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Nonuniform Berry-Esseen bound for self-normalized series
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Abstract In this paper, we shall obtain nonuniform Berry-Esseen bounds in the central limit theo-
rem for self-normalized series. We establish the exponential Berry-Esseen bounds for the probability
of the self-normalized series under the condition that the third moment is finite.
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1 Introduction

Let X1, X2, ... be a sequence of independent random variables with EXi = 0 and 0 < EX2
i <∞ for

i ≥ 1. Let b ∈ (0, 1) be the discount factor. The random power series Sb can be defined as

Sb = X0 + bX1 + b2X2 + ...

From the financial point of view, Xi stands for the (random) money that we will get at i-th
year of a contract, for example a coupon bond and Sb is the present value of the cash flow. In the
literature, Sb is also called the perpetuities (see [2], [9], [10]) for more detail.

The study of this quantity has drawn much of interest and it has a long history for more than 50
years. Let us mention some remarkable results for the simplest case that the random variables Xi’s
are independent, identically distribution (i.i.d). In 1971, Gerber [8] provided a Berry-Esseen bound
for the following central limit theorem as b→ 1−,√

1− b2Sb
d−→ N (0, σ2),

where σ2 = EX2
1 .
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In 1974, Lai [13] proved the strong law of large number

Xb

1− b
a.s−→ 0.

The law of iterated logarithm

lim sup
b→1−1

√
1− b2

log log(1/(1− b2))
Sb =

√
2σ

was proved by Gaposhkin [7] in 1965.
Recently, Iksanov consider a generalization with stochastic discount rates and provide the ana-

logue versions of the above results.
In this paper, we are interested in the self-normalized series (denote by Sb/Vb)

X0 + bX1 + b2X2 + ...√
X2

0 + b2X2
1 + b4X2

2 + ...

with V 2
b = X2

0 + b2X2
1 + b4X2

2 + ...
Self-normalized series can be seen as an extension of self-normalized sum, defined as

Sn

Vn
=

X1 + ...+Xn√
X2

1 + ...+X2
n

,

where again the random variables Xi’s are i.i.d with mean zero and finite variance.
The self-normalized sum is also an attractive research direction both in Probability and Statistics,

(see [15, Self-normalized limit theorem: A survey, Probability Surveys]) for more detail.
From the distribution of Sn/Vn, one can make a suitable change of variable to deduce the dis-

tribution of the classical Student t- statistics and also the studentized t-statistics. This research
direction has been studied extensively with many interesting and nice results: Nonuniform Berry-
Esseen bound [12, Wang and Jing], Cramér type large (moderate) deviation [11, Jing, Shao and
Wang], the law of iterated logarithm [11, Jing, Shao and Wang], Donsker type functional central
limit theorem [3, Csörgő, Szyszkowicz and Wang]. It is also interesting to consider some questions
for the self-normalized series model. In 2006, Fu and Huang [6] confirmed the self-normalized law of
iterated logarithm.

The purpose of this paper is to establish a nonuniform Berry-Esseen bound for the self-normalized
series Sb/Vb. In other words, we wish to obtain a bound for

δb(x) := |P(Sb/Vb ≤ x)− Φ(x)|.

Our main result is the following theorem.

Theorem 1 Let X1, X2, ... be a sequence of independent, symmetric random variables with E
(
|Xj |3

)
<

∞ for all j = 1, 2, ... Set B2
b =

∑∞
j=1 b

2jEX2
j , L3b = B−3b

∑∞
j=1 b

3jE|Xj |3.

(i) If |x| ≤ (5L
1/3
3b )−1, we have

δb(x) ≤ A

(1 + x2)L3b +

∞∑
j=1

P(|bjXj | > Bb/(6|x|))

 exp

(
−x

2

2

)
. (1.1)
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(ii) If |x| > (5L
1/3
3b )−1, we have

δb(x) ≤
(

1 +
1√

2π|x|

)
exp

(
−x

2

2

)
. (1.2)

Under the assumption E|Xj |3 < ∞, by applying Markov’s inequality for |x| ≤ (5L
1/3
3b )−1, we

obtain the following corollary.

Corollary 1 Let X1, X2, ... be a sequence of independent, symmetric random variables with E
(
|Xj |3

)
<

∞, for all j = 1, 2, ... Then for all x ∈ R, we have

δb(x) ≤ Amin{(1 + |x|3)L3b, 1} exp

(
−x

2

2

)
.

Before proving the main result, we need some the following technical lemmas.

2 Some technical lemmas

Lemma 1 Let X1, X2, ... be a sequence of independent, symmetric random variables with E
(
|Xn|3

)
<

∞ for all n = 1, 2, ...

(i) For all n ≥ 1 and x > 0 such that (1 + x3)L3b ≤
1

125
, we have

P
(
Sb > x(V 2

b +B2
b )/(2Bb)

)
= (1− Φ(x)) exp(r1b(x)) + exp

(
−x2

2

)
r2b(x), (2.1)

where |r1b(x)| ≤ 14x3L3b and |r2b(x)| ≤ A(1 + x2)L3b exp(14x3L3b).

(ii) For n ≥ 1 and x ≥ 1 satisfying x3  L3b ≤
1

125
, we have

P(Sb > x(V 2
b +B2

b )/(2Bb)) = (1− Φ(x))(1 + r3b(x)), (2.2)

where |r3b(x)| ≤ Ax(1 + x2)L3b exp(14x3L3b).

Proof Set

h =
x

Bb
, ηj = bjXj −

h

2
(b2jX2

j − b2jσ2
j ).

Then the left-hand side of (2.1) is equivalent to

P(Sb > x(V 2
b +B2

b )/(2Bb)) = P

 ∞∑
j=1

ηj > xBb

 . (2.3)

Next, we apply the conjugate method which was first introduced by Esscher [4] and improved by
Feller [5]. Let ξ1, ξ2, ... be independent random variables with ξi having distribution function defined
by

Vj(u) = E(exp(hηj)1(ηj ≤ u))/E(exp(hηj)) for j = 1, 2, ...

We also define

M2
b (h) =

∞∑
j=1

Var(ξj)
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and

Gb(t) = P

(∑∞
j=1(ξj − Eξj)
Mb(h)

≤ t

)
, Rb(h) =

xBb −
∑∞

j=1 Eξj
Mb(h)

.

By the well-known equation
∫∞
0

exp(−sx) dΦ(x) = exp

(
−x

2

2

)
(1− Φ(s)) and using inverse Laplace

transform, we have

P

 ∞∑
j=1

ηj > xBb

 =

 ∞∏
j=1

E exp(hηj)

∫ ∞
xBb

exp(−hu)dP(

∞∑
j=1

ξj ≤ u)

=

 ∞∏
j=1

E exp(hηj)

∫ ∞
0

exp(−hxBb − hMb(h)v)dGb(v +Rb(h))

=

 ∞∏
j=1

E exp(hηj)

 e−x
2

(∫ ∞
0

exp(−hMb(h)v)d(Gb(v +Rb(h))− Φ(v))

+

∫ ∞
0

exp(−hMb(h)v)dΦ(v)

)
= I0(h) exp(−x2)

(
exp

(
x2

2

)
(1− Φ(x)) + I1(h) + I2(h) + I3(h)

)
,

(2.4)

where

I0(h) =
∏∞

j=1 E exp(hηj),

I1(h) =
∫∞
0

exp(−hMb(h)v)d(Gb(v +Rb(h))− Φ(v +Rb(h))),

I2(h) =
∫∞
0

exp(−hMb(h)v)d(Φ(v +Rb(h))− Φ(v)),

I3(h) =
∫∞
0

exp(−hMb(h)v − exp(−xv))dΦ(v).

We will establish some inequalities before estimating Ij(h) for j = 1, 2, 3.
It follows from Jensen’s inequality that σ3

j ≤ E|Xj |3.

Combining this and the assumption (1 + x3)L3b ≤
1

125
, we have

bjσjh =
bjσjx

Bb
≤
(
x3B−3b b3jE|Xj |3

)1/3 ≤ 1

5
. (2.5)

Thus

hηj = −1

2
h2(bjXj − h−1)2 +

1

2
+

1

2
b2jσ2

jh
2 ≤ 13

25
. (2.6)
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From (2.5), the symmetry assumption and E|Xj |3 <∞, we have

|E(ηj1(|bjXj | ≤ h−1))| =
∣∣∣∣E((bjXj −

h

2
(b2jX2

j − b2jσ2
j )

)
1(|bjXj | > h−1)

)∣∣∣∣
≤ E(|bjXj |1(|bjXj | > h−1)) +

h

2
E((bjXj)

21(|bjXj | > h−1))

+
h

2
E((bjσj)

21(|bjXj | > h−1))

≤ h2E(|bjXj |31(|bjXj | > h−1)) +
h2

2
E(|bjXj |31(|bjXj | > h−1))

+
h2

2
E(|bjσj |3b2jσ2

jh
21(|bjXj | > h−1))

≤ 2h2E(|bjXj |31(|bjXj | > h−1)).

(2.7)

Similarly, we also have

|E(η2j1(|bjXj | ≤ h−1)− b2jσ2
j )| ≤ 3

2
h
(
E|bjXj |3 + hb4jσ4

j

)
, (2.8)

E(|ηj |31(|bjXj | ≤ h−1)) ≤ 6E
(
|bjXj |31(|bjXj | ≤ h−1)

)
+ 2h3b6jσ6

j . (2.9)

We have

E exp(nηj) = E
(
exp(hηj)1(|bjXj | ≤ h−1)

)
+ E

(
exp(hηj)1(|bjXj | > h−1)

)
= E

((
1 + hηj +

1

2
(hηj)

2

)
1(|bjXj | ≤ h−1)

)
+ E

(
exp(hηj)1(|bjXj | > h−1)

)
+ E

((
exp(hηj)− 1− hηj −

1

2
(hηj)

2

)
1(|bjXj | ≤ h−1)

)
= 1 +

1

2
h2b2jσ2

j + l1j(h)

= exp

(
1

2
h2b2jσ2

j + l2j(h)

)
,

(2.10)

(E exp(hηj))
−1

= 1− 1

2
h2b2jσ2

j + l3j(h), (2.11)

where

l1j(h) = −P(|bjXj | > h−1) + hE(ηj1(|bjXj | ≤ h−1)) +
1

2
h2E(η2j1(|bjXj | ≤ h−1)− b2jσ2

j )

+ E(exp(hηj)1(|bjXj | > h−1)) + E
(

(exp(hηj)− 1− hηj −
1

2
(hηn)2)1(|bjXj | ≤ h−1)

)
.
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Applying the elementary inequality

∣∣∣∣ex − 1− x− x2

2

∣∣∣∣ ≤ |x|3e|x|6
for all x ∈ R, and noting that

exp(xhηj ≤ 2) for 0 ≤ x ≤ 1, we get

|l1j(h)| ≤ h|E
(
ηj1(|bjXj | ≤ h−1)

)
+

1

2
h2|E(η2j1(|bjXj | ≤ h−1)− b2jσ2

j )|

+
1

3
h3E

(
|ηj |31(|bjXj | ≤ h−1)

)
+ 3P(|bjXj | > h−1)

≤ 2h3E
(
|ηj |31(|bjXj | > h−1)

)
+

3

4
h3
(
E|bjXj |3 + hb4jσ4

j

)
+

1

3
h36E

(
|ηj |31(|bjXj | ≤ h−1)

)
+ 2h3b6jσ6

j

≤ 7h3E|bjXj |3,

|l2j(h)| ≤ 2|l1j(h)| ≤ 14h3E|bjXj |3,
|l3j(h)| ≤ 2|l1j(h)| ≤ 14h3E|bjXj |3.

It is proved by Wang and Jing [12] that

|E(ηj exp(hηj))− hb2jσ2
j | ≤ 16h2E|bjXj |3, (2.12)

|E(η2j exp(hηj))− b2jσ2
j | ≤ 30hE|bjXj |3, (2.13)

E(|ηj |3 exp(hηj)) ≤ 30E|bjXj |3. (2.14)

It follows from (2.5)–(2.14) that

Eξj =
E(ηj exp(hηj))

E(exp(hηj))
= hb2jσ2

j + l4j(h), (2.15)

where

l4j(h) =

(
1

E(exp(hηj))
− 1

)
E(ηj exp(hηj)) + E(ηj exp(hηj))− hb2jσ2

j .

Thus, by (2.5),(2.11), (2.12), we get

|l4j(h)| ≤
∣∣∣∣( 1

E(exp(hηj))
− 1

)
E(ηj exp(hηj))

∣∣∣∣+ |E(ηj exp(hηj))− hb2jσ2
j |

≤ |(l3j(h)− 1

2
h2b2jσ2

j )(hb2jσ2
j + 16h2b3jE|Xj |3)|+ 16h2b3jE|Xj |3

≤ 22h4b5jσ2
jE|Xj |3 + 224h5b6j(E|Xj |3)2 + 16h2b3jE|Xj |3 +

1

2
h3b4jσ4

j

≤ 20h2b3jE|Xj |3.

Similarly, we also have

Var(ξj) =
E(η2j exp(hηj))

(E exp(hηj))2
− (Eξj)2 = b2jσ2

j + l5j(h), (2.16)

and
E|ξj |3 = E(|η|3 exp(hηj))/E exp(hηj) ≤ 34b3jE|Xj |3, (2.17)
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where |l5j(h)| ≤ 41hb3jE|Xj |3.
It follows |l5j(h)| ≤ 41hb3jE|Xj |3 and the assumption (1 + x3)L3b ≤ 1/125, it is easy to obtain

that

M2
b (h) = B2

b +

∞∑
j=1

l5j(h) >
2

3
B2

b . (2.18)

We are now estimate Ij(h), 0 ≤ j ≤ 3. For I0(h), using (2.10) we have

I0(h) = exp

1

2
h2B2

b +

∞∑
j=1

l2j(h)

 = exp

(
x2

2

)
exp

 ∞∑
j=1

l2j(h)

 . (2.19)

By (2.15)–(2.19), the Berry-Esseen bound and Taylor expansion, we have

I1(h) ≤ sup
x
|Gn(v)− Φ(v)| ≤ A

M3
b (h)

∞∑
j=1

E|ξj − Eξj |3 ≤ AL3b, (2.20)

I2(h) ≤ sup
x
|Φ(v +Rn(h))− Φ(v)| ≤ A

Mb(h)

∞∑
j=1

|l4j(h)| ≤ Ax2L3b. (2.21)

By applying the mean value estimate to I3(h) [see Petrov [14], page 227], we have

I3(h) ≤ 1

x

∣∣∣∣Mb(h)

Bb
− 1

∣∣∣∣max

{
1,
B2

b

M2
b

}
≤ 3

2x

∣∣∣∣ M2
b (h)−B2

n

Bb(Mb(h) +Bn)

∣∣∣∣
≤ AL3b.

(2.22)

Combining (2.3), (2.4) and (2.19)–(2.22), we get

P(Sb > x(V 2
b +B2

b )/(2Bb)) = exp

(
−x

2

2

)
exp(r1b(x))

(
exp

(
x2

2

)
(1− Φ(x)) + I1(h) + I2(h) + I3(h)

)
= (1− Φ(x)) exp(r1b(x)) + exp

(
−x

2

2

)
r2b(x),

where r1b(x) =
∑∞

j=1 l2j(h) and r2b(x) = exp(r1b(x))(I1(h) + I2(h) + I3(h)).
Thus

|r1b(x)| =
∞∑
j=1

|l2j(h)| ≤ 14x3L3b,

and
|r2b(x)| = exp(|r1b(x)|)(|I1(h)|+ |I2(h)|+ |I3(h)|) ≤ A(1 + x2)L3b exp(14x3  L3b).

We thus have completed the proof of Lemma 2.1(i).
(ii) By the same proof as part (i), we also see that in the case n ≥ 1 and x ≥ 1 satisfying

x3L3b ≤ 1/125, (2.1) holds. Hence, the proof of (2.2) obtains by using the inequalities et ≤ 1 + tet

and 1− Φ(t) ≤ 1√
2πt

exp

(
− t

2

2

)
for t > 0.
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Lemma 2 Let ε1, ε2, ... be i.i.d. Rademacher random variables, that is, P(εj = ±1) = 1/2. Then

for any x ≥ 1 and any sequence a1, a2, ... satisfying |aj | ≤ Bb/(6x) and
∑∞

n=1 a
2
j >

4

9
B2

b , we have

P

 ∞∑
j=1

ajεj > x

 ∞∑
j=1

a2j

1/2
 ≤ (1− Φ(x))

(
1 +Ax(1 + x2)L∗3b exp(2x3L∗3b)

)
, (2.23)

where L∗3b = B−3b

∑∞
j=1 |aj |3.

The proof of Lemma 2 follows very similar lines to those of Lemma 1, so we omit it.

Lemma 3 Let {ai, i ≥ 1} be any sequence of real numbers. Set A2
∞ =

∑∞
i=1 a

2
i and T∞ =

∑∞
i=1 εiai.

Then, for all x > 0

P(T∞ > xA∞) ≤ exp

(
−x

2

2

)
.

where {εi, i ≥ 1} is i.i.d Rademacher random variables.

Proof For any u > 0, by Markov’s inequality, we have

P(T∞ > xA∞) ≤ exp(−uxA∞)E exp(uT∞) = exp(−uxA∞)

∞∏
i=1

cosh(uai)

≤ exp(−uxA∞)

∞∏
i=1

exp

(
u2a2i

2

)
= exp(−uxA∞ + u2A2

∞/2).

The proof of Lemma 3 is complete by choosing u = −xA2
∞.

Lemma 4 Let X1, X2, ... be independent, symmetric random variables. Then for any x ≥ 0 and
n ≥ 1, we have

P(Sb > xVb) ≤ exp

(
−x

2

2

)
.

Proof Similarly, in [12, Lemma 43], we assume that {Xj , j ≥ 1} are defined on a probability space
(Ω,F ,P) which also supports a sequence of independent Rademacher random variables {εj , j ≥ 1}
independent of {Xj , j ≥ 1}. By the symmetry of Xj and independence Xj and εj , we have that

P(Sb > xVb) = P

 ∞∑
j=1

Xjεj > xVb


=

∫ ∫
...P

 ∞∑
j=1

xjεj > x

 ∞∑
j=1

x2j

1/2
 dF1(x1)dF2(x2)...

≤ exp

(
−x

2

2

)
(by Lemma 3).

This ends the proof of the lemma.
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Lemma 5 Let X1, X2, ... be independent random variables. Then for x ≥ 1, y ≥ 0 and k ≥ 1, we
have

P(Sb > xVb, |bkXk| > y) ≤ P(|bkXk| > y)P

 ∞∑
j 6=k,j=1

bjXj > (x2 − 1)1/2

 ∞∑
j 6=k,j=1

b2jX2
j

1/2
 .

Proof We observe that, for any real number a, then

abkXk −
x

2
(b2kX2

k + a2) = −x
2

(
bkXk −

a

x

)2
− xa2

2
+
a2

2x

≤ a2

2

(
1

x
− x
)
.

Thus, we get that

P(Sb > xVb, |bkXk| > y) = P
(
Sb > inf

a>0

x

2a
(V 2

b + a2), |bkXk| > y

)

= P

sup
a>0

 ∞∑
j=1

(abjXj −
x

2
b2jX2

j )− x

2
a2

 > 0, |bkXk| > y


= P

sup
a>0

 ∞∑
j 6=k,j=1

(abjXj −
x

2
b2jX2

j ) + abkXk −
x

2
b2kX2

k −
x

2
a2

 > 0, |bkXk| > y


≤ P

sup
a>0

 ∞∑
j 6=k,j=1

(abjXj −
x

2
b2jX2

j ) +
a2

2
(
1

x
− x)

 > 0, |bkXk| > y


= P

 ∞∑
j 6=k,j=1

bjXj > inf
a>0

x

2a

 ∞∑
j 6=k,j=1

b2jX2
j + a2(1− 1

x2
)

 , |bkXk| > y


= P

 ∞∑
j 6=k,j=1

bjXj > (x2 − 1)1/2

 ∞∑
j=1,j 6=k

b2jX2
j

1/2

, |bkXk| > y


= P(|bkXk| > y)P

 ∞∑
j 6=k,j=1

bjXj > (x2 − 1)1/2

 ∞∑
j 6=k,j=1

b2jX2
j

1/2
 .

(2.24)

The lemma is proved.

We are now ready to prove Theorem 1. To bound δb(x), it suffices to consider x > 0 since we can
simply apply result to −Xj when x < 0. For 0 < x ≤ 1, (1.1) was proved by Bentkus, Bloznelis and

Götze [1]. We consider the case where 1 ≤ x ≤ (5L
1/3
3b )−1. By applying the elementary inequality

2BbVb ≤ B2
b + V 2

b and Lemma 1(ii), we have

P(Sb > xVb) ≥ P(2BbSb > x(V 2
b + S2

b ))

≥ (1− Φ(x))(1−Ax(1 + x2)L3b).
(2.25)
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Combining this and the inequality 1− Φ(x) ≤ 1√
2πx

exp

(
−x

2

2

)
for x ≥ 0 implies that

P(Sb ≤ xVb)− Φ(x) ≤ (1− Φ(x))Ax(1 + x2)L3b ≤ A(1 + x2)L3b exp

(
−x

2

2

)
.

Hence, to prove (1.1), it suffices to show that

P(Sb > xVb) ≤ (1− Φ(x)) +A

(1 + x2)L3b +

∞∑
j=1

P(|bjXj | > Bb/(6x)) exp

(
−x

2

2

) . (2.26)

Set

Yj = bjXj1(|bjXj | ≤ Bb/(6x)), S∗b =

∞∑
j=1

Yj , V ∗2b =

∞∑
j=1

Y 2
j .

For x ≥ 1, it follows from Lemma 4 and Lemma 5 that

P(Sb > xVb) ≤
∞∑
k=1

P
(
Sb > xVb, |bkXk| >

Bb

6x

)
+ P(S∗b > xV ∗b )

≤
∞∑
k=1

P
(
|bkXk| >

Bb

6x

)
P

 ∞∑
j 6=k,j=1

bjXj > (x2 − 1)1/2

 ∞∑
j 6=k,j=1

b2jX2
j

1/2
+ P(S∗b > xV ∗b )

≤
∞∑
k=1

P
(
|bkXk| >

Bb

6x

)
exp

(
−x

2 − 1

2

)
+ P(S∗b > xV ∗b )

≤ e
∞∑
k=1

P
(
|bkXk| >

Bb

6x

)
exp

(
−x

2

2

)
+ P(S∗b > xV ∗b ).

(2.27)

Denote Fj(x) to be distribution function of Xj for j ≥ 1. Using the assumption |x| ≤ (5L
1/3
3b )−1, the

inequalities et ≤ 1 + tet and et ≥ 1 + t for t ≥ 0, we have for i ≥ 1,

∞∏
j 6=i,j=1

E(exp(2x3B−3b |Yj |
3)) ≤

∞∏
j 6=i,j=1

(
1 + 2x3B−3b E|Yj |3e2/125

)
≤

∞∏
j 6=i,j=1

exp(4x3B−3b E|Yj |3)

≤ exp(4x3L3b)

≤ 2.

(2.28)

We will now bound P(S∗b > xV ∗b ). Similarly in the proof of Lemma 3, we assume that {Yj , j ≥ 1} are
defined on a probability space (Ω,F ,P) which also supports a sequence of independent Rademacher
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random variables {εj , j ≥ 1} independent of the sequence {Yj , j ≥ 1}. By symmetry of Xj , we have
that

P(S∗b > xV ∗b ) = P

 ∞∑
j=1

Yjεj > xV ∗b


≤ P

 ∞∑
j=1

Yjεj > xV ∗b , V
∗2
b >

4

9
B2

b

+ P
(
V ∗2b ≤ 4

9
B2

b

)
.

(2.29)

It follows from (2.28) and Lemma 2 that

P

 ∞∑
j=1

Yjεj > xV ∗b , V
∗2
b >

4

9
B2

b


=

∫ ∫
...∑∞

j=1 y2
j>

4

9
B2

b ,|yj |≤Bb/(6x),j=1,2,..

P

 ∞∑
j=1

yjεj > x

 ∞∑
j=1

y2j

1/2
dF1(y1)dF2(y2)...

≤ (1− Φ(x))

∫ ∫
...|yj |≤Bb/(6x),j=1,2,..

×

1 +Ax(1 + x2)B−3b

∞∑
i=1

|yj |3 exp(2x3B−3b

∞∑
j=1

|yj |3)

 dF1(y1)dF2(y2)...

≤ (1− Φ(x))

1 +Ax(1 + x2)B−3b

∞∑
i=1

E

|Yj |3 exp(2x3B−3b

∞∑
j=1

|Yj |3)


≤ (1− Φ(x))

1 +Ax(1 + x2)B−3b

∞∑
i=1

E|Yj |3
 ∞∏

j 6=i,j=1

E exp(2x3B−3b

∞∑
j=1

|Yj |3)


≤ (1− Φ(x)) +A(1 + x2)L3b exp

(
−x2

2

)
.

(2.30)

We will next bound P
(
V ∗2b ≤ 4

9
B2

b

)
. Firstly, we note that

∞∑
j=1

E
(
b2jX2

j 1

(
|bjXj | >

Bb

6x

))
≤ 6x

Bb

∞∑
j=1

E|bjXj |3 ≤
6

125
B2

b . (2.31)

∞∑
j=1

EY 2
j = B2

b −
∞∑
j=1

E(b2jX2
j 1(|bjXj | > Bb/(6x))). (2.32)
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Then for any t > 0, by using (2.31), (2.32), the inequalities 1 + |x| ≤ e|x|, ex ≤ 1 + x + 1/2x2e|x|,
Var(Y 2

j ) ≤ EY 4
j ≤ b3jE|Xj |3Bb/(6x) and Markov’s inequality, we have

P
(
V ∗2b ≤ 4

9
B2

b

)
= P

 ∞∑
j=1

(EY 2
j − Y 2

j ) >
5

9
B2

b −
∞∑
j=1

E(b2jX2
j 1(|bjXj | > Bb/(6x)))


≤ P

 ∞∑
j=1

(EY 2
j − Y 2

j ) >
1

2
B2

b


≤ e−t/2

∞∏
j=1

E exp(tB−2b (EY 2
j − Y 2

j ))

≤ e−t/2
∞∏
j=1

(
1 +

1

2
t2B−4b Var(Y 2

j ) exp

(
tx−2

36

))

≤ e−t/2
∞∏
j=1

exp

(
t2b3jE|Xj |3

6xB3
b

(
tx−2

36

))

≤ e−t/2
∞∏
j=1

exp

(
t2

6x
L3b

(
tx−2

36

))
.

Choosing t = 4x2(1 + x−2 logL
−1/2
3b ), we obtain

P
(
V ∗2b ≤ 4

9
B2

b

)
≤ AL3b exp

(
−x2

2

)
. (2.33)

Combining (2.29), (2.30) and (2.33), we get

P(S∗b > xV ∗b ) ≤ (1− Φ(x)) +A(1 + x2)L3b exp

(
−x2

2

)
. (2.34)

Then (2.26) implies from (2.27) and (2.34). The proof of Theorem 1.1 is thus completed.

(ii) The proof of (1.2) implies from the inequality 1 − Φ(x) ≤ 1√
2πx

exp

(
−x

2

2

)
for x > 0 and

Lemma 4.
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