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Abstract

In this paper, we consider linear off-diagonal difference equations of the form

xi(k + 1) =

n∑
j=1

aijxj(k − τij), for i = 1, . . . , n, (1)

where A = (aij)1≤i,j≤n ∈ Rn×n and τ = (τij)1≤i,j≤n is the delay. Our main
result is to establish an explicit characterization in terms of A for delay inde-
pendent stability of (1). As an application, we establish a criterion for delay
independent stability for an equilibrium of a discrete-time Lotka-Voltera equa-
tion.
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1. Introduction

Consider linear off-diagonal delay difference equations in Rn with constant co-
efficients of the form

xi(k + 1) =

n∑
j=1

aijxj(k − τij), for i = 1, . . . , n, (2)

where A = (aij)1≤i,j≤n ∈ Rn×n and τ = (τij)1≤i,j≤n is the delay time satisfying
that

τij ∈ Z≥0 for 1 ≤ i ̸= j ≤ n and τii = 0 for i = 1, . . . , n. (3)
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Our aim in this paper is to find a characterization for asymptotic stability of
(2) when the delays τij , i ̸= j, can take arbitrary non-negative integer values.
This work lies in the research topic known as ”absolute stability” or ”harmless
delay” which has been gained a lot of interest due to its vast applications in
biological models [19, 13], neural models [20, 23]. Another motivation of this
research topic is from the fact that stability of a delay system might be sensitive
to the delays of the system, see e.g. [1, 5, 9, 10] and the references therein.

One of the central task in this research topic is to find a necessary and sufficient
condition of the coefficients of systems for delay independent stability, i.e. the
systems are stable regardless of the choice of the delays. Several techniques have
been developed to deal with this problem, for examples two-variable criterion,
see [16, 17, 11], frequency sweeping tests, see e.g. [3, 18, 22] and the references
therein. Based on these techniques, systems are delay independent stable if
and only if their coefficients must satisfy a family of algebraic inequalities. For
off-diagonal linear delay systems, a special class of delay equations but many
practical cases of constrained delay uncertainties can be formulated in this form,
a remarkable result in [14] provided an explicit condition for their delay inde-
pendent stability. Note that the condition of delay independent stability in [14]
is formulated in terms of a finite number of algebraic inequalities. Then, several
extensions of [14] to delay independent stability for neural networks were done
in [2, 20].

In this paper, we establish an explicit characterization of delay independent
stability for linear off-diagonal delay difference equations (2). This result can be
considered as a natural discrete-time counterpart of the results for continuous-
time delay systems presented in [14] and as far as we aware, this characterization
has not been developed elsewhere. A work relating to our result is given in [15] in
which the authors provided a necessary condition for delay independent stability
of (2) when aii < 0.

The paper is organized as follows: In Section 2, we give the setting and state
the main result of this paper about a characterization of delay independent sta-
bility for linear off-diagonal delay difference equations. Section 3 is devoted to
proving the main result and the section consists of three subsections. In Subsec-
tion 3.1, we recall some fundamental properties of weakly diagonally dominant
matrices. A proof of the necessary and sufficient part of the main theorem is
given, respectively, in Subsection 3.2 and Subsection 3.3. An example about
delay independent stability for an equilibrium of a discrete-time Lotka-Voltera
equation is given in Section 4 to illustrate the theoretical result of the paper.

Notations: Let Z≥0 denote the set of non-negative integer numbers. Let
Rn

>0 := {(c1, . . . , cn)T ∈ Rn : c1, . . . , cn > 0}. Define the operator ·̂ : Rn×n →
Rn×n as follows: for each matrix M = (mij)1≤i,j≤n ∈ Rn×n the corresponding
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matrix M̂ = (m̂ij)1≤i,j≤n is given by

m̂ij =

{
mij , if i = j,

|mij |, if i ̸= j.
(4)

Finally, let In denote the identity matrix in Rn×n.

2. Preliminaries and the statement of the main result

Note that for a linear time-invariant difference equation, the notions of attractiv-
ity and asymptotic stability coincide, see e.g. [6]. Furthermore, system (2) can
be rewritten as a higher order difference equation with time-invariant coefficient
(see also the Remark 2 below). Then, system (2) is said to be asymptotically
stable (equivalently attractive) if all solutions of (2) tend to 0 as the time tends
to infinity.

It is also known that asymptotic stability of a linear difference equation can be
characterized by the location of the root of its characteristic polynomial, see e.g.
[6]. In what follows, we establish this type of result for (2). For this purpose,
let

Fτ (λ) := det


a11 − λ a12λ

−τ12 . . . a1nλ
−τ1n

a21λ
−τ21 a22 − λ . . . a1nλ

−τ1n

...
...

. . .
...

an1λ
−τn1 an2λ

−τn2 . . . ann − λ

 . (5)

The characteristic equation of (2) is defined by Fτ (λ) = 0. Denote by RFτ the
set of all roots of the characteristic equation, i.e. RFτ := {λ ∈ C : Fτ (λ) = 0}.

Lemma 1. System (2) is asymptotically stable if and only if

|λ| < 1 for all λ ∈ RFτ , (6)

Proof. Let Aij ∈ Rn×n be the matrix having the element in row i and column
j equal to aij and the other elements equal to 0. Put τ = max τij . Then, by
shifting x(k − τij) by τ , system (2) is equivalent to a higher order difference
equation

x(k + τ + 1) =
∑

1≤i,j≤n

Aijx(k + τ − τij). (7)

By [21, Theorem 2.4], equation (7) is asymptotically stable if and only if all
roots λ of the equation

P (λ) =
∑

1≤i,j≤n

λτ−τijAij − λτ+1I = 0

satisfy |λ| < 1. It is easy to see that P (λ) = λτFτ (λ). Thus, (6) is a necessary
and sufficient condition for asymptotic stability of system (2).
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Remark 2. By transforming the higher order difference equation (7) to the first
order difference equation in the companion form (see, e.g., [21, Theorem 2.4]),
it is easy to see that system (2) is asymptotically stable if and only if it is
exponentially stable (i.e., there exist M,α > 0 such that ∥x(t)∥ ≤ Me−αt for all
t ≥ 0). Therefore, (6) is also a necessary and sufficient condition for exponential
stability of system (2).

To formulate the main result of the paper, we recall that a matrix M ∈ Rn×n

is said to be weakly diagonally dominant if all the principle minors of −M̂ are
non-negative (see (4) for the definition of the matrix M̂). A further discussion
about weakly diagonally dominant matrices is given in Subsection 3.1.

Theorem 3 (Characterization of delay independent stability for linear off-di-
agonal delay difference equations). Let

A1 := −In −A, A2 := −In +A. (8)

System (2) is asymptotically stable for all choices of delay τij , i ̸= j if and only
if the following conditions simultaneously hold:

(C1) aii ∈ (−1, 1) for all i = 1, . . . , n,

(C2) The matrices A1 and A2 are weakly diagonally dominant,

(C3) det−Â1 ̸= 0,det−Â2 ̸= 0.

3. Proof of the main results

3.1. Weakly diagonally dominant matrices

In this subsection, we state and prove a property of irreducible weakly diago-
nally dominant matrices. This result is an important ingredient in the proof of
Theorem 3. Recall that a matrix M = (mij)1≤i,j≤n ∈ Rn×n is called reducible

if it can be transformed to a matrix of the form

(
M (1) J (12)

0 M (2)

)
by a simul-

taneous permutation of rows and columns, where M (1) and M (2) are square
matrices of dimension at least 1. A matrix M is called irreducible if it is not
reducible.

Proposition 4. Let M ∈ Rn×n be a weakly diagonally dominant matrix. Sup-
pose additionally that M is irreducible and det M̂ ̸= 0. Then there exists
c ∈ Rn

>0 such that

miici +
∑
j ̸=i

|mij |cj < 0 for all i = 1, 2, . . . , n. (9)
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Proof. By [8, Theorem 5.9], since M is irreducible and weakly diagonally dom-

inant, it follows that there is a x ∈ Rn
>0 such that y := M̂x ≤ 0, i.e.

yi = miixi +
∑
j ̸=i

|mij |xj ≤ 0 for all i = 1, 2, . . . , n.

We now find nearby y a desired c satisfying (9). Let ε := min1≤i≤n
xi

2 . Then,

Bε(x) :=

{
(u1, . . . , un)

T : max
1≤i≤n

|ui − xi| <
ε

2

}
is an open subset of Rn

>0. Since M̂ is invertible, the set M̂Bε(x) is open and
contains y. Thus, there exists δ > 0 such that

(y1 − δ, y2 − δ, . . . , yn − δ)T ∈ M̂Bε(x).

Then, c := M̂−1(y1−δ, y2−δ, . . . , yn−δ)T satisfies (9) and the proof is complete.

We now have a corollary of the above proposition that is useful in verifying
condition (C1) of the main result stated in Theorem 3.

Corollary 5. Suppose that M ∈ Rn×n is weakly diagonally dominant and
satisfies that det M̂ ̸= 0. Then,

mii ̸= 0 for all i = 1, . . . , n.

Proof. Obviously, by Proposition 4 the statement follows when M is irreducible.
In the general case, thanks to [8, Theorem 3.6] by a simultaneous permutation of
rows and columns P , the matrix M is transformed to an upper block triangular
matrix whose diagonal blocks are irreducible

PMPT =


M (1) J (12) . . . J (1r)

0 M (2) . . . J (2r)

...
...

. . .
...

0 0 . . . M (r)

 .

SinceM is weakly diagonally dominant, all sub-matricesM (1), . . . ,M (r) are too.

From det M̂ ̸= 0, we also obtain that det M̂ (1) ̸= 0, . . . ,det M̂ (r) ̸= 0. Further-
more, M (1), . . . ,M (r) are irreducible and hence by Proposition 4 all diagonal
entries of M (1), . . . ,M (r) are non-zero. Consequently, all diagonal entries of M
are non-zero. The proof is complete.
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3.2. Necessary part

Before going the the proof of the necessary part of Theorem 3, we need the
following preparatory results.

Lemma 6. Let A1 be given as in (8). Then, the following statements hold:

(i) Suppose that det(−Â1) = 0. Then, there exist delays τ∗ij such that
Fτ∗(−1) = 0.

(ii) Suppose that det(−Â1) < 0. Then, there exist delays τ∗ij and λ∗ ∈
(−∞,−1) such that

Fτ∗(−1) < 0 and Fτ∗(λ∗) > 0.

Proof. We first construct off-diagonal delays for both (i) and (ii). By definition
of A1 and the operator ·̂, we have

det(−Â1) = det


1 + a11 −|a12| . . . −|a1n|
−|a21| 1 + a22 . . . −|a2n|

...
...

. . .
...

−|an1| −|an2| . . . 1 + ann

 . (10)

We now choose an off-diagonal delay τ∗ = (τ∗ij)i̸=j as

τ∗ij =

{
2 if aij < 0,

1 if aij ≥ 0.
(11)

It means that (−1)τ
∗
ijaij = −|aij |. Then, by definition of Fτ∗(λ) as in (5) we

arrive at

Fτ∗(λ) = det


a11 − λ −|a12|(−λ)−τ∗

12 . . . −|a1n|(−λ)−τ∗
1n

−|a21|(−λ)−τ∗
21 a22 − λ . . . −|a2n|(−λ)−τ∗

2n

...
...

. . .
...

−|an1|(−λ)−τ∗
n1 −|an2|(−λ)−τ∗

n2 . . . ann − λ

 .

Hence, from (10) we have Fτ∗(−1) = det(−Â1). Then, (i) is proved. Now we

consider the case that Fτ∗(−1) = det(−Â1) < 0. Then,

Fτ∗(λ)

(−λ)n
= det


1− a11

λ
|a12|(−λ)−τ∗

12

λ . . . |a1n|(−λ)−τ∗
1n

λ

|a21|(−λ)−τ∗
21

λ 1− a22

λ . . . −|a2n|(−λ)−τ∗
2n

...
...

. . .
...

|an1|(−λ)−τ∗
n1

λ
|an2|(−λ)−τ∗

n2

λ . . . 1− ann

λ

 .
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Consequently,

lim
λ→−∞

Fτ∗(λ)

(−λ)n
= 1.

This implies that there exists λ∗ ∈ (−∞,−1) such that Fτ∗(λ∗) > 0 and (ii) is
proved. The proof is complete.

Next, we formulate a dual version of Lemma 6. In fact, we now consider the
adjoint equation to (2) of the form

xi(k + 1) =

n∑
j=1

āijxj(k − τij), for i = 1, . . . , n, (12)

where āii = −aii and āij = |aij | for i ̸= j and τij is given as in (11). The
characteristic equation of (12) is given as F ad

τ∗ (λ) = 0, where

F ad
τ∗ (λ) := det


ā11 − λ ā12λ

−τ12 . . . ā1nλ
−τ1n

ā21λ
−τ21 ā22 − λ . . . ā1nλ

−τ1n

...
...

. . .
...

ān1λ
−τn1 ān2λ

−τn2 . . . ānn − λ

 . (13)

Obviously, F ad
τ∗ (λ) = (−1)nFτ∗(−λ). Thus, by Lemma 1, (2) is asymptotically

stable if and only if (12) is asymptotically stable.

Lemma 7. Let A2 be given as in (8). Then, the following statements hold:

(i) Suppose that det(−Â2) = 0. Then, there exist delays τ∗ij such that

F ad
τ∗ (−1) = 0.

(ii) Suppose that det(−Â2) < 0 holds. Then, there exist delays τ∗ij and λ∗ ∈
(−∞,−1) such that

F ad
τ∗ (−1) < 0 and F ad

τ∗ (λ∗) > 0.

Proof. The proof follows by applying the result in Lemma 6 to the adjoint
equation (12).

Now we are in a position to prove the necessity part of the main theorem.

Proof of the necessity part of Theorem 3. Suppose that system (2) (and hence
also (12)) is asymptotically stable for all choice of off-diagonal delays τ . We
now verify that all conditions (C1), (C2) and (C3) hold:

Verification of (C1): By virtue of Corollary 5, aii ̸∈ {−1, 1} for i = 1, . . . , n.
Then, it remains to show that aii ̸∈ (−∞,−1) ∪ (1,∞) for i = 1, . . . , n. We
divide the proof of this fact into two steps:
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Step 1 : In this step, we show that aii ̸∈ (1,∞) for i = 1, . . . , n. Suppose the
contrary, i.e. M > 1, where M := max1≤i≤n aii. Let I := {i : aii = M}. Then,
there exists ε ∈ (0, 1) satisfying that

M − ε

2
> 1 and M − ε

2
≥ aii for all i ∈ {1, . . . , n} \ I. (14)

Let K := {λ ∈ C : |λ −M | ≤ ε
2}. To complete the proof, we show that there

are off-diagonal delays τ such that the characteristic equation Fτ (λ) = 0 has a
root on K. We decompose Fτ (λ) as

Fτ (λ) =

n∏
i=1

(aii − λ) +Rτ (λ) (15)

where Rτ (λ) := Fτ (λ)−
∏n

i=1(aii−λ). By definition of Fτ (λ) as in (5), there is
a constant C (independence of τ) such that the remainder term Rτ (λ) satisfies

|Rτ (λ)| ≤ C|λ|−min1≤i,j≤n τij ≤ C(M − ε

2
)−min1≤i,j≤n τij for λ ∈ ∂K. (16)

On the other hand, by definition of ε as in (14) we have

|
n∏

i=1

(aii − λ)| =
∏
i∈I

|M − λ|
∏
i̸∈I

|aii − λ|

≥ (
ε

2
)n for λ ∈ ∂K,

which together with (16) and the fact that M − ε
2 > 1 implies that there exist

off-diagonal delays τij such that

|
n∏

i=1

(aii − λ)| > |Rτ (λ)| for all λ ∈ ∂K.

Thus, by using Rouché’s Theorem (see e.g. [4]) and (15), the functions Fτ (λ)
and

∏n
i=1(aii − λ) have the same number of zeros inside in K. Therefore, Fτ (·)

has a root λ in K and this leads to a contradiction.

Step 2 : In this step, we show that aii ̸∈ (−∞,−1) for i = 1, . . . , n. Suppose the
contrary, i.e. m < −1, where m := min1≤i≤n aii. Similarly to Step 1, there exist
off-diagonal delays τij such that the adjoint characteristic equation F ad

τ (λ) = 0
has a root λ with |λ| > 1 and this is a contradiction.

Verification of (C2): We will use Lemma 6 to show that A1 is weakly diago-
nally dominant. By analogous statements, we use Lemma 7 to deduce that A2

is weakly diagonally dominant. Suppose the contrary that A1 is not weakly di-
agonally dominant, i.e. there is a negative principle minor of −Â1. Exchanging
the columns and rows of −Â1 (equivalently, re-indexing the variables x1, . . . , xn
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of (2)), if necessary, we can assume that there exists ℓ ∈ {1, . . . , n} such that

det−Â(ℓ) < 0, where A(ℓ) := −Iℓ −


a11 a12 . . . a1ℓ
a21 a22 . . . a2ℓ
...

...
. . .

...
aℓ1 aℓ2 . . . aℓℓ

 .

Denote by F
(ℓ)
τ (λ) the characteristic function of the following ”sub-system” of

(2)

xi(k + 1) =

ℓ∑
j=1

aijxj(k − τij), for i = 1, . . . , ℓ.

It means that F
(ℓ)
τ (λ) depends only on τ ℓ := (τij)1≤i,j≤ℓ and

F
(ℓ)

τℓ (λ) = det


a11 − λ a12λ

−τ12 . . . a1ℓλ
−τ1ℓ

a21λ
−τ21 a22 − λ . . . a2ℓλ

−τ1ℓ

...
...

. . .
...

aℓ1λ
−τℓ1 aℓ2λ

−τℓ2 . . . aℓℓ − λ

 . (17)

By virtue of Lemma 6, there exist τ∗ℓ and λ∗ ∈ (−1,−∞) such that

F
(ℓ)

τ∗ℓ(−1) < 0 and F
(ℓ)

τ∗ℓ(λ
∗) > 0. (18)

For each τ = (τij)1≤i,j≤n satifying that τij = τ
∗(ℓ)
ij for 1 ≤ i, j ≤ ℓ, we let

m(τ) = min{τij : i > ℓ or j > ℓ}.

From (5) and (17), we derive that for all λ ∈ (−∞,−1]

lim
m(τ)→∞

Fτ (λ) = F
(ℓ)

τ∗ℓ(λ)

n∏
k=ℓ+1

(akk − λ).

By (C1),
∏n

k=ℓ+1(akk − λ) > 0 for all λ ∈ (−∞,−1]. Then, from (18) we can

extend τ∗ℓ to τ∗ = (τ∗ij)1≤i,j≤n such that

Fτ∗(−1) < 0 and Fτ∗(λ∗) > 0.

Then, for such a choice of τ∗ij the characteristic equation Fτ (λ) = 0 has a root
λ with |λ| > 1 and the system (2) is not asymptotically stable. This completes
the verification of (C2).

Verification of (C3): This can be deduced directly from Lemma 6(i) and Lemma
7(i).
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3.3. Sufficiency part

To proof the sufficiency part of Theorem 3, we recall the Gershgorin circle
theorem which is used to bound the spectrum of a square matrix, see e.g. [12,
Theorem 7.2.1].

Theorem 8 (Gershgorin circle theorem). Let M ∈ Cn×n. Then every eigen-
value of M lays within at least one of the Gershgorin discsz ∈ C : |z −mii| <

∑
j ̸=i

|mij |

 .

Proof of the sufficiency part of Theorem 3. Assume that (C1), (C2) and (C3)
hold. Suppose the contrary that there exist off-diagonal delays τ∗ such that the
characteristic function Fτ∗(λ) has a root λ∗ with |λ∗| ≥ 1. Let

M :=


a11 a12(λ

∗)−τ12 . . . a1n(λ
∗)−τ1n

a21(λ
∗)−τ21 a22 . . . a2n(λ

∗)−τ2n

...
...

. . .
...

an1(λ
∗)−τn1 an2(λ

∗)−τn2 . . . ann

 .

Then, λ∗ is an eigenvalue of M . We now derive a contradiction by considering
the following two separated cases:

Case 1 : A is irreducible. Then, A1 = −In − A and A2 = −In + A are also
irreducible matrices. By (C2) and (C3), A2 is weakly diagonally dominant and

det Â2 ̸= 0. Hence, using Proposition 4 and the fact that A2 = −In + A, there
exists c ∈ Rn

>0 such that

(aii − 1)ci +
∑
j ̸=i

|aij |cj < 0 for all i = 1, 2, . . . , n,

which together with the fact that |λ∗| ≥ 1 implies that

(aii − 1)ci +
∑
j ̸=i

|aij(λ∗)−τij |cj < 0 for all i = 1, 2, . . . , n.

Equivalently,∑
j ̸=i

c−1
i |aij(λ∗)−τij |cj < 1− aii for all i = 1, 2, . . . , n. (19)

Now, let N = diag(c−1
1 , . . . , c−1

n )Mdiag(c1, . . . , cn). Then, λ∗ is also an eigen-
value of N and by definition of M , we have

N =


a11 c−1

1 a12(λ
∗)−τ12c2 . . . c−1

1 a1n(λ
∗)−τ1ncn

a21(λ
∗)−τ21 a22 . . . a2n(λ

∗)−τ2n

...
...

. . .
...

an1(λ
∗)−τn1 an2(λ

∗)−τn2 . . . ann

 .
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Then, by Theorem 8 and (19) we arrive at

λ∗ ∈
n⋃

i=1

(2aii − 1, 1). (20)

Similarly, using (C2), (C3) and the fact that A1 is weakly diagonally dominant

and det Â2 ̸= 0, there exists d ∈ Rn
>0 such that∑

j ̸=i

d−1
i |aij(λ∗)−τij |dj < 1 + aii for all i = 1, 2, . . . , n.

Then, applying Theorem 8 to the matrix diag(d−1
1 , . . . , d−1

n )Mdiag(d1, . . . , dn)
yields that

λ∗ ∈
n⋃

i=1

(−1, 2aii + 1),

which together with (20) leads to a contradiction that λ∗ ∈ (−1, 1). The proof
is complete in this case.

Case 2 : A is reducible. Then, according to [8, Theorem 3.6] by relabeling the
indices of variables x1, . . . , xn, if necessary, we assume that

A =


A(1) J (12) . . . J (1r)

0 A(2) . . . J (2r)

...
...

. . .
...

0 0 . . . A(r)

 ,

where A(1) ∈ Rn1×n1 , . . . , A(r) ∈ Rnr×nr are irreducible, weakly diagonally

dominant and det Ini ± Â(i) ̸= 0. Now, for i = 1, . . . , r we define τ∗(i) by

τ
∗(i)
kℓ = τn1+···+ni−1+k,n1+···+ni−1+ℓ for 1 ≤ k, ℓ ≤ ni.

Then, by definition of Fτ (λ) as in (5) we have

Fτ∗(λ∗) =

r∏
i=1

F
(i)
τ∗ (λ∗),

where

F
(i)
τ∗ (λ) = det


a
(i)
11 − λ a

(i)
12λ

−τ∗
12 . . . a

(i)
1ni

λ−τ∗
1ni

a
(i)
21λ

−τ∗
21 a

(i)
22 − λ . . . a

(i)
2ni

λ−τ∗
2ni

...
...

. . .
...

a
(i)
ni1

λ−τ∗
ni1 a

(i)
ni2

λ−τ∗
ni2 . . . a

(i)
nini − λ

 .

Then, there exists i ∈ {1, . . . , r} such that F
(i)
τ∗ (λ∗) = 0. Applying the result

in Case 1 to the matrix A(i) and the characteristic function F
(i)
τ∗ (λ∗), we obtain

that λ∗ ∈ (−1, 1) which leads to a contradiction. The proof is complete.
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4. Example

Consider a discrete-time Lotka-Volterra system

yi(k + 1) = yi(k)

1 + hri +

n∑
j=1

haijy(k − τij)

 , i = 1, 2 . . . , n, (21)

which can be obtained by applying the numerical Euler method with step size
h to the continuous-time Lotka-Volterra system

ẏi(t) = yi(t)

ri +

n∑
j=1

aijyj(t− τij)

 , i = 1, 2 . . . , n.

Assume that there exists a positive vector ŷ ∈ Rn such that r + Aŷ = 0.
Then ŷ is an equilibrium of system (21), i.e., y(k) = ŷ is a solution of (21).
To study stability of the equilibrium ŷ, for each solution y(k) of (21) we let
x(k) := y(k)− ŷ. By (21), x(k) satisfies the following equation

xi(k + 1) =

n∑
j=1

bijx(k − τij) + xi(k)

n∑
j=1

haijx(k − τij), i = 1, 2 . . . , n, (22)

where

bij =

{
1 + hŷiaij if i = j,

hŷiaij if i ̸= j
. (23)

Furthermore, the equilibrium ŷ of system (21) is locally asymptotically stable if
and only if the trivial solution of system (22) is locally asymptotically equivalent.
Thus, the equilibrium ŷ of system (21) is locally asymptotically stable if and
only if the linearization of system (22) along the trivial solution

xi(k + 1) =

n∑
j=1

bijx(k − τij), (24)

is asymptotically stable. Now, let B1 = −In − B,B2 = −In + B. By Theorem
3, the equilibrium ŷ of system (21) is locally asymptotically stable for all delays
τij if and only if

(L1) bii ∈ (−1, 1) for all i = 1, . . . , n,

(L2) The matrices B1 and B2 are weakly diagonally dominant,

(L3) det−B̂1 ̸= 0,det−B̂2 ̸= 0.
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