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Nonuniform Berry-Esseen bound for self-normalized series
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Abstract In this paper, we shall obtain nonuniform Berry-Esseen bounds in the central limit theo-
rem for self-normalized series. We establish the exponential Berry-Esseen bounds for the probability
of the self-normalized series under the condition that the third moment is finite.

Keywords Nonuniform bound, Berry-Esseen inequality, Random power series, Self-normalized
series

Mathematics Subject Classification (2010) 60E15 - 60F15

1 Introduction

Let X1, Xo, ... be a sequence of independent random variables with EX; = 0 and 0 < EX? < oo for
1> 1. Let b € (0,1) be the discount factor. The random power series Sp, can be defined as

Sy = Xo+bX1 +b°Xs + ...

From the financial point of view, X; stands for the (random) money that we will get at i-th
year of a contract, for example a coupon bond and Sy is the present value of the cash flow. In the
literature, Sy is also called the perpetuities (see [2], [9], [10]) for more detail.

The study of this quantity has drawn much of interest and it has a long history for more than 50
years. Let us mention some remarkable results for the simplest case that the random variables X;’s
are independent, identically distribution (i.i.d). In 1971, Gerber [8] provided a Berry-Esseen bound
for the following central limit theorem as b — 17,

V1 - 828, % N(0,02),

where 02 = EX2.
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In 1974, Lai [13] proved the strong law of large number

Xb a.s
-3 — 0.

The law of iterated logarithm

1—0?
lim sup Sy =20
e \/ tog log(1/(1 — £2))
was proved by Gaposhkin [7] in 1965.

Recently, Iksanov consider a generalization with stochastic discount rates and provide the ana-
logue versions of the above results.

In this paper, we are interested in the self-normalized series (denote by S,/V4)

Xo+bX; +b02X5 + ...
VXZ+2XE+0AX3 +

with V2 = X2 + 02 X7 + b2 X3 + ...
Self-normalized series can be seen as an extension of self-normalized sum, defined as

S Xit .t X,

Vo /XP4+ . +X2

where again the random variables X;’s are i.i.d with mean zero and finite variance.

The self-normalized sum is also an attractive research direction both in Probability and Statistics,
(see [15, Self-normalized limit theorem: A survey, Probability Surveys]) for more detail.

From the distribution of S,,/V;,, one can make a suitable change of variable to deduce the dis-
tribution of the classical Student t- statistics and also the studentized t-statistics. This research
direction has been studied extensively with many interesting and nice results: Nonuniform Berry-
Esseen bound [12, Wang and Jing], Cramér type large (moderate) deviation [11, Jing, Shao and
Wang], the law of iterated logarithm [11, Jing, Shao and Wang], Donsker type functional central
limit theorem [3, Csorgd, Szyszkowicz and Wang]. It is also interesting to consider some questions
for the self-normalized series model. In 2006, Fu and Huang [6] confirmed the self-normalized law of
iterated logarithm.

The purpose of this paper is to establish a nonuniform Berry-Esseen bound for the self-normalized
series Sp/Vp. In other words, we wish to obtain a bound for

Sp(x) := |P(Sp/Vp < ) — P(x)].
Our main result is the following theorem.

Theorem 1 Let X1, Xo, ... be a sequence of independent, symmetric random variables with E (|Xj |3) <
oo for all j =1,2,... Set Bf =332 bYEX?, Ly, = B, * Y72, bYE|X,|*.

(i) If |z| < (5Léég)_1, we have

o) < A [ (1+2%) Loy + Y PV X;| > By/(6]z])) | exp (f) . (1.1)

j=1
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(i1) If |z| > (5L§£3)_1, we have

Sy(z) < <1+ \/%m) exp (f) (1.2)

Under the assumption E|X;|> < oo, by applying Markov’s inequality for |z| < (5L§£3)_1, we

obtain the following corollary.

Corollary 1 Let X1, X5, ... be a sequence of independent, symmetric random variables with E (|Xj|3) <
o0, for all j =1,2,... Then for all x € R, we have

22
Sp(z) < Amin{(1 + |2|*)Lap, 1} exp <2> .

Before proving the main result, we need some the following technical lemmas.

2 Some technical lemmas

Lemma 1 Let X1, X5, ... be a sequence of independent, symmetric random variables with E (|Xn|3) <
oo foralln=1,2,...

1
(i) For alln >1 and x > 0 such that (1 + x3)Lg, < ——, we have

125
P (S > a(V2 + BY)/(2By)) = (1 - 0(x)) exp(r(a)) + exp (‘2) (@), (21)
where |rip(x)| < 1423 L3y and |rop(z)| < A(1 + 22) L3y exp(1423 Lay).
(ii) Forn > 1 and x > 1 satisfying o3 L3y, < o5 we have
P(Sy > z(Vi + Bf)/(2B)) = (1 — &(x))(L + rap()), (2.2)

where |rap(r)] < Ax(1 + 22)Lay exp(1423Ly).

Proof Set

T j h o2 25 2

Then the left-hand side of (2.1) is equivalent to
P(S, > 2(Vi? + B})/(2By)) =P | > “m; > B, | . (2.3)
j=1

Next, we apply the conjugate method which was first introduced by Esscher [4] and improved by
Feller [5]. Let &1, &a, ... be independent random variables with &; having distribution function defined
by

Vi(u) = E(exp(hn;)1(n; < u))/E(exp(hn;)) for j =1,2,...
We also define

M (h) = ZVar@j)
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and

Yoo (& — EE) xBy — 37, B¢
Gb(t) =P (M < t> , Rp(h) = T(h)

2
By the well-known equation [~ exp(—sz)d®(z) = exp (172) (1 — &(s)) and using inverse Laplace

transform, we have

P (Z n; > IBb) HEexp(hnj) /00 exp(—hu)dP(Z & <)

By, j:l
= H E exp(hn;) / exp(—hz By — hMy(h)v)dGy(v + Ry(h))
=1 0
. e (2.)
— ([TEexp(tn) | e ( | (bt me)a(Gato + Rufh) — o)
j=1 0
—|—/ exp(—hMb(h)v)dsﬁ(v)>
0
2
= Iy(h) exp(—z?) <exp (2) (1 =@(x)) + L1(h) + I2(h) + I3(h)> )
where
Iy(h) = H 1 Eexp(hn;),
Li(h) = [g exp(=hMpy(h)v)d(Gy(v + Ry(h)) — P(v + Ry(h))),
I(h) = [y~ exp(=hMy(h)v)d(P(v + Ry(h)) = B(v)),
Iy(h) = [ exp(~hMy(h)v — exp(~2v))dD(v).
We will establish some inequalities before estimating I;(h) for j =1,2,3.
It follows from Jensen’s inequality that o? < E|X;[?.
1
Combining this and the assumption (1 + 23) L3, < 1257 Ve have
i g bjUj 3 3735 1/3 1
Vojh= B, < (2°B; *bYE|X;|*) <z (2.5)

Thus

1 ; 13
hagy = =5 (VX5 = b 41 5t b23 oiht < o (2.6)
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From (2.5), the symmetry assumption and E|X;|> < oo, we have

E(n; 1(11 X;] < h™1)] =

E ((ijj — g(bQJXf - bQJ’af.)) 1) X;| > h1)>'
SE(0 X110 X;5] > h™h) + gE((ijj)zl(lijjI >h™t)

OB, 1V X > h7Y)

(2.7)
2
< RPE(VXGPL(Y X5 > 1) + %E(ijle?’l(lijjl >ht)
2
+ %E(WJJ|3b2-7'a]2.h21(|bJ’Xj| > h7t))
< 2BV X P10 X;5] > 7).
Similarly, we also have
, B , 3 , .
B (6 X;] < ™1 = b7 0f)| < Sh (BIY XS + hoVoj) (2.8)
E(ln; P10/ X;| < 1)) < 6E (|07 X;°1(|0/ X;| < h™Y)) + 20°0% 0. (2.9)
We have
Eexp(nn;) = E (exp(hn;)1(|V X;| < h™")) + E (exp(hn;)1(|V X;| > h™1))
1 . .
=E ((1 + hn; + Q(hnj)2> (|0’ X;| < h_l)) +E (exp(hn;) 1|t X;] > h™1))
1 , _
+ 8 ((expling) — 1=y = () 10,1 < 171 ) (2.10)
1 .
=1+ §h2b230]2- + 11 (h)
= exp (;hzsz(sz + lgj(h)) ,
_ 1o
(Eexp(hn;)) ' =1— ih%%ﬁ +135(h), (2.11)

where

. . 1 . .
hj(h) = =P(b X;] > h™1) 4+ hE(n;1(|Y X;| < b)) + SREmi1(Y X;| < h™1) = b7 )

+E(exp(hmy 10| > 17) 48 (fexpling) = 1= oy = 5(0m)1(6 ] <17,
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332

er —1—z— —

2

ek

Applying the elementary inequality for all z € R, and noting that

exp(zhn; < 2) for 0 <z <1, we get
. - 1 : _ :
[l (R)| < h[E (11 X;| < b)) + §h2|]E(77j2-1(|bJXj| <h™h) = b¥a3)|

1 ) .
+ ghsE (Ini PL(P7 X5 < A7) 4+ 3P0 X5 > B 1)

) B 3 ) )

<21%E (In; PL(Y X;| > 1)) + Zh?’ (E|t/ X;|° + hbY o}
1 , B ,

+ gh361[-z (In; PL(I? X5 < 1)) + 2R%6Y 0§

< ThPE|Y X3,

|l2j (R)| < 2[l1;(h)| < 14RE[W X[,
I3 (R)| < 2|l;(h)| < LAW’E[Y X[
It is proved by Wang and Jing [12] that

[E(n; exp(hn;)) — thjajz\ < 16h°E|b’ X;|?, (2.12)
[E(n? exp(hn;)) — b* o3| < 30RE[Y X;|?, (2.13)
E(|n;|* exp(hn;)) < 30E[b7 X, [*. (2.14)
It follows from (2.5)—(2.14) that
Ee; = W — hb¥ 0% + Ly (h), (2.15)

where
fag ) = <1E(expl(fmj)) - 1) E(n; exp(hny)) + E(n; exp(hm;)) — hv™ 7.

Thus, by (2.5),(2.11), (2.12), we get
50001 < | (amair ) 1) EOxplmy)| + 80 explin) - 127
< |(I35(h) — %h%%?)(hb%? + 16R*6¥E| X, *)| + 16R* VY E| X;|?
< 22h* VY o2E|X; P + 224070 (B[ X1*)? + 16R°VVE|X; * + %h?’b‘*fa;*
< 20h* DY E| X3
Similarly, we also have

E(n? exp(h;))

Var(&;) = (Eexp(hn;))?

— (B&)? =b¥ 07 +155(h), (2.16)

and
El¢]* = E(|n|® exp(hn;))/E exp(hn;) < 34b*E|X;|?, (2.17)
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where |l5j(h)| < 4].hbSJ]E|_XvJ|3
It follows |l5;(h)| < 41hb*E|X;|® and the assumption (1 4 23)Lg, < 1/125, it is easy to obtain
that

=B} + Zl ) > Bb (2.18)

We are now estimate I;(h),0 < j < 3. For Iy(h), using (2.10) we have

1 oo
Io(h) = exp §h2B§ + legj(h) = exp < ) exp Zlgj . (2.19)

‘7:

By (2.15)—(2.19), the Berry-Esseen bound and Taylor expansion, we have
L (h) < sup |G (v) — 2(v)] < Mg( ZEIQ — Eg[° < ALz, (2.20)
j=1
Ir(h) < sup |®(v + R, (h)) — d(v M Z |l4;(h)| < Az? L, (2.21)
T b

By applying the mean value estimate to I5(h) [see Petrov [14], page 227], we have

2
I;(h) gé M]’;(bh) - 1’ {1 AZQ}
3| Mg(h)- B2 (2.22)
o % Bb(Mb(h) + Bn)
< ALg,.

Combining (2.3), (2.4) and (2.19)—(2.22), we get

X

B(S, > (V2 + B2)/(2By) = exp (—9”2) exp(ru(e) (exp (2) (1= @) + 1) + Bl + B

= (1 — ®(x)) exp(r1p(z)) + exp (—Z) rop(2),
Whe;ile(I) = ZJ 1 l2j(h) and rop(x) = exp(rip(x))(I1(h) + I2(h) + I3(h)).
|T‘1b | = Z ‘IQJ | < 14x3L3b
and

[ran ()] = exp(|ris(@))) (|11 (R)] + [T2(h)] + [I3(R)]) < A(1 + 2%) Lgy exp(142°Lap).

We thus have completed the proof of Lemma 2.1(i).
(ii) By the same proof as part (i), we also see that in the case n > 1 and = > 1 satisfying
23 L3, < 1/125, (2.1) holds. Hence, the proof of (2.2) obtains by using the inequalities e? < 1 + te!

1 t2
and 1 — &(t) < exp| —— ] for ¢t > 0.
()_\/ﬂt p< 2)
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Lemma 2 Let €1,¢2,... be i.i.d. Rademacher random variables, that is, P(e; = +£1) = 1/2. Then
for any x > 1 and any sequence a1, as, ... satisfying |a;| < By/(6x) and Y., a] > 9B i, we have

1/2

iajsj > ia? < (1-9(z)) (1+ Azx(1 + 2®)L}, exp(22°LY,)) (2.23)

* -3
where Ly, = B, * 372 | |aj]®.
The proof of Lemma 2 follows very similar lines to those of Lemma 1, so we omit it.

Lemma 3 Let {a;,i > 1} be any sequence of real numbers. Set A2 =372, a? and Too = >0, 50;.
Then, for all x > 0

22
P(Te > zAs) < exp (—2> .

where {e;,1 > 1} is i.i.d Rademacher random variables.

Proof For any u > 0, by Markov’s inequality, we have

P(Too > 2Ax) < exp(—uzrAs )Eexp(uls) = exp(—uzAco Hcosh (ua;)

< exp(—urAoo H exp (

The proof of Lemma 3 is complete by choosing u = —zA2%_.

) = exp(—urAs +u?AZ /2).

Lemma 4 Let X1, Xo,... be independent, symmetric random variables. Then for any x > 0 and
n > 1, we have

22
P(Sy > 2V4) < exp (—2> :

Proof Similarly, in [12, Lemma 43], we assume that {X;,j > 1} are defined on a probability space
(12, F,P) which also supports a sequence of independent Rademacher random variables {¢;,j > 1}
independent of {X,j > 1}. By the symmetry of X, and independence X; and ¢;, we have that

P(Sy > 2Vp) = ZX g; >V,
j=1
1/2

://P Z$j€j>$ Zx? dFl(l‘l)dFQ(l‘g)...
j=1 j=1

22
<exp (—2) (by Lemma 3).

This ends the proof of the lemma.
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Lemma 5 Let X1, X>,... be independent random variables. Then for x > 1,y > 0 and k > 1, we
have

1/2
P(Sy > aVy, " Xp| > ) SP(VEXe[ > )P [ > VX > (@ =D Y »¥X7
J#k,j=1 j#k,j=1
Proof We observe that, for any real number a, then
x x 2 za® a?
ka —*b2kX2 2 7(ka _7) e o
b X = (X4 = -5 (VX - 3 > "o
<21
- 2 \x .
Thus, we get that
P(S, k _ e X9 2\ |1k
b > aVp, D" Xi| > y) =P Sy > 1r>1%2a(Vb +a”), [b"Xg| >y
—P S (b X — Epx) = Lo | s o,k x
= sup Z(a iy j)—§a > 0,07 Xg| >y
a>0 =1
=P [sup | S (@/X; — SHX3) 4 abh X - S0FNE - Ta? | > 0,0F X >y
a>0 . - 2 2 2
Jj#k,j=1
- : 1
<Pswp| 3 (a'Xx, - bQJX ) + CL(f —2) | >0,[0F Xy >y
a>0 . - 2 'x
J#k,j=1
_ 22 o 2 k
—P Z VX, >ér>ng—a Z PIXG+at(1l— =) | DX >y
Jj#k,j=1 Jj#k,j=1
1/2
=P| Y VX;>@-1)V| D X b Xk >y
J#k.g=1 j=1,j#k
1/2
oo ) (oo} ]
=PV Xk > )P | D VX > @DV D X
J#k.g=1 k=1
(2.24)

The lemma is proved.
We are now ready to prove Theorem 1. To bound &(z), it suffices to consider x > 0 since we can
simply apply result to —X; when < 0. For 0 < « < 1, (1.1) was proved by Bentkus, Bloznelis and
Gotze [1]. We consider the case where 1 < z < (5Lé£3)’1. By applying the elementary inequality
2BV, < B + V;? and Lemma 1(ii), we have

P(S, > 2Vp) > P(2B,S, > (V2 + 52))

, (2.25)
> (1—9(x))(1 — Az(1+ 27)Lsp).



10 Nguyen Chi Dzung, Pham Viet Hung

2

Combining this and the inequality 1 — @(x) < _:c2> for x > 0 implies that

L
NoT T (
P(Sy < 2Vp) — D(z) < (1 — &(x))Ax(1 + 2%)Lay, < A(1 4 2%)Lsy exp <_”“"22) .

Hence, to prove (1.1), it suffices to show that

P(Sp > 2Vp) < (1 —D(z)) + A | (1 +2%)Lap + iP(|ijj| > By/(61)) exp (_3322) . (2.26)

=1
Set

Y, = VX1V X, < By/(62), Sy = Y;, V=) Y}
j=1 j=1
For x > 1, it follows from Lemma 4 and Lemma 5 that

> B
P(S, > zV},) < ZIP’ (Sb > xVy, [P X | > 6;) +P(S; > xVy)

k=1
(oo} oo oo 1/2
B . )
<> P (|b’“Xk > 6;) Pl > VX > E DY Y X +P(S; > xVy)
k=1 j#k,j=1 j#k,j=1
(oo}
Bb 172 —1 * *
gZP(|kak>6x) exp (— 5 )+P(Sb > zVy)

x>

IN
Fﬂ i
8 =

B 2
P (|kak| > 6;) exp (—2) +P(Sy > V).

ol
Il

1 (2.27)

Denote Fj(z) to be distribution function of X; for j > 1. Using the assumption |z| < (5L§{)3)_1, the
inequalities e! < 1+ te! and e’ > 1+t for ¢t > 0, we have for i > 1,

H E(exp(22° B, %|Y; %)) < H (1 —1—2333B;3]E|Yj|362/125)
37i,i=1 =1
< H exp(42® B, *E[Y;*) (2.28)
i#ig=1
< exp(4x3Lay)
<2

We will now bound P(S; > «V;*). Similarly in the proof of Lemma 3, we assume that {Y},j > 1} are
defined on a probability space (§2, F,P) which also supports a sequence of independent Rademacher
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random variables {e;,j > 1} independent of the sequence {Y;,j > 1}. By symmetry of X, we have
that

P(Sy > zVy") ZY5]>1‘Vb
1
= (2.29)
> * * 4 2 *2 4 2
<P ;Yjej > a2V Vi > 35 +1P>(V,, < ng) .
It follows from (2.28) and Lemma 2 that
- * *2 4 2
> Yie; > aVi V2 > o Bj
j=1
1/2
// Zyjsj > Zy? dFl(yl)dFQ(yg)
Z"Olyj> B§,Iy7|<Bb/(6w) j=1,2,. j=1 j=1
))//---\yjISBb/(M),j:M--
x |14+ Az(1+23)B;? Z ly;|® exp(22° B, ® Z ly;[®) | dFy(y1)dFa(ys)... (2.30)

<(1—&(x)) |1+ Az(1 +2°)B 3Z]E \Y|3exp2:v3B32|Y\
Jj=1

<(1—@x) |1+ Az(1 +2?) 32 E|Y;)? H Eexp2x5B3Z|Y|
JjF#i,j=1

2
< (1 —®(x)) + A1+ 2®)Lap exp <2> .

We will next bound P (Vb*2 <

O =~

Bl?) Firstly, we note that

2j 2 iy 3 < O
;]E(b Xj1<bJX|> )) ZIE|bX| _1253. (2.31)

iEYf =B} - iE(b2ij21(|ijj| > By/(62))). (2.32)

j=1
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Then for any ¢ > 0, by using (2.31), (2.32), the inequalities 1 + |z| < el®l, e* < 14+ z + 1/222el*!,
Var(Y}?) <EY;' < b% E|X;|*B,/(62) and Markov’s inequality, we have

4 > 5 > , ,
(Vb Bg) =P ) &Y -Y})> 53,3 — Y EQG¥ X1V X,| > By/(62)))
Jj=1

— j=1

Ne]

<P () EY] -Y}) > 2Bb
Jj=1
<e P [ Eexp(tB, *(EY] - Y}))
j=1
e T 1 4 tr =2
<e t/2j1;[1 (1 + §t23b Var(Yf) exp ( 36 ))

= 2VIE|X; P [(te—?
< o t/2 ~J
< oo (Yo (%))
t2 to—2
< —t/2 L D .
e (g ()

Choosing t = 42%(1 + 272 log L;bl/z), we obtain
<Vb 335) < ALzpexp (f) : (2.33)
Combining (2.29), (2.30) and (2.33), we get
P(S; > 2Vy) < (1 — ®(x)) + A(1 + 2%) L3y exp (_;2) ) (2.34)
Then (2.26) implies from (2.27) and (2.34). The proof of Theorem 1.1 is thus completed.

72
exp (—) for z > 0 and

(ii) The proof of (1.2) implies from the inequality 1 — @(x) < 5

1
V2mx

Lemma 4.
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