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Abstract

We study a rough difference equation on a discrete time set, where the driving Holder rough
path is a realization of a stochastic process. Using a modification of Davie’s approach (Cong
et al. in J. Dyn. Differ. Equ. 34:605-636, 2022) and the discrete sewing lemma, we derive
norm estimates for the discrete solution. In particular, when the discrete time set is regular,
the system generates a discrete random dynamical system. We also generalize a recent result
in Duc and Kloeden (Numerical attractors for rough differential equations, 2021) on the exis-
tence and upper semi-continuity of a global random pullback attractor under the dissipativity
and the linear growth condition for the drift.

Keywords Rough path theory - Rough integrals - Rough differential equations - Rough
difference equations - Random dynamical systems - Random attractors - Stochastic
perturbation - Euler scheme - Numerical random attractors - Random attractor
approximation

1 Introduction
This work aims to provide a systematic approach to study the numerical attractor for the

following rough differential equation

dy, = fOydt + g(y)dx,, yo € R (1.1)

where f, g satisfy certain regularity conditions, and x € CV(R") for v € (%, 1)isav—
Holder continuous realization of a stochastic process that can be lifted into a rough path
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x = (x, X). It is well-known that such an equation can be interpreted and solved by Lyons’
rough path theory [17] or its reformulations [13, 14]. Since the drift f is often unbounded,
the strategy is to solve the pure rough differential equation z = g(z)dx for g of bounded
or linear form, and then use the Doss-Sussmann technique to transform system (1.1) to an
ordinary differential equation and then solve it on each interval of consecutive stopping times
(seee.g. [8, 10, 19] and the references therein). It is often assumed that g is linear or g € Cg
(at least in C>*7 for a certain y € (0, 1)), so that one can prove the existence and uniqueness
of solution as well as its norm estimates on any time interval [0, 7]. When g is neither linear
nor bounded, the solution is proved in [6, 16] to exists upto a stopping time and can blow
after that, thus in general it might not be extended into an arbitrary interval.

The Euler scheme for rough differential equation is first studied under the frame work
of rough path theory for discrete time sets in the classical work of Davie [6] for pure rough
equation and later in [13, 15] (see also recent works in [3]). Roughly speaking, this approach
serves as an alternative to investigate the existence and uniqueness theorem for solution of
(1.1) in which the priori estimates evaluate the solution norm to ensure that the solution do
not blow in finite time, and the discretization scheme as well as its solution norm estimates
are used to support the proof. Another approach in [10] considers the Euler scheme of (1.1)
on a discrete time set [T = {f; };cn defined by

Yty € Rda Yter1 = Y + f(ytk)(tk+l - tk) + Ftk,thr] (y7 X)a for k= 07 1a e (12)

where

)X for Young difference equation
Foi(y,%0) = F, = {gm) g quation , )

8(ys)xs: + Dg(ys)g(ys)Xs,; for rough difference equation.

The solution estimate for the discrete system (1.2) is then studied via a comparison to the
solution of the continuous system (1.1), using a cut-off technique, where it is proved in
[10] that the solution norm of system (1.1) can be estimated for unbounded and one-sided
Lipschitz continuous f, provided its linear growth in the perpendicular direction.

The asymptotic dynamics of system (1.1) is studied under the framework of random
dynamical systems [1], since one can prove (see [2]) that (1.1) generates a continuous random
dynamical system ¢. Under an additional assumption on the dissipativity of f, it is shown
in [7, 10] that ¢ admits a random pullback attractor .A. It is then natural to ask the question
on how one can approximate .4 by a discretization scheme. When the discrete time set IT
is regular, i.e. I1 = I1* = {kA}ien and g is bounded, system (1.2) is proved in [10] to
generates a discrete random dynamical system ¢ which admits a discrete random pullback
attractor A”. The upper semi-continuity of the numerical attractor A% to A as the step size
A tends to zero is only affirmative under the bounded condition of both coefficient functions
f and g.

In this paper, we would like to present a direct approach for studying the discrete system
(1.2), without considering the limiting equation (1.1), the approach is then similar to the
classical one [6] but for the mixed equation (1.1) with the d¢ part. To do that, we impose the
following conditions for the coefficient funtions f and g as follows.

(Hp) f : R? — R is a continuous function of linear growth, i.e. there exists a constant
C¢ > 0 such that

LF DI < Crlyl+1f Ol Vy e RY, (1.4)

where f(0) is the value of f evaluated at the vector 0 € R,

(Hg) regarding to (1.3),
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° (Hg): in Young case, g is in CL(R?, R™) with its derivative bounded by a constant C,
and globally Lipschitz continuous;

° (Hg,): in rough case, g either belongs to C2(R?, £L(R™, R?)) such that it is bounded
together with its derivatives

lglloos Cg := max [IIDglloo, ||D2g||oo] < 00, (1.5)

or it has a linear form g(y) = Cy + g(0), where C € L(R?, L(R™, R?)) such that
ICIl < Cs.

Our main results (Theorems 3.3, 4.2, 5.3) can be summarized as follows.

Theorem 1.1 Under assumptions (Hy), (Hg), there exist polynomials &; (L g Xl p,ripa, 1), 1 =
1,2,3 of Lg Xl p, r1a,b) Such that the solution of the rough difference Eq. (1.2) satisfies

@) 1910, Tfa.b] < ”ya||e$1(Lng”|p,l'[[a<bJ) + Coeéz(Lgll\me,ma,bJ) — Co;
Q) s R p. g b1 < Ulyall + Co)e® EeXlpmias), (1.6)

In case g is bounded, & can be chosen independently of X.

Theorem 1.2 Under the assumptions (Hg), (Hg), assume further the dissipativity condition
for f
e.d>0: (3. fO) <c—dlyl’, VyeR

Consider system (1.2) with the regular time set T1®, where A € (0, 1) satisfies the inequality

1

0<A<1/\i/\—.
2d

2
2C5

Then under the bounded moment condition on TT12, i.e.
ENXOIY npap <00, VkEN, VO <a<b,abell?,

and for Lg small enough (independent of A), the generated discrete random dynamical
system @ of (1.2) admits a random pullback attractor A®. In relation to system (1.1), if

ElIx()I 0y <00, VkeN, VO<a<b

then there exists also a random attractor A for ¢ of (1.1) to which the numeric attractor A®
converges to in the Hausdorf semi-distance, i.e. dg(A®|A) — 0as A — 0, a.s.

Thanks to the fundamental sewing Lemma [ 14] for the discrete time set which is introduced
previously in [6] or recently in [3], we are able to derive, in the first main result, direct
estimates for solution norms of the discrete system (1.2) by using similar techniques in [8]
and by constructing a modified version of greedy sequences of stopping times [4] for the
discrete framework. Note that for the discrete system (1.2), the above assumption on g is
relaxed only a little (g € Cg or of linear form) and can deal with quite general g in the
Young case. Meanwhile, the assumption on linear growth f (though stronger than the one in
[10]) helps estimate the supremum norm || (¥)lloc by C¢llyll, and make the construction
of stopping times extend to infinity, and eventually yields a p-variation norm estimate of the
discrete solution dependent on only global parameters C s, L.

The discrete sewing lemma also plays the most important role in the second main result
by showing the uniform boundedness of the numerical pullback absorbing set w.r.t. the time
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step A, which leads to the upper semi-continuity of the numerical attractor. This is the
advancement of our techniques compared to the previous ones in [10], where the pullback
absorbing set can be very large as A tends to zero (even with g bounded), thus one also needs
£ to be bounded in order to obtain the upper semi-continuity for A®. Our results also hold
for rough equation (1.1) with lower regularity of the driving path x, in that case F in (1.3)
should be modified and complexity in technical details should also be expected.

2 Discrete Framework

2.1 Discrete Settings

Since we investigate discrete approximation of solutions of rough differential equations on
[0, T'], we will have to deal with discrete functions on [0, 7']: functions defined on a finite set
of points of [0, T']. In this subsection we present some basic notions of discrete functions.

Let[a, b]beaclosedinterval of R,and 1 ={t; : 0 <i <n,a=fy<tj <---<t, =b}
be an arbitrary (finite) set of points of [a, b]. Since IT actually makes a partition of [, b] into
U?;Ol [#, ti+1] = [a, b], with an abuse of language we sometimes call IT a (finite) partition of
[a, b]. The number |I1] := maxo<;<p—1(ti+1 — #;) > 0 is called mesh of the finite partition
I1. By a discrete function defined on [, wemeanamap y : I — B, Il >t — y, € B
on a normed space B. For discrete functions we introduce various norms which are natural
discrete versions of the continuous ones. Namely,

sup |z II;

rell

r—1 /p
Iyl = sup (Z Iy = iz, I ) ;
<t¥, r<n

t7ell, 0<i<r, t5<t{--

ylloo,mm :

IYIpm = 1yall + Il -

Clearly | - lloo,rm and || - || ,, i1 are norms on the space of discrete function determined on IT,
whereas |||l ,, iy is a semi-norm.
For a discrete function F on ATl := {(s,¢) € 12 : s < t}, we also define discrete

supremum and p-variation norm by

IFN,n

r—1 1/p
sup Z |Fti*’ti*+l ¥ ’
tr, r<n

t7ell, 0<i<r, 5 <tf.. i=0

[Flloom == sup [[Fs|l.

a<s<t<b
The notion of a control function also has its discrete counterpart.

Definition 2.1 A non negative function w defined on AIT := {(s, 1) € I1%|s < t} is called a
discrete control function on IT if it vanishes on the diagonal, i.e. ws s = 0, Vs € II, and is
superadditive, i.e. forall s <u <t in Il

Wy oy + Wy < Wt

As an example, if F vanishes on the diagonal of I1, ws ; := || F 4 ,(s,1) € All is a

q.I[s,t]
discrete control. If w is a discrete control on [a, b] and |y, — y;| < a)tk/ for all 7z, t; € T,
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p > 1then

1/p
Wyl p. mpa,e) < @4 -

Furthermore, if y. is a continuous function of bounded p-variation on [a, b], and I1[a, b] is
a finite partition of [a, b] then the function y restricted on I1[a, b] is a discrete function and
we have the following relation between continuous and discrete norms of y:

I¥lloo,mia,b] < 1Y lloo,ta,b1s MY p, a6l = 11 po1a,b1-

The notion of discrete function and discrete control function can be easily generalized for
the case of arbitrary (not necessarily finite) subset I1 C [a, b].

2.2 Discrete Rough Paths

For given [a, b] and II a (finite) discrete time set in [a, b] as above, let x. : TT — R? and
X(-, ) : IT? — R?*4 pe discrete functions defined on IT and IT? respectively. One then says
that x can be lifted to a discrete rough path x = (x, X) if it satisfies Chen’s relation

Xor = Xsu =Xy = X540 @Xuy, S=<u=st; s,utell 2.1

One can then furnish x with a semi-norm

2 1/p
I rta1 = (W05, gy + WXUE3 ) - 2.2)
Denote by T2(R?) = ROR? & (RY @ RY) the truncated step-2 tensor algebra, then T2(RY)
is a Banach space with the norm |w| := max—o,1,2 [|77x (w) || where || ()| is the Euclidean

norm on (R?)®*. Define le (R?) = {w e T2(R?) : mo(w) = 1} together with a e operator
(Lg'e?) - (LA W)= (Lg' +h' @+ +¢ ' ®@n'), 23)

foranyg = (1, g', g%), h = (1, h', h?). Then (T2 (R?), -) is a group with the identity element
1 = (1, 0,0), and each element g has its inverse element g~! = (1, —g!, —g% — g' @ gh).
In addition, for a rough path x one can easily check from Chen’s relation (2.1) that

(1, Xs,u» Xs,u) - (1, Xu,t» Xu,t) = (1, Xs,ts XS,I)v Vs <u<=t; s,utell

Also, one can view x; = (1, x¢;, Xo,;) as a map from IT to T12 (]Rd).

2.3 Discrete Sewing Lemma

In this section we fix [a, b] and a finite partition [1 = {; : 0 <i <n,a=t <t) < ... <
t, = b} on [a, b]. The following lemma is the main result of this section. It is actually an
algebraic result and provides us with an effective tool for investigation of discretized rough
differential equations. For a version of Holder norm, see [15].

Lemma 2.2 (Discrete sewing Lemma) Let [1 = {t;, : 0 <i <n,a=1t <t < --- <
t, = b} be a finite partition of [a, b] and F be an function defined on ATl, vanished on the
diagonal, i.e. Fy s = 0,Vs € I1. Put

(SF)‘v,u,t = Fs,t - Fv,u —ryys, S=SUSUt s, U, te IT,
Iy = Z th,th —Fyy, <t ell

k<j<l-1
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Assume that for a discrete control w on Il and a number ). > 1 we have foralls <u <t in
I1 the following inequality

IS F)suill < @}, (2.4)
Then there exists a constant K > 0 depending only on \ such that

il < Kaojr o Vi <t €11 (2.5
Proof Seee.g. [3]. O

Corollary23 LetTI ={t; :0<i <n,a=1ty <t <--- <t, = b} be a finite partition of
[a, b] and F be an function defined on AIl, vanished on the diagonal, i.e. Fs ; = 0, Vs € IT.
Put

(8F)s,u,t = Fs,t - Fs,u — Iy, S=U=t;s,utec IT,

Iy = Z th,[j+] — Py, <t ell
k<j<l—1

Assume that for a finite set S of discrete controls w on Il and a number . > 1 we have for
all s < u < tin Il the following inequality

I F)suill <) )y (2.6)

weS

Then there exists a constant K > 0 depending only on A such that

Ml <KDY e, Yi<nell 2.7)

weS

Proof Since A > 1, observe from (2.6) that

A
NPl < D0, < (Z w) :

weS weS

The proof then follows directly from Lemma 2.2 and Jensen inequality that

A
r—1 A
il < K (Z w) < K[| (Z w,k,,,> :

weS weS

m}

Corollary2.4 LetTI ={t; :0<i <n,a=1ty <t <--- <t, = b} be a finite partition of
[a, b]. Consider a discrete system defined on T1

Yo =Y+ Fra €. Y=y €RY j=01,....n—1, (2.8)

where F : T12 — R4 ¢ : 112 — RY. Assume that

(i) There exists a discrete control w such that (2.4) is satisfied for F;

(ii) There exists a discrete control function o© such that |e,j,,j+1 | < Wy,
Then there exists a constant K > 0 such that for any r > 1

0
13U s < Ky + WF N iga.) + @4 - 2.9)
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Proof For any pair #x < #; € Il we have

- -1

1
H Yo = Y ” = Yijotjrn || = Z (F’j”j+l + 6’/”1“)
=k j=k
-1 -1
=< Zth,thrl + Zef_jslj+l
j=k j=k
0)
< Mrall + 1 Fy | + oy -
Therefore,
A (0)
||y:k — Yy I < thk,z, + ”kaJZ I+ Dpe1p>
which proves (2.9). .

2.4 Discrete Greedy Sequence of Times

The original idea of a greedy sequence of times was introduced in [4, Definition 4.7] for the
continuous time scale. In this paper, given a finite sequence of controls w.. € S associated
with parameters B, € (0, 1], we would like to construct a version of greedy sequence of
times {t,,} for the discrete time scale.

Let[a, b] C Rbeaclosedinterval of R, and I1[a, b] ={t; :0 <i <n,a=ty <t} < -+ <
t, = b} be an arbitrary finite partition of [a, b]. Given a fixed y > 0, assign the starting time
79 = a. For each m € N, assume 7,, = f; is determined. Then one can define 7,41 by the
following rule:

o if) s wﬁ(ﬂ”,ﬂl > y then set T4 1= fxy1;
o clse set 7,41 :=sup{yy € (&, b] 1 ) ,cs wi(ftl <yh

Define N(y, [a, b]) to be the number of times t,, in [a, b]. From the definition,

Bo

w'fmqu+2 =V
weS

By taking both sides to the power of % where B := min{B, : v € S} < 1, and using the
Jensen’s inequality, one obtains

1

1 4 1_ %)
yF < (Z w?,f,’,rm+2> <(S|+1)F! (waf,,rmﬂ). (2.10)

weS weS

As a result, taking the sum of both sides of (2.10) as m going from O to N(y, [a, b]) — 3
(whenever N(y, [a, b]) > 3) and using the fact that all elements in the square brackets of
(2.10) are controls, one obtains

' N(y,la,b])-3 L Bo
NG [a.bD) —2lyF < > (S|+ 1P~ (Zwri,w>
m=0 weS
1 %
<(SI+ D7 > 20,

weS
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Hence, N (y, [a, b]) can be estimated as

Bw
N(y. la, b)) <2+—(|S|+1)F“ > o), (2.11)
vP weS
Example2.5 e For Young equations, one considers u) = Cy(t —s) w1th p1 = 1 and
o = LL XD gy, with 2 = £ and § = {00, a)<2>}. Then f = -+ and (2.11) has
the form
N(y.[a.b]) <2+ 2301 [c”(b —a)? + L |x||? ] (2.12)
v, la, yP f p.1la,b] :

e For rough equations, one consider S = {0V, 0®, ©®}, wglt) =t—ys,6 =1, a)@ =
3
LENN) ey B2 = 5 and o) = LENKNE 0 B3 = 3 = 2. Then B = 1 and
(2.11) has the form
2 p=1| P p 4
Ny, [a.b) <2+ 24 [CPb =@ + LE W g0y + LENKNE i |
(2.13)

3 Discrete Rough Systems and Solution Estimates

We consider the discrete system (1.2) on IT driven by a discrete rough path x. Our first
observation is that F satisfies the assumption of the discrete sewing Lemma 2.3, namely:

o If Fy; = g(ys)xs, then by assigning L, := C, one obtains
18 Fsuell < Collys,ullliXu,ell < Lg Wyl s,y NN p,rigs, e - (3.1
o If Fy = g(y)xs,s + Dg(y5)8g(v5)Xs, where g € C7 or g(y) = Cy + g(0) then a direct
computation shows that
1
OF)gu,r = |:_/ Dg(ys + 1nys,u)(€(Ys)Xs,u + Rs u)dn] Xu,t
0

+Dg(ys)8(¥s)Xs,u @ Xu,r + [Dg(ys)&(ys) — Dg(yu) 8 i) 1Kz
From the assumption (Hg), Dg(y.)g(y.) is globally Lipschitz continuous with constant

L§ given by
L {,/C§+cg||g||oo if ge
=

Cg if g(y) =Cy+g(0).
Define
Rf,t = Y5t — 8(¥s)Xsyp, 5,1 € I
As a result, it is easy to check that for a generic constant K > 0
IO F)suill < Lol RSl + LENYs.al N, ® Xl + 1%Kue 1)
< Lol Rl Il + Ll ll (s — Koo = X |+ 1Ke e 1)

2
< K(Lg IR, rags.o W6l mups.r + Lig I3l gy 1K g, rags. )
(3.2)
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A

Remark3.1 1t is easy to check that (Iyll, e Wl ms ) for 1 = p < 2, and

, p p
(MR Mg, rigs,n WX W rigs,e) 3 and (YW rgs, g 1XMlg, migs,i7) 3 for 2 < p < 3, are control func-
tions. Hence from now on, we can write symbolically wi‘”, (8§ F) to indicate the right hand
side of (3.1) or (3.2), where Ap = % forl <p<2andip = % for2 < p < 3.

Introduce the norm
1 B ris ot = 13l + W9l + R Il g S < 1
One needs a technical estimates for p-variation norms.

Lemma 3.2 Let {7;}; C I1 be an sub partition of |a, b]. The following estimates hold

i=0,m
m—1
Iyl <m'7 Z Yl . g g1
= m—1 m—1 (33)
|||Ry mq,n = (2m)q7l (Z |||RyH|q,l'[[rk,rk+l] + Cgm% Wil p, Z |||y"|l7’n[fks77k+l]> :
k=0 k=0

Proof The first estimate is simpler, thus it is enough to prove the second estimate. Observe
that

IR sl < Collysullllxuell = 1Ry < RSl + 1Ry Nl + Collys.ullllxucll, Vs
<u<t. 3.4

A

Now given any finite partition IT* C IT of [a, b], there exists a subsequence 7; < --- < T,
of {7;}{", in the interval [s, f] for every consecutive points s, # of IT*. Then one can apply
(3.4) to obtain

1R 1< IR 4+ RS, + IR 1+ Co el g (Il + -+ + 1y all)-

As a result, one can use the fact that ||RY||? 4,15, 1] and |||y||| . Tl[s,e] A€ controls and apply
Jensen’s inequality to obtain
1 1
q ol q
SR = em T LY (IR + IR o, 17+ + IR 1)

s,tell* s, tell*

q

+Co | D0 Ml ey (s, 19 + -+ lyeg o 19)

s, tell*

q-1
<@m) e > (||R all IR N9+ +\|Rm||q)
s, tell*
P P
+Co | Do mIxl] D (s ll? 4+ lye.l1”)
s, tell* s, tell*
m—1 i m—1 %
<em' (Z lI=* Ilqn[ri,zf+l]>) +Cmp||x",,n(z (o] [ )
=0
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1 m—1 , 1 m—1
=T ISR N g + Com? Wl D2 U6l nir i {
k=0 k=0

Our first main result in this section is formulated as follows.

Theorem 3.3 There exist polynomials &; (L4 Xl 1ga,51), & = 1,2, 3 of Lg Xl . 1114, SUCh
that the solution of the rough difference equation (1.2) satisfies

@, 17 lloe Mfab] < ”ya||e§l(Lg\||X|||p,ma,hJ) + Coeéz(Lg\l\X\l\p,nme) — Co;
(i), 1y, R p,miga b1 < (lyall 4+ Co)e® FelXlpmiasy,

In case g is bounded, & can be chosen independently of x.

(3.5)

Proof Starting from (1.2) for two consecutive moments f, # it follows from the discrete
sewing lemma that

s = Feal 10 D0 Yo — Fodll

Iy te1 €10 [s,1]

A

< ) WG =+ Y Fyu — Fodll
t te1 €T1[s,1] t g1 €10 [s,2]
A
< 1 fWlloo,mis.ny(t = 8) + Kol GF),

where wf‘f (6 F) is mentioned in Remark 3.1. As a result,

Iy = Fllp e < 1 O loo, 5.1t = 5) + Kol 5F). (3.6)

First, we consider the Young difference equation, i.e. Fy; = g(ys)Xs,; and Ly = Cy. It then
follows from (3.1) and (3.6) that there exists generic constants K and Cp such that

Iyl p. mgs.y = 1f D oo, migs.1 (2 = 8) + 18D oo, rigs.r1 1M . mgs. )
FKLg Iyl rugs.y 1M, rags, e
= (Crlylloo,nps.y + 1FOIDE —9)
+ (Lgllylloomps.e1 + 18OV D Wxl p raps,ey + K Lg Nyl rags. 1M 1151

= K[Cyt =)+ Lo Ixlly ey (¥l pomis.r + Co). (3.7)

IfCp(t—s)+Lg |||x|||pyl-[[37,] < ﬁ then by taking the term containing |”y|"p,l'l[s,t] to the
left hand side, it follows from (3.7) that

IVl e = K[ €t = 9) + Lo Wiy |1yl + Col
and then
Iyllp. s, + Co < lysll + Co+ Myl . rgs, o
< {1+ K[Cre =) + Lo Wl e |} U1+ Col

cf<t_s>+Lgmxmp,ms.n]

{
< [llysll + Cole (3.8)

This motivates us to construct, by using the construction in Sect.2.4 for the controls
wilt) = Cy(t —s) with B = 1 and a)?,) = Lg |||x|||£ Mis.1] with 8, = %, the greedy sequence
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of times t,, = {7, (v, [a, b])} for the discrete time set IT on [a, b] where y is some positive
constant less than ﬁ To estimate the solution norm, observe that on each [z, T;;+1] such

that Cr (Tm+1 — ) + Lg 1% e, tin] < ﬁ, one obtains
Y21 I + Co < I¥lloo. M, tms11 + Co
||y||pvn[fmsfm+ll + CO
exp | K[ Cr(@nrt = ) + Lo Il ey a1 || (192, 14 Co).
3.9)

IA

IA

Meanwhile, if C ¢ (Ty+1 — Tm) + Lg 1%l . 11z, 70501) > ¥ (henCe Ty, Tip1 are two consec-
utive discrete times in IT ) then it follows from (1.2) that

15l + Co = Co+ ey |l + 156, 1| C Emst = ) + Lyl g ]
+ Co[ €y (mit = ) + Lyl¥ay, 00 1]

< (14 €yt = ) + Ll g ) U1y, | + Co)
< exXp(Cy (Tms1 — ) + Lgllwe, e Nlye, [+ Co) - (3.10)
Combining (3.9) and (3.10) yields, forallm =0, ..., N(y, [a, b]) — 1,

”)/”p.l'l[r,,,,rmﬂ] + CO < exp {K [Cf(Tm+1 - Tm) + Lg \||x|\|p,n[zm,r,,,+1]]} (Hy'rm “ + CO)
< exp | K [Cr @it = )+ LE K] gy + 1] 0y, + €0 Bi1D)

Note that ||x |||§ L is a control, hence one can prove by induction from (3.11) that

s,t]

I loe.nta) + Co < exp [K [Crb—a) + L Wl ) + N T D] Fdlyall + Co),
N(y.la.b)—1
p=1
Iyllp.11ta.61 + Co < Iyall + Co+ Nola, bD 7 >~ Wyl migen o]

m=0
2p-1
< NG Lab) 7 x
xexp [K [y — @)+ LE Al gy + N T, 0D Flyall + Co),
(3.12)

which, together with (2.12), proves (3.5).
Next, consider the rough difference equationi.e. Fy; = g(ys)xs,; + Dg(ys)g(¥s) X ; then
it follows from (3.2) and (3.6) that for generic constants K > 1, Co > 0

Iyl mags.) < (Crlylloomsa) + Co)t =) + (Lgllylloonis.) + Co)Ux s,
+Lg 1Ky, s, )
K (|62 RO sy L el gt + L3 1Ky, rugs.)

IR r1ps.ey = (CrlYllow,miis. 1 + Co)(t = ) + (Lgllylloo, s, + Co) L Xl s,
+K |6 RO rugsy Lo 6.y + L 1Ky, rags )

it follows from the assumptions of f and g that

s RO p.1s.1 + Co < Nlysll + Co + K[Cf(l —8) + Lg llxll . migs.o)
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+L2 KNy, g (16 R i + Co). (3.13)

That motivates to construct the sequence of times {z,, (y, [a, b])}, for y < ﬁ S =
1 2 3

00, 0@, 09}, o) =t —5,p = Lo = LLIID 0B = 5 and off) =

Lg |||X|||Z’H[S,t] , B3 = 1 The arguments are now similar to the rest of the Young case, with
note of inequalities (2.13) and (3.3).

Finally, in case g is bounded, one can neglect L, in (3.9) and the first line of the estimate
(3.10) and repeat the above argument to obtain similar estimate in which &; just depends on
b—a. m]

4 Discrete Random Dynamical Systems and Attractors
4.1 Discrete Rough Cocyles and Random Dynamical Systems

The generation of random dynamical systems from rough systems is studied in [2, 7] for the
continuous time, and in [10] for the discrete time. In this section, we rephrase the construction
for a general discrete time setting. Given p € (0, 3) and a regular discrete time set [T4 =
{kA : k € Z}, denote by C(’;(HA, Tf(R’")) the space of all paths g : nd — le(R’”)). Then
C{; (e, le (R™)) is equipped with the compact open topology given by the p— variation
norm (2.2), i.e the topology generated by the metric

1
dy (g0 = (g —hllpniaxa AD.
k>1

As a result, it is separable and thus a Polish space.

Let us consider a stochastic process X defined on a probability space (2, F, P) with
realizations in (C’é7 (12, le(Rm)), F). Assume further that X has stationary increments.
Assign Q := C{(IT*, TZ(R™)) and equip it with the Borel o - algebra 7 and let P be the
law of X. Denote by 6 the Wiener-type shift

Orw). =" ., ¥t e % el (A, THR™)), (4.1)

and define the so-called diagonal process X : M x Q - TIQ(R’"), X;(w) = w; for all
t € TT®, w € Q. Due to the stationarity of X, it can be proved that 6 is invariant under PP,
then forming a discrete (and thus measurable) dynamical system on (€2, F, P) [2, Theorem
5]. Moreover, X forms an p— rough path cocycle, namely, X.(w) € Cg (4, T]2 (R™)) for
every w € 2, which satisfies the cocyle relation:

Xi45(@) = X, (@) - X, (6,0), Vo € Q, 1,5 € TT®,

in the sense that X s4; = X;(f;w) with the increment notation X; s4; 1= XS_1 - Xs4¢- In
particular, the Wiener shift (4.1) implies that

X @)l . r1ps.0) = WX@) . r1gst 4y Vs, 2, b€ TIA (4.2)

Define the discrete mapping HAX)y =y + f(O)A + Fo,a(y, x). Similar to [10], we can
easily prove that the discrete Euler scheme (1.2) generates a discrete random dynamical
system @2 : T2 x Q x R? — R< over (2, F, P, 0) such that

920, w)yo = y0, 92 (kA, ®)yo := H*Bp—1yp) o --- 0 H>(w)yo, Vk > 1. (4.3)

Throughout this paper, we assume that 6 is an ergodic dynamical system.
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4.2 Random Attractors

Given a random dynamical system ¢ on the phase space R¢, we follow [1, Chapter 9] and the
references therein) to present the notion of random pullback attractors. Roughly speaking,
an invariant random compact set A € D is called a pullback attractor in D, if A attracts any
closed random set D € D in the pullback sense, i.e.

lim d (p(t,0-,0) D(O_0)| A@)) =0, 4.4)

where dy (+|) is the Hausdorff semi-distance, i.e. dy (D|A) = sup,cp infuca |ld —al|. The
existence of a pullback attractor follows from the existence of a pullback absorbing set (see
[10] and the references therein), namely a random set B € D is called pullback absorbing
in the universe D if B absorbs all closed random sets in D, i.e. for any closed random set
De D, there exists a time ty = ty(w, ﬁ) such that

o(t, 6_;0)D(6_,w) C B(w), forall t > 1. 4.5)

Then given the universe D and a compact pullback absorbing set B € D, there exists a
unique pullback attractor A(w) in D, given by

A) =[0G, 0-s0)BO_sw). (4.6)

1>05>1
We quote the following result from [5, Lemma 5.2].

Lemma4.1 (i) Leta : Q — [0, 00) be a random variable, log(1 + a(-)) € L' and a =
Elog(l+a()) = fQ log(1 4+ a(-))dP. Let A > a be an arbitrary fixed positive number.
Put

[e9) k—1
b(x) =Y e[ [ +a@-ix)).

k=1 i=0

Then b(-) is a nonnegative almost everywhere finite and tempered random variable.
(ii) Letc : Q — [0, 00) be a tempered random variable, and § > 0 be an arbitrary fixed
positive number. Put

o
d(x):=Y e e 4x).
k=1
Then d(-) is a nonnegative almost everywhere finite and tempered random variable.
Now we assume further that f is dissipative: there exist ¢, d > 0 so that for all y € R?,
(v, f)) < c—dllyl*. 47
In addition, assume the p-variation norm of x is of finite moment for all order k € N, i.e.
E |||x(-)|||’1‘,’1-“a‘bJ <00, VkeN, VO<a<b, a,bell. (4.8)

It is proved in [10] that the discrete system (1.2), with g bounded and for the regular step
size A small enough, admits a discrete pullback attractor .A%. Thanks to the discrete sewing
lemma, we can now prove a more general result for discrete system (1.2), which is formulated
as follows.
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Theorem 4.2 Assume (Hg), (Hg) and the dissipativity condition (4.7) and condition (4.8).
Consider system (1.2) with the regular time set TI®, where A € (0, 1) satisfies the inequality

d 1
0<A<lA—A—. 4.9)
2c; 2d

Then for Lg small enough, the generated discrete random dynamical system 0® of (1.2)
admits a random pullback attractor A®.

Proof Given A € (0, 1) small enough, one introduces n € N such that 7 := nA <1 <
(n+1)A. First, one applies the Lyapunov function ||y ||? into (1.2) and uses Cauchy-Schwarz
inequality to obtain for fxy = kA, k=0,...,(n — 1)
15 17 = 1317 + 200 FOOVA + 1 Q)17 A + 203y, Fyny)
+2(f On)s Fieni DA + 1 Fre 112
< yal? +2(c = dllyg IHA +2CHIyg I + I F O A + 20y, Fygy)
+ 20 f O lloo. 10711 F lloo. 10,714 + | Fiy iy 117
< Iy P01 = 2dA +2CFA%) + K(A + A%) + 2] f D) lloo, 110711 F lloo, 110,714
+ 21 Froner) + 1 Fyonn I (4.10)

It follows from (4.9) that 0 < 1 — 2d A + 2c§.A2 < 1—dA < e 2 Then (4.10) leads to,
for a generic constant K > 1, the following estimate

I 1 < e 2 Ny 17 + [200s Fronn) + I Fie 1I7]
KA 41| f D loo, o, 7111 F ll oo, 10, 71) -

Assign Gy ; := 2(ys, Fs.¢) + | Fs.r ||2. By induction one can prove that

Iy, 112
< e yol2 + KA (1411 F D) lloo,rig0, 7111 F lloo, 110,71

n—1 n—1
(Ze—d(n—k)A> + Ze_d(tn_tk)ctk,kar]
k=0

k=0
n—1

1 —d(t —
T KA+ 1 Dlleono i Fllooto.r1) + e Gy g

< e Tyol* + .
k=0

n—1

< e Tlyol* + K (1+11f 0 lloo,mio. 711 Flloo.mo,71) + Y e @™ Gy gy (4.11)
k=0

Let us estimate the third term in the right hand side of (4.11). Define Gm =4 (’"_S)GM.
Observe that

G s uell < (€79 — =AW= G || + e ™| (8G )5,
< (t = )IGlloomigs,r1 + 168G s

< (¢ = I Flloe.nt5.1 (213 loe. 0,71 + 1 Fllow, o, )
F1@G)susll, 0Oss <u<t =T
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where the first term has the form of a control w.r.t. a suitable A > 1. The second term is
estimated as follows

16G) sl = 200 Fo = Fo) = 20 Fus)
+ 2 Fos Fug) + 2(Fyu + Futs G} + [P

=< Hz(ysa 8Fs ut) — Ys,u — Fsus Fuy) + (Fsp + Fsu + Fuy OF )gur)

< HZ(YS, (fSF)x,u,t) - <yx,u - Fs,u» Fu,t)

+ 3 Flloo, 110, 71 NS F ) gt

IA

||(5F)s,u,t||(2||y||oo,n[0,T] + 3||F||oo,n[0,T]> + 20 ys.u — Foulll Flloo, mfs,1]
wi\I; (5F)<2||y||oo,n[o,T] + 3||F||oo,1'[[0,T]>

+2(If Wlloe. 10,11t = ) + Kl F GF) )1 Fllow, o, 1)

where the last inequality is due to the discrete sewing lemma to estimate ys , — Fj , (see also
(3.6)). As aresult, §Gy ¢ is bounded by a control up to a power Az with

IA

5 06) = (¢ = DN F o ts.1 (213 loe.mi0.71 + | Flloomo. 1)
+ @5 6P (21¥loe.mo.11 + 31 Flloe, 0.7
+2(If Ol n0.11¢ = ) + Kk 6F)) I Fllo 5.1
< K =9I Fllootsn (1 loomo.71 + 1 Fllos o7y + 1)

+ K OF) (I3 loo,mo.71 + I Flloe, o1 ). *.12)

Therefore, by applying the discrete sewing lemma to (4.11), one obtains, for a generic
constant K

_ _ Ag ~
Iyl < e lyoll® + K (14 1f D lloo.ni0. 711 F lloo.mmi0.71) + ¢~ Go.r + K% (8G)

< e 0ll? + K1+ (¥l 110,71 + Co) I Flloe, 00,71 + 1 F I ro 71

A

A

+ Kl OF) (I3 loo,mo.71 + I Flloe, o1 ). “.13)

Taking into account Remark 3.1 and by replacing w?’; (6§ F) by the right hand side of (3.1) or
(3.2), then using the estimates (3.5) in Theorem 3.3, and the estimate

1 Flloo,migs.e1 < (Lgllylloo,mrs.e1 + Co) XMl rgs, o7

one concludes that there exists generic constants Co > 0, a generic polynomial &1, and a
random variable & of the form & (z) = 2, z € RT for some (fractional order) m > p such
that (4.12) has the form

el < €7 (14 Lga (il mpo, pe Es¥lrmor ) 2
+ Co1 (IXll . rrgo. 7)€ LMoy (4.14)

One now applies the inequality log(1 4+ pe’) < uw+v,Yu, v € R, v > 0, to obtain

tog (14 Ly&1(Ixll, mo rpe®H o)
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< L& (Ixll.mpo.7p) + &2(Lg Il p.rago.7p) € L' (4.15)

Hence, one can choose L, small enough such that

LEE (IxO p. o, 71) + E&2(Lg IXOlp, mpo,77) < dT. (4.16)

Similarly to [5], one can use (4.14), (4.15_ ) together with Lemma 4.1 to prove that there exists
an absorbing set of the form B2 (w) = B(0, R* (x(w))), where

RAx) =1+ COZe_diA(x, TI[—kT,
k>1

k
—(k—=1DT]) 1_[(1 + LA, [—-iT, -G — 1T])) 4.17)

i=1

with T = nA and A(x, I[a, b]) = &; (|||x|||p,n[u,b])e&“g""‘"‘P-“[“vbl). Due to (4.6), there exists
a random pullback attractor A2 (w) which is contained in B2 (w). O

Remark 4.3 Note that condition (4.16) should be tested on the discrete time set IT2, it is
natural to think that the choice of L, depends on A. However, it is not always the case.
Indeed, in case x is induced on IT by a continuous stochastic process X;,t € R which
has almost all realizations of v-Holder continuity for v € (%, 1). Then each realization x
can be lifted to a continuous rough path x, and the probability space can be constructed
by using arguments in [2] (see also [7] or [10]). In that case, by fixing a positive number
Ag < 1A %%_ A i, condition (4.16) is satisfied if the following criterion holds

LeEE XN p,r0,17) + E&E2(Lg Xl p.10,17) < d(1 — Ag) (4.18)

forall A € (0, Ag)sincel > T =nA >1— A > 1— Agp. Condition (4.18) shows that L,
is actually chosen independently of A.

5 Semi-continuity of Numerical Attractors

In this section we consider the following stochastic differential equation
d3i = f(dt + g(30dX,. Ja € R, 1 € [a, b] (5.1)

where f, g satisfy conditions (Hy), (Hg) and X is a stochastic process such that it can be
lifted to a stationary increment process (x.(w), X. .(w)) of which all realizations x = (x, X)
are - Holder rough paths for « € (1/3, 1/2] (examples of such processes can be found in
[12, Chapter 10]). This allows us to write (5.1) in the pathwise sense, i.e. for each realized
rough path x

t t
V1 =Ja +/ fGds +/ g(¥s)dxg, t€la,b]
a a

in which the second integral is understood as rough integral (see [14]).
It is proved in [10] that there exists a unique solution (¢, X, y,),t € [a, b] to (5.1).
Moreover, one can use similar estimates to Theorem 3.3 to prove that: there exists a generic
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integrable random variable §(x) such that for0 <a < b

19110, 1a,p) < (Iyall + DEX, [a, b])
W ey = (yall + DE Ta, bDB = a+ lxllppas + 1Elgwe) (52

y
&7, .y = el + Déx 0 bDG — a1 ).

We define the numerical solution by the Euler scheme (1.2) with y, = ¥, and raise the
question on the convergence of numerical solution defined in (1.2) to z. This problem is
solved in [6, 15] for instant, also in [10] with the cut-off technique. Below we will present a
direct proof using the discrete sewing Lemma 2.2.

Proposition 5.1 If in additional to (Hy), (Hg), f and D2g are locally Lipchitz, then there
exists a generic random variable é (Ya» X, [a, b]) such that the following estimate holds

sup 19 (tk, Yas ¥) — vi, | < G, X, [a, b (|T[a, b

0<k<m
3_
Il g pn o)’ (b =@+ IXID ) - 53)
In particular,

lim su y(tis Ya, X) — =0. 5.4
m[a’b]HOOSkgm 3 s Yar X) = ya |l 54

Proof We only prove the rough case which is more difficult. Firstly, by (3.5), (5.2) one can
bound y, ¥ by a generic constant K = K (3,, X, [a, b]) depends on y,, X, [a, b] and consider
f, D?g Lipchitz global with constant K for convenience.

Define h; = y; — J; for all ¢ € I1[a, b]. Then h, = 0 and

htk,1k+1 = [f(htk + )A)tk) - f(}’;lk)](tk+l - [k) + [g(hlk + )’}tk) - g()’}l‘k)]xtk,tprl
+ [Dg(htk + j}tk )g(hik + )A)tk) - Dg(j}l‘k)g(j\)tk )]ka,tk-H + etk,tk_H
= [f(htk + _9[1() - f(j}tk)](tk-ﬂ—l - tk) + Ftk,tk_H + Clr tkt1 o

where

o ey | < wy 1y, With control function w of the form

ws,r = K(|M[a, b]| + "|X"|p,[a,b],|l’l[a,b]\)3_pK [f —s+ |||X|||Z’[S,t]] , s <t

in which K is a generic constant K = K (y,, X, [a, b]).
o Fyr=I[8(ys)xs.e + Dg(ys)g(ys)Xs 1] — [g(Vs)xs.r + Dg(Fs5)g (95) X1 ]

Put
Rl = hyy — [g(hs + 30) — 89s) ] Xsrn (5.1) € [a.bl.s <1t.
A direct computation shows that: fors < u <t in [a, D]
I F)s el
< | (3G + ) — 86 — Gy + ) + Gy

— (D8 +h)g (s +hy) = Dg (g () ks ) @ s
+11Dg G+ hi)g (G + hu) = Dg(Gug ()
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—Dg(Js + hs)g()A’s + hy) + Dg()/\’s)g(ys)””Xu,”L

Due to the assumption (Hy), it is easy to show that Dg(y)g(y) is Lipschitz continuous with
the Lipschitz constant K L, for a generic constant K > 0, thus the second term in the above
inequality can be estimated as

”Dg(j}u + hu)g()’}u + hy) — Dg(j}u)g()’;u) - Dg()’}s + hs)g()’}s + hy) + Dg(),\’s)g()’}s)””Xu,I“
= KLg(”hx,u” + ||h||oo,[s,u]||)A’s,u||)||Xu,t||

< KL [0l mis. + Weloo, st (5 s+ W90 1ge) | 10 g

Meanwhile, the first term has the form || M ® x, ;|| where it can be shown that

1
19 @ sl = | [ (DG e+ 1+ hea) G + ) = DG+ ncadis )i
0

_[Dg()A’s + hs)g()?s + hy) — Dg(}A’s)g(ﬁx)]xs,u ”xu,t I

Lo (IRY Il + IWlloo, 1gs. 1| RS e D 1xu 1

IA

1
+H [) (Dg(§7S + hg + n(j’s.u +hs$u))g()’>y + hg) — Dg(j/s + nj’s,u)g()’}s)

—~Dg(s + gy + h) + D30 ) |15 @ x|

IA

Lo (IR I+ Ihlloo, ugs, i RS 1) 1%u I

1
+/ [ (D + s+ nGs + o)) = Dg G+ i )G + o)
0

—(Dg Gy + n3sa) = D)8 Gy

Lo(IRE M+ 17 oot 11 RS D ki e 4+ K Ll 115,00 @ X

bl @ ]

IA

1 1
+/ {H / [ng(ﬁs + hs + k05050 ® 8P + hy)
0 0

DG + k03T ® 8(30)|die | fdnllxs.u @ xul
Lg(HR?,u I+ ”h”oo,l'[[x,l]”Rs)‘l,u D11, Il + KLg”hs,u” [125,00 @ Xu,x |l

IA

1 1
+/ { / H (ng(ys + hs + Krlj\’s,u) - ng()A’s + KT]}%,u))’])A’s,u ® g()/\’s + hy)
0 0

+D2 Gy + s anTsa ® (3Gs + hs) — 8G0)) i Jdnlveu @ xul

IA

Lo(|R"]|, ey + Velleomin || 7] el g |

qA,l'[[s,t])
+K L Whllp, ey + Wl WV gy ) Wl g

KR, s Wbt Wt Wy, s )

IA

+K”h”oo,l'l[s,t]( My mps.e =+ 1XMg rgs. o) )

As a result, one can apply Corollary 2.4 to conclude that
lhs,ill = Klihlloo,migs,(t — ) + Kl hlloo, rigs, e Ulxs,e [l + 11X e ) + s,
h .
TR Lg([|R"]] sy WUt Wl e WK )

IRY I < Crlllloo.nigs.n(t = ) + K Lgllhlloo,ms. s [l + 5.1
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FR([RA] Wb + WA W )

One can now apply the same arguments as in the proof of Theorem 3.3 to show that there
exists a random variable & (3,, X, [a, b]) such that

11lloo,[a,p1 < (R, Rh)llp,[a,b] < (1hall + @a.)E G, X, [a, b])
37
< K (I1a, b1+ Ixll 0oy m1iaen)” -

~ 1
which proves (5.3) for & generic. Finally, because p € [2,3) and x € C7? is of L_ Holder
rough path, it is easy to check that [|X|l , (4.p), 10,6y — O as [[1[a, b]] — 0. This proves
5.4). ]

Next we recall that in [10], it is proved that if f satisfies dissipative condition, (5.1)
generate a RDS ¢ which possesses a pullback random attractor A. At the same time (5.1)
generate a discrete RDS which possesses a random pullback attractor A% when A < Ag
small enough. In the following we prove that the discrete attractor converges to the continuous
attractor as A approaches 0. Note that the result here is obtained without the condition on
boundedness of f as proved in [10].

To satisty condition (4.8) for any step size A, we assume a stronger condition that

E |||X|"];;,[a,b] <oo, VYkeN, V0<a<b. (5.5)
We first prove that

Proposition 5.2 Under assumptions (Hg), (Hg), (4.7) and (5.5), there exists L > 0 such that
if Lg < L, for all A small enough the attractor A2 of (1.2) is uniformly bounded in A a.s.

Proof For T and R (x) in Theorem 4.2 where A small enough so that 7 > 1/2, observe
that for each k, ny = |kT] satisfies ny < kT < (k+ DT < ng +2 and ng < ngqq <
ng + 1, ng < ng42. We then have some generic constant M (note that n; < k)

00 k 2
RAM) < 14+ MY e ™A [k, —k+2D1] | [1 LA [—j— 1, —j + 1])]

k=0 j=0
00 k 5

<14+MY e A@x 102D ] [1 + Ly A(6- %, [0, 2])]
k=1 j=1
00 k 5

<14+MY e A@ax [-1.2) ][] [1 + Ly A(O—jx, [—1, 2])] =: R(X).
k=1 j=1

(5.6)

Hence, using similar arguments in Theorem 4.2 one can choose L, small enough and
independent of A such that the series in (5.6) converges almost surely. That implies
A% c B(0, RA(x)) C B(0, R(x)) for all A satisfying (4.9) where the radius R(x) is
independent of A. The proof is finished. O

Theorem 5.3 (Convergence of numerical attractor) Under conditions in Proposition 5.1 and

(5.5), for Lg small enough, the numeric attractor A® converges to the attractor A in the
Hausdorf semi-distance, i.e. dy (A*|A) — 0as A — 0, a.s.
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Proof First, as indicated in (5.6) of Proposition 5.2, for L, small enough so that R(x) is
finite, we have R2(x) < R(x) for all A < Ag small. On the other hand, assumption (Hg)
and the dissipativity condition (4.7) match the conditions in [7, Theorem 3.1] for g bounded
and [10, Theorem 5.1] for g linear to conclude the existence of a random attractor A.

Now, we proceed a contradiction arguments. Namely, assume the assertion is false for a
particular w corresponding to a rough path x, then there exists an ¢9 > 0 and a sequence
Aj 07 such that dyy (A% (w)|.A(w)) > &g forall j € N. Since these attractors are compact
sets, there exists a;(w) € A%i (w) such that dy (a j(w)|A(w)) > &p. Due to the invariance,
there exists for each mj € N a point b;(0—m;a;0) € ABJ (O—m;n;0) C BA (CAPYNT)]
such that gDAj (mj Aj, g—m_,‘ Aj a))bj (9_’”./‘ Aj a)) = ylﬁ;Aj (G—m_,-Ajwy bj (Q—m_,‘ Aj a))) =aj (a))
Respectively one considers the continuous flow with respect to the rough differential equation

gﬂ(m,A/, Q_mjAjCU, bj(o—mjAjw)) = )A’mjAj (g—mjAjwv bj(g—mjAjw))
and applies the triangle inequality to obtain

eo < dp(aj()|A@) < 9m;a;O-m;n; @ bj(O0-—m;a;w)) — yﬁ;Aj (O-mjn;@,bjO-m;n;0)|
+du(@mjAj, 0_m;n;@,b;O0-m;a;w)]Al®)). (5.7
On the other hand, since A is the pullback attractor of ¢, it attracts also B(0, R(w)) in

the pullback sense, thus there exists a fixed 7" := T (g9, w) such that for any m;A; €
(7", T* + 1]

&l
dr(@mj A, 02,0, b (6,0, 0)A@)) < 7. (5.8)

Meanwhile, due to the estimate (5.3) in Proposition 5.1, the first difference in the right hand
side of (5.7), for a fixed interval [0, T* + 1], is uniform with respect to the initial point
bj(0—m;a,; ) in the compact set B2 (0—m, a;w). Hence one obtains for A ; small enough

A A
||Ym_,~A_,~ (g—m_,'A_,'w’ bj (G—m_,'Aja))) - ymjj-Aj (O—M_/Ajws b] (G_m/A/a))) ”
A 3P p
< KR 00,00 [ A+ ol roapa, | [T+ 141005 ey -
(5.9)
Write m jA; = T* 4 5; with s; € [0, 1], one has

RE (0, a,0)
k

[e )
2
<14M sup > e A 410, [0—5.2—s) ] [1 LA 0 7ox. [—5.2 — s]):|
s€l0. 114 =0 j=0

o0 k
<14+MY e *A@ 1 O_rex. -1 2D [ [1 + LA 0w, [—1, 2])]2
k=0 =0
< R(0_7+(®)). (5.10)

Hence, the right hand side of (5.9) tends to 0 as j — o0, i.e.
~ A &0
||ym_,~A_,~ (Q—m_,- A_,'wv bj (Q—m_,’Ajw)) - ymjAj ((,(), b] (e—m,-A,-w)) ” S E (511)

for j large enough. Since (5.8) and (5.11) contradict to (5.7), this completes the proof. O
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Remark 5.4 In Theorem 4.2 and 5.3, the results are established for the discrete system under
condition “sufficiently small L,”, which implies that g is not necessarily bounded but its
derivatives must be small enough. Therefore in case g is bounded, this condition can be
relaxed, but we need a little stronger condition than (5.5) that

ENXI ) tronfap) < 00 VKEN, Y0 <a <b, (5.12)

In the following, we would like to clarify the argument for discrete system (1.2). Indeed,
in Theorems 3.3 and 4.2 we construct the sequence 7,,(3, [0, T]) on [0, T'] and obtain the
estimate
N(5,[0,T])—1
Yo RN, e = K [TV leo.mio,r1 + &N g0, rp)]

m=0

for a sufficiently small §, a generic polynomial £ and a generic constant K. We modify (4.11)
as

1y I1? < €T llyoll* + K (14 1f (lloo, mpo, 71 F ll o, 11p0,71)
N(5.[0,T])—1 N
+ Z I:Gfi,TH-l + Kwti(?fiﬂ (SG):I .
i=0
Since g is bounded, we use the estimate || F [l oo, mi[s.1] < Lg IXIl . rifs,1 @nd (3.3), and choose
8§ = (1 Ad( — Ap))/2K. Then a direct calculation yields

lyrll> < e T (1 + K8+ L AP Il p—pior,mmpo. 7 170 lI* + K I¥h/p-soLmo.r)

< e—dT/Z(l + LgAl/p |||X"|1/p—H01,H[O,T])||y0||2 + Keg(mxml/p—Hol,l'I[O,T])7

which is similar to (4.14). The role of L gAl/ P is similar to L, as a coefficient of ||y0||2 in
(4.14). Therefore, Theorem 4.2 is prove for g bounded with L be arbitrary. This coincides
to the results present in [10] for rough cases and in [11] for Young cases.

As a sequence of Theorem 4.2, the convergence in Theorem 5.3 holds for arbitrary L.
This is an improvement of [10] where both f and g need to be bounded.
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