Eulerian

polynomials. After that, we are interested in the properties of roots of

multiple Eulerian polynomials. Then it is the same for the traditional Euler

polynomials, we also obtained that the multiple Eulerian polynomials are

real-rooted. These results are described as in two following theorems.

Theorem 1. For any r ∈ N∗ and s1, . . . , sr ∈ N, we have

(i) If s1 = 0 then

As1,...,sr(z) = As2,...,sr(z).

(ii) If s1 ≥ 1 then

As1,...,sr(z) =

s1∑
k=1

S(s1, k)(1− z)s1−kAk,s2,...,sr(z) (1.8)

4In fact, the polylogarithms are defined on the unit disc |z| < 1 and they are extended
as a meromorphism functions on C by continuation [27, 29].
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where S(s1, k) is the Stirling numbers of second kind.

Theorem 2. For any s1, . . . , sr ∈ N, the polynomial As1,...,sr(z) is real-rooted.

In addition, all roots of As1,...,sr(z) are negative for any s1, . . . , sr ∈ N.
Moreover, these polynomials are unimodal and log-concave.

Finally, in the rest of this paper, using the above results, we give some ap-

plications of multiple Eulerian polynomials in the theory of strong unique-

ness polynomials and also connected them to regularize the polyzetas at

non-positive integer multiple indices.

2. The proofs and some consequences

We start this section by some basic concepts which will used in our proofs.

Firstly, we consider the differential operators which are denoted by

θ0 := z
d

dz
and θ1 := (1− z)

d

dz
.

Note that, for any function f ∈ C∞, we get

θ0(f) = z
df

dz
,

θ20(f) = θ0 (θ0(f)) = z
d

dz

(
z
df

dz

)
= z

(
df

dz
+ z

d2f

dz2

)
= z

df

dz
+ z2

d2f

dz2
,

θ30(f) = θ0
(
θ20(f)

)
= z

df

dz
+ 3z2

d2f

dz2
+ z3

d3f

dz3
,

θ40(f) = θ0
(
θ30(f)

)
= z

df

dz
+ 7z2

d2f

dz2
+ 6z3

d3f

dz3
+ z4

d4f

dz4
.

By the recurrence way, it is seen that

θs0(f) =
s∑

k=1

S(s, k)zk
dkf

dzk
(2.1)

where S(s, k) is the (s, k)−Stirling number of second kind5 for any s ∈ N∗.

We are now in a position to prove the first theorem.

Proof of theorem 1:

(i) Note that

Li0,−s2,...,−sr(z) =
z

1− z
Li−s2,...,−sr(z)

5The interested readers may find the concept of Stirling numbers of second kind in
[10].
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for any r ∈ N∗ and s2, . . . , sr ∈ N. Since the equation (1.6), we get

zr

(1− z)s2+...+sr+r
A0,s2,...,sr(z) =

z

1− z

zr−1

(1− z)s2+...+sr+r−1
As2,...,sr(z).

Then by some simple transformations, we obtain the first statement.

(ii) For this statement, on the class of analytic functions on C, we will

denote the sections of the operators θ0 and θ1 by ι1 and ι2, respec-

tively. This means that

ι0(f)(z) =

∫ z

z0

f(s)
ds

s
and ι1(f)(z) =

∫ z

z0

f(s)
ds

1− s

where z0 is a such point in the continuous domains of f(z) [10].

Recall that

Li−s1,...,−sr(z) =
(
θs1+1
0 ι1

)
Li−s2,...,−sr(z) = θs10 (Li0,−s2,...,−sr(z))

and then since the equation (2.1), we get

Li−s1,...,−sr(z) =

s1∑
k=1

S(s1, k)z
k dk

dzk
[Li0,−s2,...,−sr(z)]

=

s1∑
k=1

S(s1, k) Li−k,−s2,...,−sr(z).

for any s1, . . . , sr ∈ N. Finnaly, from the definition of polynomials

As1,...,sr(z) in (1.6), we obtain that

zr

(1− z)s1+...+sr+r
As1,...,sr(z) =

s1∑
k=1

S(s1, k)
zr

(1− z)s2+...+sr+k
Ak,s2,...,sr(z).

Then after some computations, the second statement is proved, i.e.,

As1,...,sr(z) =

s1∑
k=1

S(s1, k)(1− z)s1−kAk,s2,...,sr(z).

The proof is completed now.

In the simplest case, for r=1, we obtain the usual formula of the traditional

Eulerian polynomials as follows:

Corollary 1 ([14]). For any n ≥ 0, we get

An(z) =
n∑

k=1

k!S(n, k)(z − 1)k−1.
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Recall that, for any r ∈ N∗ and s1, . . . , sr ∈ N,

Li−s1,...,−sr(z) =
∑

n1>...>nr>0

ns1
1 . . . nsr

r zn1 .

Hence

d

dz
Li−s1,...,−sr(z) =

∑
n1>...>nr>0

ns1+1
1 . . . nsr

r zn1−1 =
1

z
Li−s1−1,−s2,...,−sr(z).

From the equation (1.6), after some computations, we obtain the following

recurrence relation:

[(s1 + . . .+ sr) z + r]As1,s2,...,sr(z) + z (1− z)A
′

s1,s2,...,sr
(z) = As1+1,s2,...,sr(z)

(2.2)

for any s1, . . . , sr ∈ N. Furthermore, we also get [10]

Li0, . . . , 0︸ ︷︷ ︸
r times 0

(z) =

(
z

1− z

)r

, (2.3)

and then A0, . . . , 0︸ ︷︷ ︸
r times 0

(z) = 1 for any r ∈ N∗. Thus, from the equation (2.2),

it is easily seen that the degree of As1,s2,...,sr(z) is s1 + . . . + sr − 1 for any

s1, . . . , sr ∈ N.
In fact, the equation (2.2) also provides a useful alternative in the compu-

tations to the original definition of multiple Eulerian polynomials. Indeed,

for any r ∈ N∗ and s1, . . . , sr ∈ N, we assume that

As1,...,sr(z) =

s1+...+sr−1∑
k=0

aks1,...,arz
k. (2.4)

Then since the first statement of Theorem 1 and the equation (2.2), after

some simple computations, we obtain the recurrence relationship of the

coefficients of multiple Eulerian polynomials as follows:

Corollary 2. For any r ∈ N∗ and s1, . . . , sr ∈ N,

a0s1+1,s2,...,sr
= ra0s1,s2,...,sr ,

a1s1+1,s2,...,sr
= (r + 1)s1s1,s2,...,sr + (s1 + . . .+ sr)a

0
s1+1,s2,...,sr

,

aks1+1,s2,...,sr
= (r + k)aks1,s2,...,sr − (k − 1)ak−1

s1,s2,...,sr

+(s1 + . . .+ sr)a
k−1
s1+1,s2,...,sr

,∀k ≥ 2.

This corollary helps us computering the multiple Eulerian polynomials.
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Example 1.

A1(z) = 1,

A2(z) = 1 + z,

A3(z) = 1 + 4z + z2,

A4(z) = 1 + 11z + 11z2 + z3,

A5(z) = 1 + 26z + 66z2 + 26z3 + z4,

A6(z) = 1 + 57z + 302z2 + 302z3 + 57z4 + z5,

A2,3(z) = z4 + 29z5 + 93z2 + 53z + 4,

A3,4(z) = z6 + 127z5 + 1458z4 + 3654z3 + 2429z2 + 387z + 8,

A4,6(z) = z9 + 1028z8 + 51900z7 + 548492z6 + 1816214z5 + 2177484z4,

+961052z3 + 141140z2 + 5073z + 16,

A1,2,2(z) = z4 + 34z3 + 133z2 + 100z + 12,

A2,2,2(z) = z5 + 75z4 + 603z3 + 1065z2 + 460z + 36.

Moreover, using Corollary 2, we also get another important result of co-

efficients of multiple Eulerian polynomials as in the following corollary.

Corollary 3. For any s1, . . . , sr ∈ N, the coefficients of As1,...,sr(z) are posi-

tive.

For the proof of second theorem, we begin by the following definition:

Definition 1. Let

P (z) = anx
n + an−1x

n−1 + . . .+ a1x+ a0

be a real polynomial. It is called unimodal if there is some j such that

a0 ≤ a1 ≤ . . . ≤ aj−1 ≤ aj ≥ aj+1 ≥ . . . ≥ an. (2.5)

Suppose now all coefficients of P are positive. We say that P is log-concave

if

aj−1aj+1 ≤ a2j (2.6)

for every j = 1, . . . , n.

Finally, if P has only real roots, it is called real-rooted.

In fact, every real-rooted polynomial with positive coeficients is log-concave

and then is so unimodal [4]. Moreover, since the works of Brenti in 2000 [8]

(see also [31]), he gave a following important lemma.
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Lemma 1 ([8]). Suppose that An(z, q) are the family of polynomials which

are defined by the recursion relation as follows:

An+1(z, q) = (nx+ q)An−1(z, q) + z(1− z)
d

dz
An−1(z, q) (2.7)

for any n ∈ N with the initial condition A0(z, q) = z . Then the polynomials

An(z, q) have only real nonpositive simple roots for any q ∈ Q and q > 0.

In particular, these polynomials are log-concave and unimodal.

We will not send Brenti’s proof for Lemma 1 in here. Interested readers

can find it from [8]. We will use that techniques to prove a more generally

results as follows:

Lemma 2. Suppose that Pn(z, q) are the family of polynomials which are

defined by the recursion relation as follows:

Pn+1(z, q) = (anx+ q)Pn−1(z, q) + z(1− z)
d

dz
Pn−1(z, q) (2.8)

where an > 0 for any n ∈ N and P0(z, q) satisfies the following conditions:

(i) 0 is a root of P0(z, q), i.e., P0(0, q) = 0.

(ii) P0(z, q) has only real nonpositive simple roots.

If the leading coefficient of Pn(z, q) is positive for every n ∈ N then the

polynomials Pn(z, q) have only real nonpositive simple roots for any q ∈ Q
and q > 0.

Proof of Lemma 2: We will continue this proof by the induction on

n ∈ N and reuse Brenti’s technique in the proof of Lemma 1 in [8]. From

our from our induction hypothesis, P0(z, q) has only real nonpositive simple

roots. The lemma is clearly true for n = 0. Suppose that

ξd−1 < ξd−2 < . . . < ξ2 < ξ1 = 0

be the roots of Pn−1(z, q) where d is the degree of Pn(z, q). From Rolle’s

theorem, the polynomial P
′
n−1(z, q) has only simple real roots, denoted by

νd−2 < . . . < ν1. Moreover, we also get

ξd−1 < νd−2 < ξd−2 < . . . ξd−2 < . . . < ξ3 < ν2 < ξ2 < ν1 < ξ1 = 0.

Recall that the leading coefficient of P
′
n−1(z) are positive. Then it is easily

seen that

(−1)jPn−1(νj) > 0, ∀j = 1, 2, . . . , d− 2, (2.9)
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and

(−1)j+1P
′

n−1(ξj) > 0, ∀j = 1, 2, . . . , d− 1. (2.10)

Given α = − q

an
< 0. If α < ν1 then there is an index i such that 2 ≤ i ≤

d− 1 and

νi < α ≤ νi−1

where we denote that νd−1 = −∞. Since the equations (2.18), (2.9) and

(2.10), we obtain that

(−1)iPn(α, q) ≥ 0, (2.11)

(−1)jPn(νj, q)

> 0 if j = 1, . . . , i− 2
≥ 0 if j = i− 1
< 0 if i ≤ j ≤ d− 1

, (2.12)

(−1)jPn(ξj, q) > 0, ∀j = 1, . . . , d− 1. (2.13)

In here, we denote that Pn(−∞, q) = lim
z→−∞

Pn(z, q). Then we get

Pn(νj, q)Pn(ξj+1, q) < 0, ∀j = 1, . . . , i− 2 (2.14)

and

Pn(ξj, q)Pn(νj, q) < 0, ∀j = i+ 1, . . . , d− 1. (2.15)

The equations (2.14) and (2.15) prove that there are the numbers Aj ∈
(ξj+1, νj), ∀j = 1, . . . , i − 2 and Bj ∈ (νj, ξj), ∀j = i + 1, . . . , d − 1 which

are the roots of Pn(z, q).

On the other hand, from the equation (2.11), (2.12) and (2.13), it is easily

seen that the polynomial Pn(z, q) has a root Ai−1 ∈ (νi,M) and another root

Bi ∈ (N, νi) with M = min(ξi, α) and N = max(ξi, α). In fact, the roots

A1, . . . , Ai−1, Bi, . . . , Bd−1 are distinct since Pn(ξj, q) ̸= 0 by (2.8) for any

j = 2, . . . , d − 1 . In addition, since Pn(0, q) = 0 by (2.8), it implies that

this polynomial has d real nonpositive simple roots.

For the case α > ν1, we must recall some following base concepts.

Definition 2. Given two nonzero real-rooted polynomials f, g ∈ R[x]. Sup-

pose that the roots of f are α1 < . . . < αn, and the roots of g are

betal < . . . < βm. We say that f alternates left of g, denoted by f ≪ g, if

and only if m = n and

α1 ≤ β1 ≤ α2 ≤ β2 ≤ . . . ≤ αn ≤ βn. (2.16)



10

In 1992, Wagner proved the important result as in the following lemma

[36].

Lemma 3. [36] Let f, g ∈ R[x] be standard, real-rooted, and with f ≪ g.

Then for all a, b > 0, one has f ≪ af + bg ≪ g.

Complete the proof of Lemma 2: If α > ν1, then [anz + q]Pn(z, q)

alternates left of z(1 − z)P ′
n−1(z, q). And then, as a directly consequence

of Lemma 3, Pn(z, q) has d real nonpositive simple roots. The proof is

completed now.

At the moment, we will start to prove Theorem 2.

Proof of Theorem 2: For any r > 0, setting now

Ps1,...,sr(z) = zAs1,...,sr(z) (2.17)

for any s1, . . . , sr ∈ N. Since P ′
s1,...,sr

(z) = As1,...,sr(z) + xA′
s1,...,sr

(z) and the

equation (2.2), we obtain that

Ps1+1,...,sr(z) = [(s1 + . . .+ sr + 1)z + r − 1]Ps1,...,sr(z) + z(1− z)P ′
s1,...,sr

(z),

(2.18)

for any s1, . . . , sr ∈ N.
For this proof, we will proceed by the induction on r ∈ N∗.

For r = 1, the theorem is a direct consequence of Lemma 1.

Fixe r > 1. Suppose that the result is true for any k < r, i.e., the polyno-

mial Ps1,...,sk(z) has only real nonpositive simple roots for every s1, . . . , sk ∈
N.

Fixe the sequence of indices s2, . . . , sr ∈ N. For any s1 ∈ N, it is easily

seen that the polynomial Ps1,...,sr(z) is a polynomial of degree s1 + . . . + sr
(by (2.18)) such that P0,s2...,sr(0) = 0. Note that

P0,s2...,sr(z) = xA0,s2...,sr(z) = xAs2...,sr(z) = Ps2...,sr(z).

Then by our induction hypothesis, P0,s2...,sr(z) has only real nonpositive

simple roots. Furthermore, the leading coefficient of Ps1,...,sr(z) is positive.

Thus the polynomial Ps1,...,sr(z) has only real nonpositive simple roots for

all s1, s2, . . . , sr ∈ N by Lemma 2. This implies that As1,...,sr(z) has only

real negative simple roots and then it is unimodal and log-concave because

its coefficients are positive for all s1, s2, . . . , sr ∈ N.
The proof is completed now.
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Example 2. The polynomial A1,0,2(z) = z2 + 6z + 3, has 2 real roots.

The polynomial A1,1,2(z) = z3 + 15z2 + 26z + 6 has 3 real roots.

By the computer, the polynomial

A3,4(z) = z6 + 127z5 + 1458z4 + 3654z3 + 2429z2 + 387z + 8,

has 6 real roots α1 ∈ (−115;−114), α2 ∈ (−10;−9), α3 ∈ (−3;−2), α4 ∈
(−1;−1

2
), α5 ∈ (−1

2
;− 1

10
) and α6 ∈ (− 1

10
; 0).

3. Some applications

3.1. A relationship between the multiple Eulerian polynomials and

the harmonic sums. Remark that, for any s1, . . . , sr ∈ N, the function
Li−s1,...,−sr(z)

1− z
is an analytic function of unity disc |z| < 1. Moreover, its

Taylor expansion at z = 0 is that

Li−s1,...,−sr(z)

1− z
=

∑
N≥0

H−s1,...,−sr(N)zN , |z| < 1 (3.1)

where the coefficient6 H−s1,...,−sr(N) is defined by

H−s1,...,−sr(N) =
∑

N≥n1>n2...>nr>0

ns1
1 . . . nsr

r , ∀N ∈ N.

Proposition 1. Given s1, . . . , sr ∈ N and n ∈ N such that 0 ≤ n ≤ s1+ . . .+

sr − 1. We get

ans1,...,sr =
n∑

i=0

(
s1 + . . . sr + r

i

)
(−1)iH−s1,...,−sr(n− i+ r).

Proof. Since the equation (3.1), we get

zr

(1− z)s1+...+sr+r+1
As1,...,sr(z) =

∑
N≥0

H−s1,...,−sr(N)zN .

Note that

H−s1,...,−sr(N) := 0

6For any s1, . . . , sr ∈ Z, the numbers

Hs1,...,sr (N) :=
∑

N≥n1>n2...>nr>0

1

ns1
1 . . . nsr

r
, N ∈ N∗

define an arithmetic function which is also called the harmonic sum at (s1, . . . , sr) [3, 10,
23].



12

for any N ∈ N such that 0 ≤ N < r. Thus

As1,...,sr(z) = (1− z)s1+...+sr+r+1
∑
N≥r

H−s1,...,−sr(N)zN−r

=

s1+...+sr+r+1∑
n=0

(
s1 + . . .+ sr + r + 1

n

)
(−1)nzn

∑
n≥0

H−s1,...,−sr(n+ r)zn

=
∞∑
n=0

cnz
n

where for any n ∈ N,

cn =

min(n,s1+...+sr+r+1)∑
i=0

(
s1 + . . .+ sr + r + 1

i

)
(−1)iH−s1,...,−sr(n− i+ r).

On the other hand, As1,...,sr(z) is a polynomial of degree s1 + . . . + sr − 1.

Hence

ans1,...,sr =
n∑

i=0

(
s1 + . . .+ sr + r + 1

i

)
(−1)iH−s1,...,−sr(n− i+ r)

for any n = 0, . . . , s1 + . . .+ sr − 1. □

Example 3. Given

A2,3(z) = a42,3z
4 + a32,3z

3 + a22,3z
2 + a12,3z + a02,3.

Using Proposition 1, we get

a42,3 =
4∑

i=0

(
8

i

)
(−1)iH−2,−3(6− i)

= 70H−2,−3(2)− 56H−2,−3(3) + 28H−2,−3(4)− 8H−2,−3(5) + H−2,−3(6)

a32,3 =
3∑

i=0

(
8

i

)
(−1)iH−2,−3(5− i)

= −56H−2,−3(2) + 28H−2,−3(3)− 8H−2,−3(4) + H−2,−3(5)

a22,3 =
2∑

i=0

(
8

i

)
(−1)iH−2,−3(4− i) = 28H−2,−3(2)− 8H−2,−3(3) + H−2,−3(4)

a12,3 =
1∑

i=0

(
8

i

)
(−1)iH−2,−3(3− i) = −8H−2,−3(2) + H−2,−3(3)

a02,3 =
0∑

i=0

(
8

i

)
(−1)iH−2,−3(2− i) = H−2,−3(2).
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Remark that

H−2,−3(N) =
N(N − 1)(N + 1)(30N4 + 35N3 − 33N2 − 35N + 2)

840
, N ∈ N.

And then H−2,−3(2) = 4, H−2,−3(3) = 85, H−2,−3(4) = 661, H−2,−3(5) = 3161

and H−2,−3(6) = 11261. It implies that

a02,3 = 4; a12,3 = 53; a22,3 = 93; a32,3 = 29; a42,3 = 1.

Hence

A2,3(z) = z4 + 29z3 + 93z2 + 53z + 4.

In fact, from the proof of Proposition 1, we also obtain that

Corollary 4. Let s1, . . . , sr be the non-negative integers. For any n ≥ s1 +

. . .+ sr + r + 1, we get

s1+...+sr+r∑
i=0

(
s1 + . . .+ sr + r + 1

i

)
(−1)iH−s1,...,−sr(s1 + . . .+ sr − i+ 2r) = 0

and
s1+...+sr+r+1∑

i=0

(
s1 + . . .+ sr + r + 1

i

)
(−1)iH−s1,...,−sr(n− i+ r) = 0.

3.2. The strong uniqueness polynomials for L−functions. Suppose

that F is a subset of meromorphic functions. Recall that a polynomial

P (z) is called a strong uniqueness polynomial for F [2, 24] if for any two

non-constant meromorphic functions f, g ∈ F , then

(P (f) = cP (g); c ̸= 0) =⇒ (f = g) . (3.2)

In particular, P (z) is called a uniqueness polynomial if for any two non-

constant meromorphic functions f, g ∈ F , then

(P (f) = P (g)) =⇒ (f = g) . (3.3)

Theorem 3 ([24]). Let P (z) be a polynomial satisfying P (1)P ′(1) ̸= 0. Then

P (z) is a strong uniqueness polynomial for L−functions.

Note that the coefficients of As1,...,sr(z) are positive for every s1, . . . , sr ∈
N. Thus As1,...,sr(1)A

′
s1,...,sr

(1) ̸= 0. It led us to the following corollary.

Corollary 5. For any s1, . . . , sr ∈ N, the polynomial As1,...,sr(z) is a strong

uniqueness polynomial for L−functions.
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Given f to be a meromorphic function in C and a ∈ C∪{∞}. We denote

by Ef (a) the set of a−points of f counted with its multiplicities. Moreover,

for any nonempty subset S of C ∪ {∞}, set that

Ef (S) =
⋃
a∈S

Ef (a). (3.4)

And then, the subset S is called a unique range set, counting multiplicities

for F if for any f, g ∈ F then

(Ef (S) = Eg(S)) =⇒ (f = g). (3.5)

Thank so much the works of authors in [24] who sent to the important

results about the set of roots of a strong uniqueness polynomial.

Theorem 4. ([24]) Let P (z) be a uniqueness polynomial for L−functions

satisfying that P (z) has no multiple zeros and P (1) ̸= 0. Then the zero set

of P (z) is a unique range set for L−functions, counting multiplicities.

As an immediate consequence of Corollary 5, Theorem 2 and Theorem 4,

we obtain that

Proposition 2. For any s1, . . . , sr ∈ N, the set of roots of the polynomial

As1,...,sr(z) is unique range set, counting multiplicities for L−functions.

3.3. Polyzetas at non-positive integer multiple indices. In the gen-

eral case, for any s1, . . . , sr ∈ C, the polylogarithm at (s1, . . . , sr) is defined

by7

Lis1,...,sr(z) =
∑

n1>...>nr>0

zn1

ns1
1 . . . nsr

r

, |z| < 1 (3.6)

and the polyzeta at (s1, . . . , sr) is defined by [1, 10, 11]:

ζ(s1, . . . , sr) =
∑

n1>...>nr>0

1

ns1
1 . . . nsr

r

. (3.7)

The convergent domain Hr [13, 38] of the series in (3.7) is well-defined as 8

Hr = {(s1, . . . , sr) ∈ Cr | Re(s1) + . . .+Re(sm) > m; ∀m = 1, . . . , r} .

For any (s1, . . . , sr) ∈ Hr, by a theorem of Abel, we get

lim
z→1

Lis1,...,sr(z) = ζ(s1, . . . , sr). (3.8)

7In fact, the polylogarithms are defined on the unit disc |z| < 1 and they are extended
as a meromorphism functions on C by continuation.

8In here, Re(z) is the real part of complex number z.
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However, the equation (3.8) is no more valid in the divergent cases which

require the renormalization of the corresponding divergent polyzetas. This

problem has been studied by Hoang Ngoc Minh [20, 21, 22], L. Gou [18], K.

Matsumoto [13] or D. Manchon [26],...

In this section, we would like to regularize the value of polyzetas at non-

positive integer multi-indices by applying the properties of multiple Eulerian

polynomials. The history is started by the works of Euler when he described

a method of computing values of the zeta function at negative integers9 [17].

The technique used the function

ζ2(k) =
∞∑
n=1

(−1)n−1

nk
= −Lik(−1), ∀k ∈ Z.

This looks not too different from ζ(k), but has the advantage as an alter-

nating series of converging for all positive k. For k > 1,

ζ2(k) = (1− 21−k)ζ(k).

Note that

Li−k(z) =
zAk(z)

(1− z)k+1
, |z| < 1; k ∈ N.

Hence, taking z = −1,

Li−k(−1) = −Ak(−1)

2k+1
,

and then, we obtain that

ζ(−k) =
1

1− 2k+1
ζ2(−k) =

Ak(−1)

2k+1(2k+1 − 1)
,∀k ∈ N.

Like a progression in the method of Euler, we extend the fucntion ζ2 for

the multivariate case. Setting now

ζ2(s1, . . . , sr) :=
∑

n1>n2>...>nr>0

(−1)n1−1

ns1
1 . . . nsr

r

for any r ∈ N∗ and s1, . . . , sr ∈ Z. Then it is easily seen that

ζ2(s1, . . . , sr) = −
∑

n1>n2>...>nr>0

(−1)n1

ns1
1 . . . nsr

r

= −Lis1,...,sr(−1)

9In fact, Euler introduced the Eulerian polynomials in an attempt to evaluate the
Dirichlet eta function at −1,−2, . . . and this led him to conjecture the functional equa-
tion of the eta function (which immediately implies the functional equation of the zeta
function). Recently, this technique was also used by C. S. Ryoo in his works about the
Euler Zeta Function [30].
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for any s1, . . . , sr ∈ Z. In particular, for s1, . . . , sr ∈ N, note that

Li−s1,...,−sr(z) =
zr

(1− z)s1+...+sr+r
As1,...,sr(z),

taking z = −1, we get

ζ2(−s1, . . . ,−sr) = −Li−s1,...,−sr(−1) =
(−1)r+1

2s1+...+sr+r
As1,...,sr(−1). (3.9)

On the other hand, for any s1, . . . , sr ∈ Z, we also get

ζ2(s1, . . . , sr) =
∞∑

n1=1

(−1)n1−1

ns1
1

Hs2,...,sr(n1 − 1).

Hence

ζ(s1, . . . , sr)− ζ2(s1, . . . , sr) =
∞∑

n1=1

2

(2n1)s1
Hs2,...,sr(n1 − 1)

= 21−s1ζ(s1, . . . , sr),

or

ζ(s1, . . . , sr) =
1

1− 21−s1
ζ2(s1, . . . , sr) (3.10)

for any s1, . . . , sr ∈ Z.
From the formulas (3.9) and (3.10), we obtain a formula in the type of

Euler which includes the polyzeta at the non-positive integer multi-indices.

Proposition 3. For any s1, . . . , sr ∈ N and r ∈ N∗, we get

ζ(−s1, . . . ,−sr) =
(−1)r

2s1+...+sr+r(2s1+1 − 1)
As1,...,sr(−1).
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Example 4.

ζ(−1) =
(−1)1

21+1(21+1 − 1)
A1(−1) = − 1

12
,

ζ(−2) =
(−1)1

22+1(22+1 − 1)
A2(−1) = 0,

ζ(−3) =
(−1)1

23+1(23+1 − 1)
A3(−1) =

1

120
,

ζ(−4) =
(−1)1

24+1(24+1 − 1)
A4(−1) = 0,

ζ(−5) =
(−1)1

25+1(25+1 − 1)
A5(−1) = − 1

252
,

ζ(−1,−2) =
(−1)2

21+2+2(21+1 − 1)
A1,2(−1) = − 1

48
,

ζ(−2,−3) =
(−1)2

22+3+2(22+1 − 1)
A2,3(−1) =

1

56
,

ζ(−3,−4) =
(−1)2

23+4+2(23+1 − 1)
A3,4(−1) = − 17

480
,

ζ(−1;−3;−2) =
(−1)3

21+3+2+3(21+1 − 1)
A1,3,2(−1) = − 1

16
,

ζ(−2, 0,−2) =
(−1)3

22+0+2+3(22+1 − 1)
A2,0,2(−1) =

1

112
,

ζ(−2;−2;−2) =
(−1)3

22+2+2+3(22+1 − 1)
A2,2,2(−1) = − 1

32
.
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