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Abstract

The issue of network community detection has been extensively studied across many
fields. Most community detection methods assume that nodes belong to only one community.
However, in many cases, nodes can belong to multiple communities simultaneously. To
address this, several research studies on overlapping community detection often involve a
two-step approach. The first step uses existing algorithms to identify known communities,
and the second involves identifying overlaps. This paper presents two overlapping network
community detection algorithms that build on this two-step approach, using the extended
modularity and cosine function. To demonstrate the feasibility and effectiveness of these
algorithms, we conducted experiments using real data.

1 Introduction

In recent years, many studies have focused on network systems such as social networks, biological
networks, and technological networks [28, 4]. Researchers have been interested in studying local
properties of networks, including clustering [42], degree distribution [3, 1], and correlations
[31, 29]. They have also investigated large-scale properties such as path length [42], coverage
[8, 6], and hierarchy [37, 7]. Among these properties, structured communities have received the
most attention, such as in [14, 15, 21, 38].

The network community problem has been studied extensively in many fields, and most
community detection methods assume that nodes belong to only one community. However, in
many cases, nodes can participate in multiple communities simultaneously, making the problem
more challenging. For example, in a network of scientists where nodes represent individuals and
edges represent collaborations, a scientist may belong to multiple communities if they collabo-
rate with researchers from different fields. This situation has motivated researchers to develop
methods to identify overlapping communities automatically. Some authors have made significant
efforts to characterize communities with overlapping nodes, as evidenced by recent papers such
as [33, 34, 22, 20]. Although studying separate community structures is widely studied, devel-
oping methods to handle overlapping communities is necessary for a complete understanding of
network structures.
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1.1 Overlapping community detection algorithms

We are interested in community detection involving a two-step approach. The first step uses ex-
isting algorithms to identify known communities, and the second consists in identifying overlaps,
such as two of the following algorithms.

The first Algorithm we were interested in is the one in [35]. The authors propose a simple
approach to identify overlapping communities in a graph G = (V,E), where V = {v1, v2, ..., vn}
represents n nodes and E ⊆ V ×V represents m edges. A cover is defined as a family of subsets
of nodes:

C = {C1;C2; ...;Ck}.

Each subset Cu is called a cluster or community, and the objective of community detection is
to find a cover Cj that best describes the community structure of the graph, such that nodes
within clusters are more densely connected than to nodes in other clusters.

The authors associate an affiliation matrix FCj ∈ R|V |×|C| with the cover Cj , where Fvc
represents the degree of affiliation of vertex v with community Cj ∈ C. The following calculation
obtains the matrix of belonging coefficients for the final cover.

FuCj =

{
1 if

∑
(u,v)∈E χvCj

du
≥ θ,

0 otherwise.
(1.1)

where χvCj is an indicator variable that takes the value 1 when the edge v of the original graph
G belongs to cluster Cj and 0 otherwise, and θ is a threshold parameter, and du is the degree
of vertex u in the graph G. Thus, the belonging coefficient FuCj of node u to cluster Cj is
proportional to the number of adjacent edges belonging to the cluster Cj . As the value of θ
increases, the degree of overlapping between the communities also increases. For the convenience
of presentation, we temporarily call this Parameterized Overlap Algorithm (or Paramet.
Overlap for short).

The second Algorithm we are interested in is the one in [10]. First of all, the authors defined
Modularity Q0 for the overlapping community as follows:

Q0 =
1

2m

∑
Cj∈C

∑
u,v∈Cj

αuCjαvCj

(
Auv −

dudv
2m

)
,

where m is the number of edges, du is the degree of u, and

αuCj =
duCj∑

Cj∈C duCj

, (1.2)

with duCj = Σv∈CjAuv. Obviously, the definition in Eq. 1.2 satisfies the following conditions
[30]:

0 ≤ αuCj ≤ 1, ∀Cj ∈ C, u ∈ V

and ∑
Cj∈C

αuCj = 1

Furthermore, if node u belongs to only one community Cj , αuCj equals 1; if node u does not
belong to the community Cj , αuCj = 0. At is to say, Eq. ef pt6 is consistent with the definition
of Modularity for a non-overlapping community in [27].
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After that, the authors proposed the following overlapping community detection algorithm.
For a community Cj and a node u, the belonging degree B(u,Cj) between u and Cj is defined
as

B(u,Cj) =

∑
v∈Cj

Auv

du
.

Find all neighbors NCj of the initial community Cj . If ∃u ∈ NCj , B(u,Cj) > BU (in the paper
[10], the authors took BU = 0.5, which means a node u is tight enough with community Cj if
the belonging degree is larger than 0.5), add all these type nodes into community Cj directly.
If ∀u ∈ NCj , B(u,Cj) < BL (in the paper [10], the authors took BL = 0.4 that means a
node u is loose enough with community Cj if the belonging degree is less than 0.4, and the
node needs checking further using the Modularity Q0 for a belonging degree between 0.4 and
0.5), stop expanding the community; otherwise, add the nodes with BL ≤ B(u,Cj) ≤ BU into
the community if the Modularity Q0 becomes larger after adding. The detailed processes are
listed as follows (for the convenience of presentation, we temporarily call this Module Overlap
Algorithm).

� Find all neighbors NCj of community Cj , and calculate the belonging degree B(u,Cj) for
each neighbor u.

� Find all nodes with B(u,Cj) > BU and BL ≤ B(u,Cj) ≤ BU , denoted by Nu ={
u | B(u,Cj) > BU

}
and Nlu =

{
u | BL ≤ B(u,Cj) ≤ BU

}
, respectively.

� If |Nu| > 0, add all nodes of Nu into the community and obtain a larger partial community,
also denoted by Cj , and return to step(i).

� If |Nlu| > 0, for each node u in Nlu, add u into the community if the Modularity Q0

becomes larger after adding it, obtain a larger partial community, also denoted by Cj .

� If |Nu| = 0 and |Nlu| = 0, stop expanding and mine a community ultimately.

1.2 Random walk on graphs

Let G = (V,E) be a directed graph with n vertices and m edges, define A the adjacency matrix
of G. For i = 1, 2, ..., n, we define douti the out-degree of vertex i, and dini the in-degree of vertex
i.

It is worth noting that undirected graphs can be seen as a special case of directed graphs,
where the adjacency matrix is symmetric and the out-degree and in-degree of each vertex are
equal.

A random walk on a graph is a process that starts at a given vertex and moves to another
vertex at each time step, the next vertex in the walk is chosen uniformly at random from among
the neighbors of the current vertex.

For conciseness, in the following, we will use the out-degree of a vertex as its degree, denoted
by di unless stated otherwise. We define a diagonal matrix D using the vertex out-degrees and
let P = D−1A. The matrix P = [pij ]i,j=1,n represents the transition probabilities of a Markov
chain associated with a random walk on graph G. At each vertex i, the random walk can
move to vertex j with probability pij = aij/di if (i, j) ∈ E. Then P t represents the transition
probabilities of this random walk after t steps.
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We assume that G is strongly connected, meaning there is a directed path from any vertex i
to every other vertex j. We consider an aperiodic random walk Xk finite graph with n vertices.
According to the convergence theorem for finite Markov chains [?], the associated transition
matrix P satisfies limk→∞ P = P∞, where (P∞)ij = φj , the j th component of the unique
stationary distribution φ = (φ1, φ2, ..., φn).

For an undirected graph G where aij = aji, we have di = douti = dini , and φi = di/2m for all
vertex i.

1.3 Our contribution

In this paper, each algorithm consists of two steps. In the first step, we use existing community
detection algorithms, such as the Hitting times Walktrap algorithm [11], Walktrap algorithm
[34], or the Louvain algorithm [37], to find disjointed communities for the network. In the
second step, we determine whether a vertex belongs to a community or not by using modularity
or cosine functions.

� In Section 2, we introduce a concept called Theta-Modularity, an extension of regular
Modularity. To do this, we look at the number of edges between the vertex and that
community. Specifically, the criteria for a vertex to belong to a community is that the
number of edges between them must be sufficiently large and dependent on the total
degree of the vertices in that community.

� In Section 3, we use the method to coordinate the graph’s vertices. Then we can identify
each vertex as a vector and find the cluster centers that are the average coordinates of the
vertices in that cluster. Finally, we will propose an overlapping algorithm based on the
idea that vertices of the same cluster will create a small angle with the cluster center; in
other words, the cosine of that vertex and the cluster center are more significant than a
constant θ.

Finally, to assess the effectiveness and rationality of our algorithms, we will conduct experiments
to compare and evaluate the clustering results of our algorithms with other algorithms and the
clustering generated by the graph generation model. Specifically, in Subsection 5.2.2, we will
compare two of our algorithms for undirected graphs, namely the Parameterized Modularity
Overlap Algorithm and the Cosine Overlap Algorithm, with two other algorithms, namely the
Parameterized Overlap Algorithm [35] and the Module Overlap Algorithm [10]. We will compare
these algorithms based on Modularity and the clustering generated by the graph generation
model. Additionally, we will perform experiments on real datasets and compare the algorithms
based on Modularity. In Subsection 5.2.3, we will apply our directed graph algorithms to
randomly generated graphs and compare the results with the clustering generated by the graph
generation model.

2 Overlapping community detection using modularity

In this section, we will use the modularity function to determine whether a vertex belongs to
a community or not. The classic modularity function evaluates the difference between the real
number of edges between two vertices and the expected number of edges between them. Our
new approach is to introduce a parameter to make the evaluation more flexible. Specifically,

4



we will use a threshold for the expected number of edges. This new parameterized modularity
function will be applied to undirected graphs in section 2.1, where the expected number is
calculated based on the degree of the vertices. It will also be used in section 2.2 for directed
graphs, where the expected number is calculated based on the in-degree and out-degree of the
vertices. A breakthrough in section 2.3 is that the parameterized modularity function for directed
graphs will be defined not based on the vertex degrees but on the stationary distribution of a
random walk on the graph. This provides a more advanced approach to determining community
membership.

2.1 Overlapping community detection for undirected graphs

The expected number of edges falling between two vertices u and v in the configuration model is
equal to dudv/2m, where du is the degree of vertex u and m is the total number of edges in the
observed network. The actual number of edges observed to fall between the same two vertices
is equal to the element Auv of the adjacency matrix A, so that The actual-minus-expected edge
count for the vertex pair is Auv − dudv/2m. Suppose C = {C1, C2, ..., Ck} is a cover of the
vertices of the undirected graph G, the modularity Q (as defined in [27]) is then equal to

Q =
1

2m

∑
u,v∈V

(
Auv −

dudv
2m

)
δ (Cu, Cv) =

1

2m

∑
Cj∈C

∑
u,v∈Cj

(
Auv −

dudv
2m

)
. (2.1)

where δ (Cu, Cv) is 1 if u and v are in the same community, and 0 otherwise.
This modularity illustrates the criteria that u and v belong to the same cluster if the real

number of edges between them is greater than the expected number of edges between them.
However, we find many practical problems when dividing clusters by data; depending on the
goal, the required criteria is more flexible. Therefore, we propose a new modularity with theta
coefficient as follows.

Q(θ) =
1

2m

∑
Cj∈C

∑
u,v∈Cj

(
Auv − θ

dudv
2m

)
. (2.2)

Our modularity means that two vertices u and v belong to the same cluster if the number of
edges between u and v is more significant than θ-times the expected number of edges between
them.

We observe that the modularity of clustering of graph G can be expressed as the sum of the
modularity of each cluster, as shown in formula 2.2. This means that if we add a vertex to a
cluster, only the modularity value of that specific cluster will be affected. As a result, for every
community, Cj and vertex u ∈ V (G)\Cj , the modularity of cluster Cj will change by an amount
when we add vertex u to it, and the following formula can calculate it.

∆Q(θ)u,Cj =
1

2m

∑
w∈Cj

(
Auw − θ

dudw
2m

)
. (2.3)

From the above comment, we propose that vertex u will be added to the community Cj if then
∆Q(θ)u,Cj is positive:

1

2m

∑
w∈Cj

(
Auw − θ

dudw
2m

)
> 0. (2.4)
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It implies that ∑
w∈Cj

Auw
du

> θ
∑
w∈Cj

dw
d
. (2.5)

Remark 2.1 From (1.1) and (2.5), we have remarked that vertex u belongs to the community
Cj if the number of edges between u and Cj is large enough. However, in the equation (1.1),
the number of edges between u and Cj must always be greater than a fixed θ constant. It is
independent of the properties of the community Cj. Our method is more reasonable because
it depends not only on the θ coefficient but also on the characteristics of the community Cj.
Specifically, it depends on the sum of the degrees of the vertices in the community Cj.

From there, we propose the overlap detection algorithm described in Algorithm 1. We will
call this the Parameterized Modularity Overlap Algorithm for undirected graphs (or
Paramet. Modul. for short).

Algorithm 1: Parameterized Modularity Overlap Algorithm

Input: An undirected graph G and a threshold value θ
Output: Clusters of vertices with overlapping communities
Apply the Louvain algorithm [40] to obtain the initial clustering of G into communities
C1, C2, ..., Ck;

repeat
foreach vertex u do

foreach community Cj adjacent to u and not containing u do

if
∑

w∈Cj

Auw
du

> θ
∑

w∈Cj

dw
d

then

Add u to Cj ;
end

end

end

until No communities Cj meet the condition;

In the Algorithm 1, we have to traverse all the vertices, and for each vertex, we consider all
the adjacent communities with it. So the computational complexity of this Algorithm will be
O(kn), where n is the number of vertices of the graph, and k is the number of communities.

2.2 Overlapping community detection for directed graphs using modularity

In [2, 26], the authors had given the in/out-degree sequence of directed graph, in which the
probability to have an edge from vertex v to vertex u is determined by dinu d

out
v , where dinu and

doutv are the in- and out-degrees of the vertices. Suppose C = {C1, C2, ..., Ck} is a cover of G,
the modularity Q is defined as.

Qd =
1

m

∑
Cj∈C

∑
u,v∈Cj

(
Auv −

dinu d
out
v

m

)
, (2.6)

where Auv is defined conventionally to be 1 if there is an edge from v to u and zero otherwise.
Note that indeed edges j → i make larger contributions to this expression if dinu and/or doutv is
small.
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Similar to the case of undirected graphs, we also define Theta-Modularity as follows:

Qd(θ) =
1

m

∑
Cj∈C

∑
u,v∈Cj

(
Auv − θ

dinu d
out
v

m

)
. (2.7)

Then for each community Cj , we will consider the vertices u ∈ V (G) \ Cj . We notice that if a
vertex u added to the community Cj , the modulus of the cluster Cj changes by an amount of

∆Qd(θ)u,Cj =
1

m

∑
w∈Cj

(
Auw − θ

dinu d
out
w

m

)
+

1

m

∑
w∈Cj

(
Awu − θ

dinw d
out
u

m

)
. (2.8)

From the above comment, we propose that vertex u belongs to the community Cj , is ∆Qd(θ)u,Cj

is positive:
1

m

∑
w∈Cj

(
Auw − θ

dinu d
out
w

m

)
+

1

m

∑
w∈Cj

(
Awu − θ

dinw d
out
u

m

)
> 0. (2.9)

equivalent to ∑
w∈Cj

(Auw +Awu) > θ
∑
w∈Cj

(
dinu d

out
w

m
+
dinw d

out
u

m

)
, (2.10)

Remark 2.2 From (2.10), we have remarked that vertex u belongs to the community Cj if the
total number of edges from u to Cj and the number of edges from Cj to u is large enough.

From there, we propose the overlap detection algorithm described in Algorithm 2. We will call
this the Directed Parameterized d-Modularity Overlap Algorithm for directed graphs
(or Di-Paramet. d-Modul. for short)

Algorithm 2: Directed Parameterized d-Modularity Overlap Algorithm

Input: A directed graph G and a threshold value θ
Output: Clusters of vertices with overlapping communities
Apply Louvain algorithm [12] to obtain the initial clustering of G into communities
C1, C2, ..., Ck;

repeat
foreach vertex u do

foreach community Cj adjacent to u and not containing u do

if
∑

w∈Cj
(Auw +Awu) > θ

∑
w∈Cj

(
dinu d

out
w

m
+
dinw d

out
u

m

)
then

Add u to Cj ;
end

end

end

until No communities Cj meet the condition;

Similar to the Algorithm 1, the Algorithm 2 also has a computational complexity of O(kn),
where n is the number of vertices of the graph, and k is the number of communities.
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2.3 Overlapping community detection for directed graphs using the station-
ary distribution

Many modularities have been proposed for directed graphs, such as the Modularity in Formula
2.6. In many cases, those modularity proposals will lose the essential properties of directed
graphs. Therefore, we [11] proposed a definition of modularity for directed graphs based on
random walks and stationary distribution, which is a natural extension of modularity on undi-
rected graphs. In detail, for a cover C = {C1, C2, ..., Ck} of the directed graph G, our proposed
modularity is the following.

Qsd =
∑
uv

(Pvuφv − φuφv) δCuCv , (2.11)

where Pvu is the transition probability of the random walk process from v-th vertex to u-th
vertex and φ = (φ1, φ2, ..., φn) is stationary distribution stationary.

We also have the θ modularity as follows.

Qsd(θ) =
∑
uv

(Pvuφv − θφuφv) δCuCv . (2.12)

and then
Qsd(θ) =

∑
Cj∈C

∑
u,v∈Cj

(Pvuφv − θφuφv) . (2.13)

Then for each community Cj , we will consider the vertices u ∈ V (G) \ Cj : ı̀ u is added to the
community Cj the modularity of the cluster Cj changes by an amount of

∆Qsd(θ)u,Cj =
∑
w∈Cj

(φuPuw − θφuφw) +
∑
w∈Cj

(φwPwu − θφuφw) . (2.14)

We also propose that vertex u belongs to community Cj if ∆Qsd(θ)u,Cj is positive. Therefore,
if u belongs to the community Cj , then we have∑

w∈Cj

(φuPuw − θφuφw) +
∑
w∈Cj

(φwPwu − θφuφw) > 0, (2.15)

equivalent to ∑
w∈Cj

(φuPuw + φwPwu) > 2θ
∑
w∈Cj

φuφw. (2.16)

Remark 2.3 The formula (2.16) means that vertex u belongs to the community Cj if the sum
of the probabilities from vertex u to the community Cj and the probabilities from community Cj
to vertex u is large enough.

From there, we also propose the Algorithm 3. We will call this the Directed Parameterized
sd-Modularity Overlap Algorithm for directed graphs (or Di-Paramet. sd-Modul. for
short).
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Algorithm 3: Directed Parameterized sd-Modularity Overlap Algorithm

Input: A directed graph G and a threshold value θ
Output: Clusters of vertices with overlapping communities
Apply Louvain algorithm [12] to obtain the initial clustering of G into communities
C1, C2, ..., Ck;

repeat
foreach vertex u do

foreach community Cj adjacent to u and not containing u do
if
∑

w∈Cj
(φuPuw + φwPwu) > 2θ

∑
w∈Cj

φuφw then

Add u to Cj ;
end

end

end

until No communities Cj meet the condition;

Algorithm 3 requires computing the stationary distribution and using two loops similar to
Algorithm one and Algorithm 2. Various efficient computation algorithms exist to calculate the
stationary distribution, such as the one presented in [9], which has a computational complexity of
Õ(m3/4n+mn2/3), where the Õ(n) notation suppresses polylogarithmic factors in n. Therefore,
the total computational complexity of this Algorithm is the sum of O(kn) and Õ(m3/4n+mn2/3),
which equals Õ(m3/4n+mn2/3).

Remark 2.4 The equation (2.4) for undirected graphs can be rewritten as follows.

1

2m

∑
w∈Cj

(
Auw − θ

dudw
2m

)
+

1

2m

∑
w∈Cj

(
Awu − θ

dudw
2m

)
> 0. (2.17)

and because Auw = duPuw, d = 2m φu = du
d , then from (2.17), we get

∑
w∈Cj

(
du
d
Puw − θ

du
d

dw
d

)
+
∑
w∈Cj

(
dw
d
Pwu − θ

du
d

dw
d

)
> 0, (2.18)

which implies that ∑
w∈Cj

(φuPuw + φwPwu) > 2θ
∑
w∈Cj

φuφw. (2.19)

From (2.16) and (2.19), we observe that the condition for a vertex u to belong to a community
Cj that we propose in a directed graphs is a natural extension of that in undirected graphs through
the random walk and stationary distribution.

3 Overlapping community detection using the cosine

In many algorithms, researchers have represented the vertices of a graph as vectors in space.
Numerous studies have utilized the similarity measure between vertices, which is determined by
the angle between these vectors (as seen in [39]). Specifically, it has been observed that two
vertices belong to the same community when the angle formed by their respective vectors is
small. Consequently, the cosine of the angle between them is approximately 1.
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Building upon this concept, we propose the following algorithms: a vertex u belongs to a
community C if the cosine of the angle between the vector of u and the vector of the center
of C is approximately 1. In this case, the vector of the center of C is calculated by taking the
average of the coordinates of all vertices within the community. Since the vectors corresponding
to the vertices within the same community form small angles with the cluster center, they will
also create small angles among themselves. Based on this principle, we introduce overlapping
community detection algorithms in the subsequent subsections.

3.1 Overlapping community detection for undirected graphs

In [36], the authors noticed that: two vertices u and v, that are closed each other, tend to ”see”
all the other vertices in the same way, that means

P tuw ' P tvw, for all w. (3.1)

Then they defined the distance between them:

Ruv(t) :=

√√√√ n∑
w=1

(P tuw − P tvw)2

d(k)
= ‖D−1/2P tu• −D−1/2P tv•‖. (3.2)

Inspiring from this idea, we correspond each vertex u to the vector D−1/2P tu•,

Coord(u) := D−1/2P tu• =

{
P tu1

d
1/2
1

,
P tu2

d
1/2
2

, ...,
P tun

d
1/2
n

}
. (3.3)

From the equation 3.1, we can also observe that if two vertices u and v belong to the same
community, the angle formed by the two vectors Coord(u) and Coord(v) will be pretty small.
In other words

cosin(Coord(u), Coord(v)) ' 1. (3.4)

Because the lengths of vectors are comparable, and using the cosine function provides an explicit
evaluation by comparing to 1, we will use Equation 3.4 to determine whether two vertices are in
the same cluster or not. From this comment, we propose the following Algorithm 4. We will
call this the Cosine Overlap Algorithm for undirected graphs.
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Algorithm 4: Cosine Overlap Algorithm

Input: Undirected graph G, parameter θ
Output: Clusters C1, C2, ..., Ck
Apply Louvain algorithm [40] to obtain initial clusters C1, C2, ..., Ck of G; foreach
cluster Cj do

Calculate the cluster center Centerj as follows:

Centerj =
1

|Cj |
∑
u∈Cj

Coord(u), (3.5)

where Coord(u) = D−1/2P tu• is the coordinate vector of node u defined as

Coord(u) =

{
P tu1

d
1/2
1

,
P tu2

d
1/2
2

, ...,
P tun

d
1/2
n

}
. (3.6)

end
foreach cluster Cj do

foreach vertex u do
if cosin(Coord(u), Centerj) > θ then

Add vertex u to cluster Cj ;
end

end

end

We will select the parameter θ based on the network’s structure and the desired level of
overlap. For networks with a well-defined structure, we can choose θ between 0.7 and 0.8.
Otherwise, if the network lacks a clear community structure, we should select a value of θ lower
than 0.7.

The computational complexity of the Louvain algorithm is O(n log n). Determining the
coordinates of the vertices has a complexity of O(n3), while finding the center has a complex-
ity of O(n). The cosine calculation step has a complexity of O(kn2). Therefore, the overall
computational complexity of this algorithm is O(n3).

3.2 Overlapping community detection for directed graphs

For a strongly connected digraph G, let Φ1/2 = diag[
√
φu]. Yanhua and Z. L. Zhang [41] defined

the normalized digraph Laplacian matrix (Diplacian for short) Γ = [Γuv] for the graph G as
follows.

Definition 3.1 ([41, Definition 3.2]) The Diplacian Γ is defined as

Γ = Φ1/2(I − P )Φ−1/2. (3.7)

We perform singular value decomposition on the normalized Laplace matrix Γ = UΣV T , where
V = [V1, V2, ..., Vn]. Next, we take Vk = [V1, V2, . . . , Vk]. For each vertex u in the graph G, we
[11] have coordinated as follows:

Coord(u) =
(
φ−1/2u V1(u), . . . , φ−1/2u Vk(u), φ−1/2u U1(u), . . . , φ−1/2u Uk(u)

)
. (3.8)
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The same as the Algorithm in the case of undirected graphs, we can also observe that if two
vertices u and v belong to the same community, the angle formed by the two vectors Coord(u)
and Coord(v) will be pretty small. Therefore

cosin(Coord(u), Coord(v)) ' 1.

From this comment, we also propose the Algorithm 5 for directed graphs. We will call this
the Directed Cosine Overlap Algorithm for undirected graphs (or Di-Cosine Overlap
Algorithm for short).

Algorithm 5: Directed Cosine Overlap Algorithm

Input: Directed graph G, parameter θ
Output: Clusters C1, C2, ..., Ck
Apply our NL-PCA algorithm [11] to obtain initial clusters C1, C2, ..., Ck of G;
foreach cluster Cj do

Calculate the cluster center Centerj as follows:

Centerj =
1

|Cj |
∑
u∈Cj

Coord(u), (3.9)

where the coordinate vector of node u is defined as

Coord(u) =
(
φ−1/2u V1(u), . . . , φ−1/2u Vk(u), φ−1/2u U1(u), . . . , φ−1/2u Uk(u)

)
. (3.10)

end
foreach cluster Cj do

foreach vertex u do
if cosin(Coord(u), Centerj) > θ then

Add vertex u to cluster Cj ;
end

end

end

We will also choose the parameter θ as in the Algorithm for undirected graphs. The compu-
tational complexity of the NL-PCA algorithm is O(n3). We have already found the coordinates
of the vertices in NL-PCA algorithm, so there is no need to recalculate. The step to find the
center of complexity is O(kn). So, the computational complexity of this algorithm is O(n3).

4 Examples

We inlustrate our algorithms for explicit graphs as follows: the Parameterized Modularity Over-
lap Algorithm for undirected graph in Figure 1, the Cosine Overlap Algorithm for undirected
graph in Figure 2, the Parameterized Modularity Overlap Algorithm for directed graphs in
Figure 3.
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Figure 1: Applying the Parameterized Modularity Overlap Algorithm for undirected graphs
with θ = 1, we obtained three communities are C1 = {1, 2, 3, 4, 5}, C2 = {5, 6, 7, 8, 9, 10}, and
C3 = {10, 11, 12, 13, 14, 15, 16}. Vertex 5 belongs to communities C1 and C2. Vertex 10 belongs
to both communities C2 and C3.

5 Experiments

We will evaluate the effectiveness and rationality of our algorithms by conducting experiments
to compare and consider the clustering results of our algorithms with other algorithms and the
clustering generated by the graph generation model. Specifically: In Subsection 5.2.2, we will
compare two of our algorithms for undirected graphs, namely the Parameterized Modularity
Overlap Algorithm (proposed in Subsection 2.1) and the Cosine Overlap Algorithm (proposed
in Subsection 3.1), with two other algorithms, namely the Parameterized Overlap Algorithm [35]
and the Module Overlap Algorithm [10]. We will compare these algorithms based on Modularity
and the clustering generated by the graph generation model. Additionally, we will perform
experiments on real datasets and compare the algorithms based on Modularity. Subsection
5.2.3, we will apply our directed graph algorithms to randomly generated graphs and compare
the results with the clustering generated by the graph generation model.

5.1 Evaluating metrics

Modularity for undirected graphs with overlapping communities:

Chen et al. [10] provide the generalized modularity-based belonging function for calculating
modularity in undirected graphs. The following equation represents this function:

Q =
1

2m

∑
Cj∈C

∑
u,v∈Cj

(
Auv −

dudv
2m

)
f
(
αuCj , αvCj

)
. (5.1)

13



Figure 2: Applying the Cosine Overlap Algorithm with θ = 0.6, we obtained three commu-
nities C1 = {4, 5, 11, 14, 15, 16, 21, 22, 27, 19}, C2 = {1, 2, 6, 7, 9, 10, 13, 17, 19, 23} and C3 =
{0, 3, 8, 12, 18, 20, 24, 25, 26, 28, 29, 5, 7, 22}. Vertex 19 belongs to communities C1 and C2. Ver-
tex 7 belongs to both communities C2 and C3, and vertices 5, 22 belongs to both communities
C1 and C3.
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Figure 3: Applying the Parameterized Modularity Overlap Algorithm for directed graphs with
θ = 1, we obtained two communities C1 = {1, 2, 3, 4, 10} and C2 = {5, 6, 7, 8, 9, 10}. Vertex 10
belongs to communities C1 and C2.

where αuCj is defined as in the Equation (1.2). The belonging coefficient function f
(
αuCj , αvCj

)
can be the product or average of αuCj , αvCj . If it is average, it becomes the following equation.

Q =
1

2m

∑
Cj∈C

∑
u,v∈V

(
Auv −

dudv
2m

)(
αuCj + αuCj

)
/2. (5.2)

In this part of the experiment, we will use this modularity to evaluate the clustering quality.

Modularity for directed graphs with overlapping communities:

To evaluate the effectiveness of overlapping community detection algorithms for directed graphs,
we will use the modularity [30] given by the following formula.

Qov =
1

m

∑
Cj∈C

∑
u,v∈V

[
βl(u,v),Cj

Auv −
βoutl(u,v),Cj

doutu βinl(u,v),Cj
dinv

m

]
, (5.3)

where
βl(u,v),Cj

= F
(
αu,Cj , αv,Cj

)
, (5.4)

and

βoutl(u,v),Cj
=

∑
v∈V F(αuCj , αuCj )

|V |
, βinl(u,v),c =

∑
u∈V F(αuCj , αuCj )

|V |
. (5.5)

with definition of F(αuCj , αuCj ) is somewhat arbitrary. It is possible, for example, to define it
as the product of the belonging coefficients of the nodes involved or as max

(
αuCj , αuCj

)
. They

don’t make any choice about a particular form for F . We will choose F , same as in the case of
an undirected graph, i.e., F(αuCj , αuCj ) =

(
αuCj + αuCj

)
/2.
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5.2 The random graph model and experiments on random graphs

5.2.1 The random graph model

Evaluating a community detection algorithm is difficult because one needs some test graphs
whose community structure is already known. A classical approach is to use randomly generated
graphs with labeled communities. Here we will use this approach and generate the graphs as
follows.
LFR benchmark graphs: This random graph generator model creates community-structured
graphs with overlapping vertices. Andrea Lancichinetti and Santo Fortunato proposed it in [24].
This model generates graphs with many of the same properties as real networks. To create the
graphs, we need the following parameters:

� N: number of nodes.

� k: average degree.

� maxk: maximum degree.

� mu: mixing parameter.

� t1: minus exponent for the degree sequence.

� t2: minus exponent for the community size distribution.

� minc: minimum for the community sizes.

� maxc: maximum for the community sizes.

� on: number of overlapping nodes.

� om: number of memberships of the overlapping nodes.

� C: average clustering coefficient.

When applying, people often use the parameters t1 = 2, t2 = 1, and mu = 0.05. So in this
paper, we also default the values of these parameters as such. This random graph generation
model can generate both undirected and directed graphs.

5.2.2 Experiments on random graphs for undirected graphs

In this part of the experiment, each table results from experiments on ten randomly generated
graphs using the LFR benchmark graphs mode. We will conduct experiments on all four al-
gorithms for the ten graphs generated. For each Algorithm, we will perform 20 experiments
corresponding to 20 different parameters and select the clustering result with the highest Mod-
ularity among those experiments. Specifically, the parameters for each Algorithm will be as
follows:

� Parameterized Modularity Overlap Algorithm: we will use the coefficient θ = 1+0.1t with
t ∈ {1, 2, . . . , 20}.

� Cosine Overlap Algorithm: we will use the coefficient θ = 0.2+0.035t with t ∈ {1, 2, . . . , 20}.
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� Parameterized Overlap Algorithm: we will use the coefficient θ = 0.2 + 0.015t with t ∈
{1, 2, . . . , 20}.

� Module Overlap Algorithm: we will set the coefficient BU to 0.5 and use the coefficient
BL = 0.2 + 0.015t with t ∈ {1, 2, . . . , 20}.

To compare the algorithms’ results, we will take the result with the maximum Modularity value
(the Modularity we use is the Formula 5.2). Then draw a chart with the vertical axis being the
value of maximum Modularity and the horizontal axis being the number of experiments.

Experiment 1 for undirected graphs:

We will experiment on ten randomly generated graphs using the LFR benchmark graphs mode
with the following parameters:

� The number of vertices we take is a uniform probability in the interval (200, 250).

� The mean degree of each vertex we take is a uniform probability in the interval (5, 7).

� The maximum degree of the vertices we take is a uniform probability in the interval (7, 15).

� The number of vertices in the overlap we take is a uniform probability in the interval
(50, 70).

� Each vertex in the overlap will be in the k community; we take k with a uniform probability
in the interval (2, 3).

� The size of the smallest community we take is a uniform probability in the interval (20, 25).

� The size of the largest community we take is a uniform probability in the interval (25, 30).

We have illustrated the results obtained from this experiment as shown in Figure 4. In the
scenario where a graph consists of approximately 200 to 250 vertices, with an overlap of 50 to 70
vertices, our two algorithms have been shown to yield the maximum modularity value in most
cases. Among these algorithms, the Cosine Overlap Algorithm has the best results.

This experiment will also investigate the number of overlapping vertices identified by the
algorithms and compare it with those generated by the graph generation method. That will
enable us to evaluate the efficiency of our Algorithm. We present the results of Experiment 1 in
Table 1.

Experiment 2 for undirected graphs:

We will experiment on ten randomly generated graphs using the LFR benchmark graphs mode
with the following parameters:

� The number of vertices we take is a uniform probability in the interval (300, 350).

� The mean degree of each vertex we take is a uniform probability in the interval (6, 8).

� The maximum degree of the vertices we take is a uniform probability in the interval (8, 16).
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Figure 4: This chart illustrates the results of experiment 1 for undirected graphs; we experi-
mented on ten randomly generated graphs using the LFR benchmark graphs model with the
number of vertices in the interval (200, 250), the largest community size in the interval (25, 30),
the smallest community size at least in the interval (20, 25), the number of overlapping vertices
in the interval (50, 70).
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Original la-
bel

Paramet.
Modul.

Cosine Overlap Paramet.
Overlap

Module
Overlap

Exp. 1
NO : 64 NO : 67 NO : 72 NO : 19 NO : 19

N3 : 64 N2 : 51,
N3 : 15,
N4 : 1

N2 : 36 N3 : 29 N4 :
6 N5 : 1

N2 : 18 N3 :
1

N2 : 18 N3 :
1

Exp. 2
NO : 53 NO : 61 NO : 56 NO : 25 NO : 25

N3 : 53 N2 : 49 N3 :
12

N2 : 17 N3 : 35 N4 :
4

N2 : 25 N2 : 25

Exp. 3
NO : 56 NO : 92 NO : 65 NO : 18 NO : 18

N3 : 56 N2 : 72 N3 :
16 N4 : 4

N2 : 29 N3 : 32 N4 :
4

N2 : 18 N2 : 16

Exp. 4
NO : 53 NO : 54 NO : 53 NO : 48 NO : 41

N2 : 53 N2 : 54 N2 : 53 N2 : 48 N2 : 41

Exp. 5
NO : 63 NO : 78 NO : 72 NO : 26 NO : 26

N3 : 63 N2 : 51 N3 :
25 N4 : 2

N2 : 25 N3 : 42 N4 :
3

N2 : 25 N3 :
1

N2 : 25 N3 :
1

Exp. 6
NO : 65 NO : 72 NO : 73 NO : 20 NO : 20

N3 : 65 N2 : 54 N3 :
18

N2 : 25 N3 : 42 N4 :
6

N2 : 20 N2 : 20

Exp. 7
NO : 50 NO : 47 NO : 51 NO : 16 NO : 16

N3 : 50 N2 : 28 N3 :
19

N2 : 22 N3 : 27 N4 :
2

N2 : 15 N3 :
1

N2 : 15 N3 :
1

Exp. 8
NO : 65 NO : 75 NO : 69 NO : 31 NO : 31

N3 : 65 N2 : 61 N3 :
14

N2 : 29 N3 : 37 N4 :
3

N2 : 31 N2 : 31

Exp. 9
NO : 64 NO : 65 NO : 66 NO : 21 NO : 21

N3 : 64 N2 : 44 N3 :
21

N2 : 29 N3 : 35 N4 :
1 N5 : 1

N2 : 21 N2 : 21

Exp. 10
NO : 52 NO : 36 NO : 47 NO : 45 NO : 45

N2 : 52 N2 : 36 N2 : 47 N2 : 45 N2 : 45

Table 1: This table illustrates the results of experiment 1 for undirected graphs; We experimented
on ten randomly generated graphs using the LFR benchmark graphs model with the number of
vertices in the interval (200, 250) and overlapping vertices number in the interval (60, 80). Our
Cosine Overlap Algorithm produces the most accurate results closest to the original label, and
our Parameterized Modularity Overlap Algorithm performs well. Especially when each overlap
vertex belongs to more than two communities, in these cases, our two algorithms demonstrate
much higher efficiency than the other two algorithms.
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Figure 5: This chart illustrates the results of experiment 2 for undirected graphs; we experi-
mented on ten randomly generated graphs using the LFR benchmark graphs model with the
number of vertices in the interval (300, 350), the largest community size in the interval (35, 40),
the smallest community size at least in the interval (30, 35), the number of overlapping vertices
in the interval (60, 80).

� The number of vertices in the overlap we take is a uniform probability in the interval
(60, 80).

� Each vertex in the overlap will be in the k community; we take k with a uniform probability
in the interval (2, 5).

� The size of the smallest community we take is a uniform probability in the interval (30, 35).

� The size of the largest community we take is a uniform probability in the interval (35, 40).

We have illustrated the results obtained from this experiment as shown in Figure 5. In the
scenario where a graph consists of approximately 300 to 350 vertices, with an overlap of 60 to
80 vertices, our two algorithms still have been shown to yield the maximum modularity value
in most cases. Among these algorithms, the Cosine Overlap Algorithm has the best results.

This experiment will also investigate the number of overlapping vertices identified by the
algorithms and compare it with those generated by the graph generation method. That will
enable us to evaluate the efficiency of our Algorithm. We present the results of Experiment 2 in
Table 2.
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Original la-
bel

Paramet.
Modul.

Cosine Overlap Paramet.
Overlap

Module
Overlap

Exp. 1
NO : 75 NO : 103 NO : 77 NO : 35 NO : 35

N3 : 75 N2 : 76 N3 :
26 N4 : 1

N2 : 30 N3 : 5 N2 : 30 N3 :
5

N3 : 57 N2 :
17 N4 : 3

Exp. 2
NO : 79 NO : 112 NO : 80 NO : 3 NO : 3

N4 : 79 N2 : 75 N3 :
30 N4 : 6
N5 : 1

N4 : 39 N3 : 17 N5 :
15 N2 : 4 N6 : 2 N7 :
2 N8 : 1

N2 : 3 N2 : 3

Exp. 3
NO : 77 NO : 78 NO : 77 NO : 65 NO : 65

N2 : 77 N2 : 76 N3 :
2

N2 : 76 N3 : 1 N2 : 65 N2 : 65

Exp. 4
NO : 68 NO : 60 NO : 71 NO : 29 NO : 29

N3 : 68 N2 : 33 N3 :
27

N3 : 60 N4 : 6 N2 : 5 N2 : 26 N3 :
3

N2 : 26 N3 :
3

Exp. 5
NO : 74 NO : 74 NO : 76 NO : 72 NO : 72

N2 : 74 N2 : 74 N2 : 76 N2 : 72 N2 : 72

Exp. 6
NO : 76 NO : 95 NO : 78 NO : 25 NO : 25

N3 : 76 N2 : 72 N3 :
22 N4 : 1

N3 : 49 N2 : 21 N4 :
7 N5 : 1

N2 : 24 N3 :
1

N2 : 24 N3 :
1

Exp. 7
NO : 72 NO : 87 NO : 72 NO : 40 NO : 40

N3 : 72 N2 : 33 N3 :
7

N3 : 65 N2 : 5 N4 : 2 N2 : 33 N3 :
7

N2 : 33 N3 :
7

Exp. 8
NO : 67 NO : 41 NO : 70 NO : 4 NO : 4

N4 : 67 N2 : 32 N3 :
7 N4 : 2

N4 : 31 N3 : 29 N2 :
6 N5 : 4

N2 : 4 N2 : 4

Exp. 9
NO : 79 NO : 101 NO : 81 NO : 3 NO : 3

N4 : 79 N2 : 75 N3 :
23 N4 : 3

N3 : 39 N4 : 28 N2 :
10 N5 : 4

N2 : 3 N2 : 3

Exp. 10
NO : 62 NO : 63 NO : 62 NO : 62 NO : 63

N2 : 62 N2 : 63 N2 : 62 N2 : 63 N2 : 62

Table 2: This table illustrates the results of experiment 2 for undirected graphs; Even when
we increase the number of vertices to 300 to 350, the results remain consistent with experiment
2. Our Cosine-overlap algorithm continues to provide the most precise results closest to the
original label, while our Parameterized Modularity Overlap Algorithm also performs well. This
is particularly true when each vertex is assigned to more than two communities, as our two
algorithms demonstrate significantly higher efficiency than the other two algorithms.
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Experiment 3 for undirected graphs:

We will experiment on ten randomly generated graphs using the LFR benchmark graphs mode
with the following parameters:

� The number of vertices we take is a uniform probability in the interval (400, 500).

� The mean degree of each vertex we take is a uniform probability in the interval (6, 8).

� The maximum degree of the vertices we take is a uniform probability in the interval (8, 16).

� The number of vertices in the overlap we take is a uniform probability in the interval
(60, 80).

� Each vertex in the overlap will be in the k community; we take k with a uniform probability
in the interval (2, 5).

� The size of the smallest community we take is a uniform probability in the interval (30, 35).

� The size of the largest community we take is a uniform probability in the interval (35, 40).

Despite increasing the number of peaks in the graphs to approximately 400 to 500, we could
replicate the same results from the previous two experiments. We present these results in Figure
6.

This experiment will also investigate the number of overlapping vertices identified by the
algorithms and compare it with those generated by the graph generation method. That will
enable us to evaluate the efficiency of our Algorithm. We present the results of Experiment 3 in
Table 3.

Experiment 4 for undirected graphs:

We will experiment on ten randomly generated graphs using the LFR benchmark graphs mode
with the following parameters:

� The number of vertices we take is a uniform probability in the interval (700, 900).

� The mean degree of each vertex we take is a uniform probability in the interval (6, 10).

� The maximum degree of the vertices we take is a uniform probability in the interval (10, 20).

� The number of vertices in the overlap we take is a uniform probability in the interval
(60, 100).

� Each vertex in the overlap will be in the k community; we take k with a uniform probability
in the interval (2, 5).

� The size of the smallest community we take is a uniform probability in the interval (40, 50).

� The size of the largest community we take is a uniform probability in the interval (50, 70).
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Figure 6: This chart illustrates the results of experiment 3 for undirected graphs; we experi-
mented on ten randomly generated graphs using the LFR benchmark graphs model with the
number of vertices in the interval (400, 500), the largest community size in the interval (35, 40),
the smallest community size at least in the interval (30, 35), the number of overlapping vertices
in the interval (60, 80).
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Original la-
bel

Paramet.
Modul.

Cosine Overlap Paramet.
Overlap

Module
Overlap

Exp. 1
NO : 65 NO : 69 NO : 66 NO : 26 NO : 26

N3 : 65 N3 : 45 N2 :
24

N3 : 58 N2 : 5 N4 : 3 N2 : 24 N3 :
2

N2 : 24 N3 :
2

Exp. 2
NO : 61 NO : 56 NO : 55 NO : 53 NO : 53

N2 : 61 N2 : 56 N2 : 55 N2 : 53 N2 : 53

Exp. 3
NO : 63 NO : 69 NO : 71 NO : 3 NO : 3

N4 : 63 N2 : 60 N3 :
8 N4 : 1

N3 : 33 N4 : 23 N2 :
10 N5 : 5

N2 : 3 N2 : 3

Exp. 4
NO : 75 NO : 63 NO : 68 NO : 9 NO : 9

N5 : 75 N2 : 59 N3 :
4

N2 : 33 N3 : 26 N4 :
8 N5 : 1

N2 : 9 N2 : 9

Exp. 5
NO : 79 NO : 75 NO : 90 NO : 24 NO : 24

N3 : 75 N2 : 52 N3 :
23

N3 : 59 N2 : 26 N4 :
5

N2 : 23 N3 :
1

N2 : 23 N3 :
1

Exp. 6
NO : 68 NO : 58 NO : 73 NO : 1 NO : 1

N5 : 68 N2 : 47 N3 :
11

N4 : 25 N3 : 23 N5 :
12 N2 : 12 N6 : 1

N2 : 1 N2 : 1

Exp. 7
NO : 63 NO : 59 NO : 66 NO : 2 NO : 2

N5 : 63 N2 : 50 N3 :
8 N4 : 1

N4 : 25 N3 : 19 N5 :
13 N2 : 8 N6 : 1

N2 : 2 N2 : 2

Exp. 8
NO : 62 NO : 73 NO : 70 NO : 22 NO : 22

N3 : 62 N2 : 57 N3 :
15 N4 : 1

N3 : 46 N2 : 12 N4 :
11 N5 : 1

N2 : 20 N3 :
2

N2 : 20 N3 :
2

Exp. 9
NO : 66 NO : 69 NO : 67 NO : 2 NO : 2

N4 : 66 N2 : 52 N3 :
17

N3 : 32 N4 : 24 N2 :
6 N5 : 5

N2 : 2 N2 : 2

Exp. 10
NO : 67 NO : 94 NO : 72 NO : 1 NO : 1

N5 : 67 N2 : 66 N3 :
22 N4 : 4
N5 : 2

N4 : 29 N3 : 16 N5 :
16 N2 : 9 N6 : 2

N2 : 1 N2 : 1

Table 3: This table illustrates the results of experiment 3 for undirected graphs; Our two
undirected graph algorithms continued to achieve optimal results even when the number of
vertices was increased from 400 to 500. Especially the Cosine Overlap Algorithm still gives the
best results.
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Figure 7: This chart illustrates the results of experiment 4 for undirected graphs; we experi-
mented on ten randomly generated graphs using the LFR benchmark graphs model with the
number of vertices in the interval (700, 900), the largest community size in the interval (50, 70),
the smallest community size at least in the interval (40, 50), the number of overlapping vertices
in the interval (60, 100).
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Despite increasing the number of peaks in the graphs to approximately 700 to 900, we still could
replicate the same results from the previous two experiments. We present these results in Figure
7.

This experiment will also investigate the number of overlapping vertices identified by the
algorithms and compare it with those generated by the graph generation method. That will
enable us to evaluate the efficiency of our Algorithm. We present the results of Experiment 4 in
Table 4.

5.2.3 Experiments on random graphs for directed graphs

In the following experiments, we will utilize our three algorithms (Directed Parameterized d-
Modularity Overlap Algorithm, Directed Parameterized sd-Modularity Overlap Algorithm, and
Directed Cosine Overlap Algorithm) for directed graphs to cluster random generation graphs.
Subsequently, we will compare the index obtained from our algorithms with the graph generation
index. The parameters for each Algorithm will be as follows:

� Directed Parameterized d-Modularity Overlap Algorithm: we will use the coefficient θ =
1 + 0.1t with t ∈ {1, 2, . . . , 20}.

� Directed Parameterized sd-Modularity Overlap Algorithm: we will use the coefficient θ =
1 + 0.1t with t ∈ {1, 2, . . . , 20}.

� Directed Cosine Overlap Algorithm: we will use the coefficient θ = 0.2 + 0.035t with
t ∈ {1, 2, . . . , 20}.

We will select the clustering result for each algorithm corresponding to the parameter value that
obtained the highest modularity value (the Modularity we use is the Formula 5.3).

In the upcoming experiments, we will adopt the following notations: NO represents the
total number of vertices in the overlap of a graph, and N` represents the number of vertices in
the ` communities, where ` = 1, 2, 3....

Experiment 1 for directed graphs:

We will experiment on ten randomly generated graphs using the LFR benchmark graphs mode
with the following parameters:

� The number of vertices we take is a uniform probability in the interval (50, 70).

� The mean degree of each vertex we take is a uniform probability in the interval (3, 5).

� The maximum degree of the vertices we take is a uniform probability in the interval (5, 7).

� The number of vertices in the overlap we take is a uniform probability in the interval (5, 7).

� Each vertex in the overlap will be in the k community; we take k with a uniform probability
in the interval (2, 3).

� The size of the smallest community we take is a uniform probability in the interval (10, 15).

� The size of the largest community we take is a uniform probability in the interval (15, 20).
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Original la-
bel

Paramet.
Modul.

Cosine Overlap Paramet.
Overlap

Module
Overlap

Exp. 1
NO : 88 NO : 90 NO : 90 NO : 85 NO : 85

N2 : 88 N2 : 90 N2 : 89 N3 : 1 N2 : 85 N2 : 85

Exp. 2
NO : 74 NO : 116 NO : 74 NO : 2 NO : 2

N4 : 74 N2 : 49 N4 :
40 N3 : 27

N4 : 67 N3 : 6 N5 : 1
N8 : 1

N2 : 2 N2 : 2

Exp. 3
NO : 88 NO : 88 NO : 87 NO : 87 NO : 87

N2 : 88 N2 : 88 N2 : 88 N2 : 87 N2 : 87

Exp. 4
NO : 84 NO : 85 NO : 85 NO : 28 NO : 28

N3 : 84 N3 : 50 N2 :
35

N3 : 76 N2 : 6 N4 : 3 N2 : 27 N3 :
1

N2 : 27 N3 :
1

Exp. 5
NO : 90 NO : 123 NO : 89 NO : 12 NO : 12

N4 : 90 N2 : 68 N3 :
43 N4 : 12

N4 : 55 N3 : 27 N2 :
7

N2 : 12 N2 : 12

Exp. 6
NO : 77 NO : 77 NO : 77 NO : 75 NO : 75

N2 : 77 N2 : 77 N2 : 77 N2 : 75 N2 : 75

Exp. 7
NO : 71 NO : 142 NO : 71 NO : 4 NO : 4

N4 : 71 N2 : 102
N3 : 34 N4 :
6

N4 : 46 N3 : 20 N2 :
3 N5 : 2

N2 : 4 N2 : 4

Exp. 8
NO : 86 NO : 99 NO : 87 NO : 0 NO : 0

N4 : 86 N3 : 36 N4 :
34 N2 : 29

N4 : 78 N3 : 7 N2 : 1
N5 : 1

Exp. 9
NO : 74 NO : 82 NO : 76 NO : 45 NO : 45

N3 : 74 N2 : 53 N3 :
29

N3 : 58 N2 : 16 N4 :
2

N2 : 40 N3 :
5

N2 : 40 N3 :
5

Exp. 10
NO : 84 NO : 101 NO : 85 NO : 3 NO : 3

N4 : 84 N4 : 36 N3 :
35 N2 : 30

N4 : 80 N3 : 4 N2 : 1 N2 : 3 N2 : 3

Table 4: This table illustrates the results of experiment 4 for undirected graphs; Our two
undirected graph algorithms continued to achieve optimal results even when the number of
vertices was increased from 700 to 900, and the Cosine Overlap Algorithm still gives the best
results.
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Original label Di-Paramet. d-
Modul.

Di-Cosine Di-Paramet. sd-
Modul.

Exp. 1
NO : 7 NO : 7 NO : 7 NO : 5

N3 : 7 N2 : 6 N3 : 1 N2 : 4 N3 : 3 N3 : 3 N2 : 2

Exp. 2
NO : 7 NO : 5 NO : 8 NO : 7

N3 : 7 N2 : 3 N3 : 2 N2 : 6 N3 : 2 N2 : 5 N3 : 2

Exp. 3
NO : 5 NO : 6 NO : 4 NO : 5

N3 : 5 N3 : 4 N2 : 2 N2 : 3 N3 : 1 N3 : 4 N2 : 1

Exp. 4
NO : 6 NO : 6 NO : 6 NO : 6

N2 : 6 N2 : 6 N2 : 6 N2 : 6

Exp. 5
NO : 5 NO : 5 NO : 5 NO : 7

N2 : 5 N2 : 5 N2 : 5 N2 : 7

Exp. 6
NO : 6 NO : 4 NO : 6 NO : 7

N3 : 6 N2 : 4 N2 : 4 N3 : 2 N2 : 4 N3 : 3

Exp. 7
NO : 7 NO : 8 NO : 7 NO : 8

N3 : 7 N2 : 8 N2 : 7 N2 : 7 N3 : 1

Exp. 8
NO : 5 NO : 6 NO : 5 NO : 6

N3 : 5 N2 : 5 N3 : 1 N2 : 4 N3 : 1 N2 : 5 N3 : 1

Exp. 9
NO : 6 NO : 5 NO : 7 NO : 4

N3 : 6 N2 : 4 N3 : 1 N2 : 4 N3 : 3 N2 : 2 N3 : 2

Exp. 10
NO : 5 NO : 8 NO : 5 NO : 8

N3 : 5 N2 : 6 N3 : 2 N2 : 3 N3 : 2 N2 : 7 N3 : 1

Table 5: Experimental 1 for directed graphs: Our Directed Cosine Overlap Algorithm yields
the best results for graphs with a small number of vertices, ranging from 50 to 70 families, and
overlapping vertices consisting of 5 to 7 nodes. Nonetheless, Our two different algorithms also
exhibit a high level of accuracy.

This experiment will investigate the number of overlapping vertices identified by the algorithms
and compare it with those generated by the graph generation method. That will enable us to
evaluate the efficiency of our Algorithm. We present the results of Experiment 1 in Table 5.

Experiment 2 for directed graphs:

We will experiment on ten randomly generated graphs using the LFR benchmark graphs mode
with the following parameters:

� The number of vertices we take is a uniform probability in the interval (100, 150).

� The mean degree of each vertex we take is a uniform probability in the interval (5, 7).

� The maximum degree of the vertices we take is a uniform probability in the interval (7, 10).

� The number of vertices in the overlap we take is a uniform probability in the interval
(10, 20).

� Each vertex in the overlap will be in the k community; we take k with a uniform probability
in the interval (2, 4).
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Original label Di-Paramet. d-
Modul.

Di-Cosine Di-Paramet. sd-
Modul.

Exp. 1
NO : 14 NO : 13 NO : 14 NO : 16

N3 : 14 N2 : 12 N3 : 1 N2 : 11 N3 : 3 N2 : 16

Exp. 2
NO : 15 NO : 11 NO : 14 NO : 12

N2 : 15 N2 : 11 N2 : 14 N2 : 12

Exp. 3
NO : 17 NO : 16 NO : 17 NO : 15

N3 : 17 N2 : 14 N3 : 2 N3 : 9 N2 : 8 N2 : 12 N3 : 3

Exp. 4
NO : 19 NO : 6 NO : 6 NO : 6

N3 : 19 N2 : 17 N3 : 1 N3 : 9 N2 : 7 N2 : 17 N3 : 2

Exp. 5
NO : 14 NO : 12 NO : 16 NO : 16

N2 : 5 N2 : 12 N2 : 16 N2 : 16

Exp. 6
NO : 12 NO : 10 NO : 12 NO : 9

N2 : 12 N2 : 10 N2 : 12 N2 : 9

Exp. 7
NO : 10 NO : 10 NO : 10 NO : 9

N2 : 10 N2 : 10 N2 : 10 N2 : 9

Exp. 8
NO : 13 NO : 12 NO : 13 NO : 12

N3 : 13 N2 : 10 N3 : 2 N3 : 9 N2 : 4 N3 : 6 N2 : 6

Exp. 9
NO : 15 NO : 13 NO : 14 NO : 13

N3 : 15 N2 : 9 N3 : 4 N3 : 9 N2 : 5 N2 : 10 N3 : 3

Exp. 10
NO : 12 NO : 11 NO : 11 NO : 14

N2 : 12 N2 : 11 N2 : 11 N2 : 14

Table 6: Experimental 2 for directed graphs: Our observations reveal that even when the number
of vertices in the graph increases from 100 to 150 and the number of overlapping vertices increases
from 10 to 20 nodes, the Cosine Overlap Algorithm yields the best results. Furthermore, our
other two algorithms also deliver highly accurate outcomes.

� The size of the smallest community we take is a uniform probability in the interval (30, 40).

� The size of the largest community we take is a uniform probability in the interval (40, 50).

This experiment will investigate the number of overlapping vertices identified by the algorithms
and compare it with those generated by the graph generation method. That will enable us to
evaluate the efficiency of our Algorithm. We present the results of Experiment 2 in Table 6.

Experiment 3 for directed graphs:

We will experiment on ten randomly generated graphs using the LFR benchmark graphs mode
with the following parameters:

� The number of vertices we take is a uniform probability in the interval (200, 250).

� The mean degree of each vertex we take is a uniform probability in the interval (5, 7).

� The maximum degree of the vertices we take is a uniform probability in the interval (7, 10).
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� The number of vertices in the overlap we take is a uniform probability in the interval
(10, 25).

� Each vertex in the overlap will be in the k community; we take k with a uniform probability
in the interval (2, 4).

� The size of the smallest community we take is a uniform probability in the interval (40, 50).

� The size of the largest community we take is a uniform probability in the interval (50, 60).

This experiment will investigate the number of overlapping vertices identified by the algorithms
and compare it with those generated by the graph generation method. That will enable us to
evaluate the efficiency of our Algorithm. We present the results of Experiment 3 in Table 7.

Experiment 4 for directed graphs:

We will experiment on ten randomly generated graphs using the LFR benchmark graphs mode
with the following parameters:

� The number of vertices we take is a uniform probability in the interval (300, 500).

� The mean degree of each vertex we take is a uniform probability in the interval (7, 10).

� The maximum degree of the vertices we take is a uniform probability in the interval (10, 15).

� The number of vertices in the overlap we take is a uniform probability in the interval
(25, 40).

� Each vertex in the overlap will be in the k community; we take k with a uniform probability
in the interval (2, 4).

� The size of the smallest community we take is a uniform probability in the interval (50, 70).

� The size of the largest community we take is a uniform probability in the interval (70, 80).

This experiment will investigate the number of overlapping vertices identified by the algorithms
and compare it with those generated by the graph generation method. That will enable us to
evaluate the efficiency of our Algorithm. We present the results of Experiment 4 in Table 8.

5.3 Real data and experiments on real data

5.3.1 Real data

In this paper, we will perform experiments on the following famous real data.

Zachary’s karate club:

Wayne W. Zachary studied a social network of a karate club over three years from 1970 to 1972,
as a paper in [43]. The network represents 34 members, recording the connections between
pairs of members who had interactions beyond the club’s premises. After being utilized by
Michelle Girvan and Mark Newman in 2002 [16], the network became a widely-used example of
community structure in networks.
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Original label Di-Paramet. d-
Modul.

Di-Cosine Di-Paramet. sd-
Modul.

Exp. 1
NO : 23 NO : 21 NO : 24 NO : 20

N2 : 23 N2 : 21 N2 : 22 N3 : 2 N2 : 20

Exp. 2
NO : 19 NO : 18 NO : 16 NO : 18

N2 : 19 N2 : 18 N2 : 16 N2 : 18

Exp. 3
NO : 13 NO : 15 NO : 13 NO : 16

N4 : 13 N3 : 11 N2 : 4 N3 : 9 N2 : 3 N4 :
1

N3 : 12 N2 : 4

Exp. 4
NO : 17 NO : 19 NO : 17 NO : 20

N4 : 17 N3 : 10 N2 : 9 N3 : 10 N2 : 7 N3 : 10 N2 : 10
N2 : 6

Exp. 5
NO : 16 NO : 15 NO : 19 NO : 21

N4 : 16 N3 : 7 N2 : 6 N4 :
2

N2 : 9 N3 : 7 N4 :
3

N2 : 14 N3 : 5
N4 : 2

Exp. 6
NO : 24 NO : 22 NO : 22 NO : 28

N3 : 24 N2 : 12 N3 : 10 N2 : 17 N3 : 5 N2 : 17 N3 : 11

Exp. 7
NO : 16 NO : 16 NO : 16 NO : 16

N2 : 16 N2 : 16 N2 : 16 N2 : 16

Exp. 8
NO : 23 NO : 21 NO : 23 NO : 24

N4 : 23 N2 : 14 N3 : 5
N4 : 2

N2 : 10 N3 : 10
N4 : 3

N2 : 16 N3 : 8

Exp. 9
NO : 25 NO : 27 NO : 27 NO : 33

N4 : 25 N3 : 12 N2 : 10
N4 : 5

N2 : 12 N3 : 11
N4 : 4

N2 : 15 N3 : 11
N4 : 7

Exp. 10
NO : 24 NO : 17 NO : 26 NO : 20

N3 : 24 N2 : 15 N3 : 2 N2 : 16 N3 : 10 N2 : 18 N3 : 2

Table 7: Experimental 3 for directed graphs: Continuing our investigation by gradually increas-
ing the number of vertices in the graph to a range of 200-250 nodes and overlapping vertices from
10 to 25, we consistently obtain the same conclusion. The Cosine Overlap Algorithm remains
the most effective, while our other two algorithms also exhibit high precision.
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Original label Di-Paramet. d-
Modul.

Di-Cosine Di-Paramet. sd-
Modul.

Exp. 1
NO : 27 NO : 30 NO : 27 NO : 29

N3 : 27 N3 : 26 N2 : 4 N3 : 23 N2 : 4 N3 : 25 N2 : 4

Exp. 2
NO : 39 NO : 41 NO : 38 NO : 42

N4 : 39 N3 : 23 N4 : 11
N2 : 7

N3 : 21 N2 : 12
N4 : 5

N3 : 22 N4 : 12
N2 : 8

Exp. 3
NO : 32 NO : 32 NO : 32 NO : 34

N2 : 32 N2 : 32 N2 : 32 N2 : 34

Exp. 4
NO : 38 NO : 37 NO : 37 NO : 37

N3 : 38 N2 : 22 N3 : 15 N3 : 23 N2 : 14 N2 : 21 N3 : 16

Exp. 5
NO : 28 NO : 28 NO : 28 NO : 30

N3 : 28 N3 : 19 N2 : 9 N3 : 16 N2 : 11
N4 : 1

N3 : 20 N2 : 10

Exp. 6
NO : 37 NO : 37 NO : 36 NO : 45

N2 : 37 N2 : 37 N2 : 35 N3 : 1 N2 : 44 N3 : 1

Exp. 7
NO : 30 NO : 31 NO : 30 NO : 30

N2 : 30 N2 : 31 N2 : 30 N2 : 30

Exp. 8
NO : 26 NO : 25 NO : 26 NO : 27

N3 : 26 N3 : 14 N2 : 11 N3 : 14 N2 : 12 N2 : 14 N3 : 13

Exp. 9
NO : 35 NO : 38 NO : 32 NO : 39

N2 : 35 N2 : 38 N2 : 31 N3 : 1 N2 : 39

Exp. 10
NO : 28 NO : 30 NO : 28 NO : 29

N3 : 28 N3 : 20 N2 : 10 N3 : 19 N2 : 9 N3 : 23 N2 : 6

Table 8: Experimental 4 for directed graphs: Ultimately, we still obtain consistent outcomes
when we increase the number of vertices in the graph from 300 to 500 and the number of
overlapping vertices from 25 to 40. Our Cosine Overlap Algorithm remains the most effective,
while the other two produce precise results.
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Dolphin’s associations:

The dataset used in this study was obtained from [25]. It describes the connections between
62 dolphins living in Doubtful Sound, New Zealand, where the links between pairs of dolphins
represent statistically significant frequent associations. This network can be naturally divided
into two distinct groups.

College football:

The college football network analyzed in [16] has been adopted as a standard benchmark for
community detection. This network depicts the games played by Division I colleges during the
regular season in the autumn of 2000, where each node represents a football team and each
edge represents a regular season game. With 115 nodes and 616 edges, the network can be
partitioned into 12 communities based on athletic conferences, with each community containing
8 to 12 teams.

Jazz network:

We obtained the data from The Red Hot Jazz Archive digital database [44]. Their analysis
includes 198 bands that performed between 1912 and 1940, with most bands playing in the
1920s. The database lists the musicians who played in each band. Still, it needs to differentiate
which musicians played at different times, making it impossible to study the temporal evolution
of the collaboration network. The 1275 other names of musicians are distributed among the
bands.

Metabolic network:

According to [19], a metabolic network represents the comprehensive collection of metabolic and
physical processes that dictate a cell’s physiological and biochemical characteristics. Therefore,
these networks consist of metabolic reactions, pathways, and the regulatory interactions that
direct these reactions.

Email network:

As stated in [17], the email network was created by analyzing email exchanges among approx-
imately 1700 employees within a medium-sized university. Email networks are a reliable and
non-intrusive way to depict how information flows within human organizations. The study re-
vealed that the network organized itself into a state where the distribution of community sizes
was self-similar.

In addition, we will also perform experiments on the following real data: Hamster households,
hamster friendships, DNC co-recipient, and Asoiaf. These data we can see in [23].

5.3.2 Experiments on real data

We will conduct experiments on all four algorithms for each real network. We will perform 20
experiments with 20 different parameters for each Algorithm and select the clustering result
with the highest Modularity among those experiments. Specifically, the parameters for each
Algorithm will be set as follows:
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Graph,
G = (|V |, |E|)

Paramet. Modul.
overlap

Cosine Overlap Paramet. Over-
lap

Module Overlap

Dolphin’s associa-
tions [25], G =
(62, 159)

0.531895337674 0.53094150322 0.528294799784 0.53094150322

Zachary’s karate
club [43], G =
(34, 78)

0.430041913215 0.419789612097 0.426799802761 0.42679980276

Metabolic
network [19],
G = (453, 2025)

0.453017231486 0.437497244045 0.4501564863 0.444779475254

College foot-
ball [16],
G = (115, 613)

0.610320160024 0.607710626963 0.605620296867 0.60440722891

Jazz network [18],
G = (198, 2742)

0.4551599877295 0.448597518592 0.447319862619 0.444517929222

Email net-
work [17],
G = (1133, 5451)

0.590076882399 0.580598607432 0.591096281957 0.578600803260

Hamster house-
holds [23],
G = (921, 4032)

0.38044958047 0.365814675655 0.378205207170 0.3774382660141

Hamsters friend-
ships [23], G =
(1858, 12534)

0.469201717136 0.4512991517167 0.453775622073 0.4547541325587

DNC co-
recipient [23],
G = (906, 10429)

0.443415207455 0.44206605884 0.441983027638 0.443116266090

Asoiaf [23], G =
(796, 2823)

0.606235436820 0.60978808427 0.611979108748 0.609218205843

Table 9: Table showing experimental results obtained from real data

� Parameterized Modularity Overlap Algorithm: we will use the coefficient θ = 1+0.1t with
t ∈ {1, 2, . . . , 20}.

� Cosine Overlap Algorithm: we will use the coefficient θ = 0.2+0.035t with t ∈ {1, 2, . . . , 20}.

� Parameterized Overlap Algorithm: we will use the coefficient θ = 0.2 + 0.015t with t ∈
{1, 2, . . . , 20}.

� Module Overlap Algorithm: we will set the coefficient BU to 0.5 and use the coefficient
BL = 0.2 + 0.015t with t ∈ {1, 2, . . . , 20}.

5.4 Conclusion of the experiments

The above results show that our two algorithms are efficient in almost all experiments.
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� Most experiments give better results for the Parameterized Modularity Overlap Algorithm
than the Parameterized Overlap Algorithm and the Module Overlap Algorithm. Moreover,
this Algorithm has the advantage of low computational complexity.

� We built The Cosine Overlap Algorithm by observing the network’s relationship between
random walks and community structure. Although the computational complexity will
be greater than the Parameterized Modularity Overlap Algorithm, all experiments on the
Cosine algorithm randomization graph are for the best results. Furthermore, the Algorithm
makes a lot of sense in theory and is an interesting algorithm that deserves attention.

� Our algorithms for undirected graphs perform better than the other two algorithms, espe-
cially when each overlapping vertex belongs to more than two communities.

� Our directed graph algorithms demonstrate remarkable efficiency compared to the indices
generated based on the graph generation method. Especially the Directed Cosine Overlap
Algorithm, in most cases, gets the best results.

6 Conclusion and further work

In this paper, we have proposed two algorithms for overlapping community detection for undi-
rected and directed graphs; our algorithms go through 2 steps. In step 1, we separate community
detection using the algorithms we know, such as the Hitting times Walktrap algorithm, NL-PCA
algorithm[11], Walktrap algorithm [36] or Louvain algorithm [40]. In step 2, we look for over-
lapping communities. Specifically, we have proposed the following two algorithms.

� The Parameterized Modularity Overlap Algorithm uses the idea that vertex u belongs to
the community Cj if the sum of the probabilities from vertex u to the community Cj and
the probabilities from community Cj to vertex u is large enough.

� In the Cosine Overlap Algorithm, we first coordinate the vertices of the graph, then find
the centers of the clusters and use the idea that the vertex u belongs to the cluster Cj if
the angle between the vector corresponds to the vertex u and the center of the cluster Cj
is small.

In the future, we will continue to study the problem of finding overlapping communities based
on two vertices belonging to a community through other criteria, such as using cut, distance,
and cosine.
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