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Abstract. In this paper, we study the existence and non existence of nontriv-
ial solutions to the Dirichlet boundary value problem for the following degenerate
elliptic equation

—div(s*Vu) = s* [u["""u in T(R, a), (1)
u=0onJdT(R,a) (2)

where

T(R,a) = {(21,72,23) € R: 25 + (r — R)? < a*},

r=1/23+13,0<a<R

is a torus in R® s = /22 + (r — R)2 and @ > 0,/ > —2,1 < p < oo. The main
results show that when p is small then the problem has a nontrivial positive
solution. On the other hand, when p is big there is not a nontrivial soltion. To
obtain the existence of nontrivial solutions we use the variational method and
the symmetric property of the torus. To obtain the nonexistence of nontrivial
solutions we derive a Pohozaev’s type identity and then apply it.

1 Introduction

Boundary value problems (BVP) for degenerate elliptic equations (DEE), espe-
cially nontrivial solutions to BVP for DEE, have been extensively studied recently.
Many results concerning the existence, nonexistence, multiplicity of nontrivial so-
lutions to BVP for DEE were obtained, see for example [9], [10], [14], [4], [6] and
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the references therein. In this paper we deal with a DEE on a torus. We essen-
tially use the symmetric property of the torus to obtain the results. Recall that
nontrivial solutions to BVP for elliptic equations were considered in [13], [3], [1],
(2], [7], [12], [11] (see also the references therein). The plan of the paper is as
follows: In §2 we introduce some notations and the formulations of main results.
Next in §3 we present some auxilliary statements. Finally in §4 we give the proofs
of the results.

2 Main Results

Let us first introduce the notations that will be used later on.

LY(T(R,a)),l € R,1 < p < oo is the space of measurable functions f on T'(R, a)
such that st |f|" € LY(T (R, a)).

LY(T(R,a)),l € R,1 < p < oo is a Banach space with the norm

iy = (fff. i) ®

In this paper, we are only interested in measurable functions f on T'(R,a) de-
pending only on r = /2% 4+ 23 and 3, i.e.

fx) = g(r, z3). (4)

In particular, we consider the subspace Ly (T(R,a)) containing all functions

f € LY(T(R,a)) which satisfy (4). Then the norm in (3) is rewritten as follows

11y = (2 [[ 1ol raras, )

with B, = {(r,x3) : (r — R)? + 22 < a®} .

If (r,x3) € B, then R —a < r < R+ aso we can consider Lj, (T(R,a)) as
1£(B)

Hy*(T(R,a)),a > 0, is the closure of C}(T(R,a)) in the norm

il = ([[[swuar)” g
T(R,a)

As above, we are interested in the subspace H&fym(T (R, a)) containing all func-

tions u € Hy*(T(R,a)) written as u(z) = v(r,z3). Then the norm in (5) is

rewritten as 1
2
[ull e = (27r // s* |VU|27’dT’dCL’3>
T(R,a)
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Osym< <R7 CL)) as HO a(Ba>'
Now we are in a position to state the main theorems.

with Vv = (v, v,,) . Then we can consider H,

Theorem 1. The problem (1)-(2) has a positive solution u € Hy® (T(R,a))

0,sym
when either a = 0,0 > -2 and 1 < p< o ora>0/l>a—-2and1 <p<
2(642) _ 4

Theorem 2. Whena >0, > a—2,p > (H?) — 1, there exists g > 0 such that
for 0 < % < € the problem (1)-(2) has only tmmal solution in Hy*(T(R, a)).

3 Some auxilliary statements

Proposition 1. We have the following continuous embedding

Hytym (T(R, a)) = LY ., (T(R, ) (6)

when eithera = 0,0 > =2 and1 <p<ooora>0,{>a—-2andl <p< 2“;2)'

The embedding (6) is compact when either « = 0,4 > =2 and 1 < p < o0 or
a>0,l>a—2 and1§p<@.

In order to prove Proposition 1, we only need to prove the following lemma.

Lemma 1. The embedding Hy®(B,) — LE(B,) is continuous when a > 0,¢ >
a—2andl <p< w It is compact when either o = 0,0 > —2 and 1 < p < 00
ora>00>a—2 and1<p< 2(€+2)

Proof. We recall Caffarelli - Kohn - Nirenberg inequality

72
<// s |U|2(l:2) drdxg) < C’// s |Vol? drdzs (7)

when o > 0,¢ > « — 2. Therefore, in order to prove Lemma 1, we only need to
prove these embeddings are compact.

Case 1: a=0,0>—-2,1<p<o0.
Since B, is a disk in R?, the embedding H}(B,) < LY(B,),1 < ¢ < oo is compact.
Now we only need to prove the embedding LY(B,) < Lp 1 (B,) is continuous when
—2<(<0,1<p< oo, for some ¢ > p. Choose g > - g+2 > p. By using Holder’s
inequality we have

1P P T q ‘
s"vlP drdzs < sa—rdrdrs |v|* drdx
a BCL a



Since

// S%deI'g = 27?/ qu%ds = —277((] —») a2+q%,
a 0 (£+2)g—2p

the embedding L9(B,) < L}(B,) is continuous. Thus case 1 is proved.
Case 2: a>0/>a—-2,1<p< (HQ)

We can consider u € Hy“(B,) as u € Héo‘(Rz) by setting u = 0 outside B,.
Similarly for L2(B,). Let F be a bounded subset in Hy*(B,). In order to prove
the embedding is compact for Case 2, we will show that F is relatively compact
subset in LY(B,). For 1 <p < @, by using the Holder’s inequality we have

) )
// s* JulP drdxs < <// s |u|2(l:2) drdx;;) <// Sgd’/’dl'g) :

Since [f B, stdrdzs = 2m [ s ds = Z%:;a”z and Caffarelli - Kohn - Nirenberg
inequality, F is bounded in LP(B,) (or LY(R?)). When p = 1, in order to prove
F is relatively compact in Lj(B,) we show that G = {s"u:u € F} is relatively
compact in L'(B,) (or L'(R?)). Because F is bounded in L}(R?), G is bounded
in L'(R?). Thus, in order to prove G is relatively compact in L'(R?), according

to Frechet-Kolmogorov, we only need to prove

sup/ v (y +h) — v (y)| dy — 0
RZ

vEG

ash—>O.Lete>O]h|<ewehave
Jez v+ 1) —v@)ldy =[], vy +h) —v(y)ldy+

+ff26<|y|<a v (y+h)—v(y)dy+ ff|y\<2€ v(y+h)—v(y)|dy:=5L+ 1+ I3

where y = (r — R, x3) ,h = (h1, ha) .
Since v = s‘u,u € F, suppv C B,. Therefore, for 0 < |h| < e < a

ho= [ ehl )y
a<ly|<a+e

2 [[ iy
a<ly|<a+e
2047 o\
< (ZG)WI (// st |u(y)‘2<li2> dy) <// S2(z+2)a) ‘
a—e<|yl<a a—e<|yl<a

Since 0 < o« </ +2 and

a
// s 2H-ady = 27r/ s 2ads < O,
a—e<|y|<a a—e

4
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we have

I < Ce' 2 Yy € F. (8)

Because

Igs// <\v<y+h>!+|v<y>|>dysz// |v<y>|dy:2// o [u ()] dy
lyl<2e ly|<3e ly|<3e
BI(E=)) ) (=)
2(ff ) (] e )
ly|<3e ly|<3e

Vi o ) 27 42
// sdy:27r/ s"lds = —— (3e)
ly|<3e 0 [+2

I < 07 Yu e F. 9)
Note that v (y + h) —v (y) = fol h-Vu (y +th)dt and Vv = s'Vu+ ({5 %u) y so

1
I — // /h Vv(erth)dt‘dy
2e<|yl<a
< |h|/ (// Vo y+th)|dy)dt
2e<|y|<a
< // Vo ()] dy
e<Jy|<a

< Ce [// o [Vl dy + // o1 yu|dy] — Ce[h+D].  (10)
e<|y|<a e<|y|<a

Again using Holder’s inequality we have

1 1
Ji < (// Ch |Vu|2dy) (// s%ady) : (11)
e<|y|<a e<ly|<a
1—_a
Jy < ( / / ) e d ) e ( / / sf—m‘@?ady) - (12)
e<lyl<a e<|]y|<a

Note that £ — ;7520 +2 = 28— (20 —a + 2).

If 20 — o = —2 then ¢ — ef;f) = —2. Since

// s2dy = 27r/ s'ds =2rln <g>
e<|y|<a € €

5
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and (10)-(11)-(12), we get

(6%
< — .
12_06111(6),\7%.? (13)
If 20 — o < —2 then

// S%Qdy —or /a §2-atlgg < 2 6267a+2’
e<|y|<a € a—2-20

_2(240) a _2(2+0)
// 86 22+0)—a dy — 27T/ 8€+1 220 —-a g
e<lyl<a €

2m(2(2410) — ) et
= W12 (a—2-20)" '

Thus, from (10)-(11)-(12) we get

2l—a+2)+a

L<Ce =2 VuelF. (14)

If 20 — o > —2 then from

W—a K_M
S dy < (7, s 2@H0-ady < (Y
e<|y|<a e<|y|<a

and (10)-(11)-(12) we get
I, < CeVu e F. (15)

From (8)-(9) and (13)-(14)-(15) we conclude that F is relatively compact in

L}(B,).
Consider the case 1 < p < @ we have

s A 1-)
// s° JulP dy < <// % u| e dy) <// sélu\dy)

withp=1—- X+ @)\. Therefore, F is relatively compact in L} (B,). O
Proof of Proposition 1. We can consider H&fym(T(R, a)) as Hy®(B,) so from
Lemma 1 we obtain Proposition 1. O

Proposition 2. The Nemytskii mapping u + s*|ul” is continuous from I}(T(R, a))
to LZ(l_q)(T(R, a)), when { € Rj1 < p < 00,1 < g < co. Moreover, it is com-
pact from H&’a (T(R,a)) to Ly, (T(R,a)) when either o = 0,{ > —2 and

sym

(1-q)
1<p<oo,l<qg<xora>0l>a—-21<p<
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Proof. Using Propopsition 1 and the continuity of Nemytskii mapping it is not
difficult to get the compactness of this mapping. The proof of the continuity of

Nemytskii is elementary. O]
Proposition 3. Let u € H&fym( (R,a)). Then we have u~ € H&fym( (R,a)),
u” >0, Vu~ = —X{u<0y V, where u~ = max {0, —u}.

Proof. Noting that C} is dense in HO1 ‘eym> the proof of Proposition 3 is similar to
the proof of the same result for u € Hy. O

4 The proofs of the main results

4.1 The proof of Theorem 1

To prove problem (1) - (2) has a positive solution u € H, oym(T (R, a)), we consider
the following function

J:HyS (T(R,a)) —

0,sym

///ma vl dx_—/// e s‘ulul” d. (16)

By using Mountain Pass Lemma, we imply that J has a nontrivial critical point
€ Hyo (T(R,a)), i. e.

0= [[[ . svuvots— [[[ i odr =06 € iz, (T(R.0)

(17)
Next we show that (17) is valid for all ¢ € Hy®(T(R, a)), that means the non-
trivial critical point u is a weak solution of the following problem

—div (s*°Vu) = s |ul’ in T(R,a), (18)

u=0on JdT(R,a). (19)

By using the Maximum Principle for solution of the problem (18) - (19) we have
u > 01in T(R,a). Therefore u is a positive solution of the problem (1) - (2). In

order to use Mountain Pass Lemma, we will show that .J satisfies all conditions
of Mountain Pass Lemma.

Lemma 2. We have the following assertions:

(i) J(0) = 0.
(1) 3p > 0,3y > 0 such that Vu € H&fym(T(R, a)), ||u|| = p then J (u) > 7.
(ZZZ) Je € H(%saym( <R7 a’))7 HeHHLa > P J<€) = 0.



Proof. (i) is obvious.
(#7) From the assumptions of a, ¢, p we imply that the embedding
Hy® (T(R,a)) — LPt! (T(R,a)) is continuous. Then we have

0,sym £,sym
p+l
‘/// stu [ul? da g/// selu\p+ldx§0</// sa|Vu|pdx) :
T(R,a) T(R,a) T(R,a)
Thus,
1 2 C 1
T (@) 2 5 [l = = i (20)

Because p > 1, from (20), (i7) is obvious.
(iii) Fix ug € Hy?, (T(R,a)) such that ug > 0, |ug|| g1« > 0. Let a > 0, we

0,sym
have
22 AP+
J(/\uo):—/// so‘|Vu0|2dac— /// s |uo|P T du.
2 ) rmra) T(R.a)
It is easy to see that, since p > 1,limy_, o, J (Aug) = —oo. From here, it is obvious
that (ii7) holds. O

We only need to prove that J satisfies the Palais-Smale condition.

Lemma 3. Suppose that {u, }nen in Hy® (T(R,a)) satisfies

0,sym
7 (up)| < M,¥n € N, (21)
lim J (u,) = 0. (22)

n—-+o00

Then there exists a subsequence of {uy, }nen that converges in Hy am(T(R, a)).

Proof. For u € Hy® (T(R,a)) we have J' (u,) € (Hla (T(R, a))) According

0,sym 0,sym
to Riesz representation Theorem, there exists a unique element v € Hy® (T(R, a))

such that
0= [[[, Ve Voeto € B TR

We will define v as follows.
Case 1. a = 0. For ¢ > 1, by Proposition 2, we have f (z,u) = s‘|ul’ €
(T'(R,a)). Also we have

(/// v |f|qu); (///T(Rﬁa)s‘lcblfldx)l_;

8

,8ym
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0sym(T(R,a)) — L7 (T(R,a)) is continuous, the func-
tional ¢ — fffT(R o) f(z,u)p(x)dx is an element in (Hé,’gym(T(R, a)))/.

2(£+2)

Case 2. o > 0. By Proposition 2, we have f (x,u) = s* |u|’ € L*“*2,* (T(R, a)).

2(l+a)—a
Also we have

1——Qa
—« ( ) 2(£+2)
I s < ([[] ot
T(R,a) T(R,a)
(£+2) 2(2(12)
T(R,a)

2(£+42)
Since the embedding H&fym(T(R, a)) = L, * (T(R,a)) is continuous, the func-

tional ¢ — fffT(R’a) f(z,u)¢p(x)dz is an element in (Hl’a (T(R, a)))/.

0,sym

Since the embedding H,?

Then according to Riesz representation Theorem, there exists a unique element
w="Tue Hy® (T(R,a)) such that

0,sym

/ / /T(R,a) Vv Vedz = / / /T e flz,w)é(x)dz, Vo € Hy?,, (T(R,a)).

Therefore, from (17) we can rewrite

v=JWw =u—w=u—Tuc H?, (T(R,a)) (23)

0,sym

We look at the way to define Tu

2(0+2)
T2 HySy (T(R,0)) = L0 (TR @) = Hiy (T(R. ) w o Juf o v,

By Proposition 2, u + s |ul’ is compact. Since s |u|’ — w is continuous, the
map
1, 1,a
T: HO,sym<T(R7 CL)) — HO,sym(T(R7 a’))
is compact. From (23) and from the assumption that J'(u,) — 0 as n — oo we
only need to prove that {u,} is bounded in Hy®, (T(R,a)). We have

0,sym

J (un)(uy) = /// s¢ |Vun]2 dx — /// s [t |P upder.
T(R,a) T(R,a)

Since J'(u,) — 0 as n — oo, there exists Ny such that

‘/// 5% |V, |* dz — /// s [ty [P upda
T(R,a) T(R,a)

9
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Since |J(u,)| < M or

1
‘—/// 5% |V, |* dz — /// sty |un|? da
2 T(R,a) p+1 T(R,a)

and (24) we have

2
Un e < 2M+—/// stu,, |, P dx
ol S [ el

< 2M + p— (Hun”Hla + HunHHl a) vn 2 NO-

< M,Vn,

Therefore, I 1 ||un||H1a - z% lunll gra < 2M,Vn > Ny. So {u,} is bounded in
Hy* (T(R, a)). O

0,sym

In conclusion, J satisfies all conditions of Mountain Pass Lemma, so J has a

nontrivial critical solution u € H, am(T(R,a)), ie. u# 0 and

/// e s*Vu-Vodr— /// ) s [ulP ¢dx = 0,Y¢ € Hy,, (T(R, a))

(25)
We consider the coordinate z; = (R4 scosf)cos¢,z2 = (R+ scosf)sing,
r3 = ssinf we have T(R,a) = {0 <s<a,0<0,¢<2r}. Then from (25),
u € C*P(T(R,a)\S,) for some 3 € (0,1), where S, = {(z1,22,0) : 22 + 2% = a?},

satisfies the following equation

s (s*T (R + scos 0)d5u) + 9p(s* (R + scos0)pu) + s (R + scos) [ul’ =0
(26)
in T'(R, a)\S,.
Next we will show that the critical point u € H, oym(T(R,a)) is the weak
solution of the following problem
—div(s*Vu) = s [ul’ in T(R,a),u =0 on T (R, a).
Specifically, we prove the following lemma.

Lemma 4. (25) holds for all ® € Hy*(T(R, a)).

Proof. Because of density, it is enough to prove Lemma 4 for ® € CJ(T(R,a)).
Let € € (0,a). Note that u € C*?(T(R,a)\S,) satisfies

—div(s*Vu) = s* |ul]’ in T(R,a)\T(R,€),u =0 on OT(R,a).
Then by using Divergence Theorem we have

/// s*Vu.Vodr = — /// div(s*Vu)ddz+
T(R,a)\T (R,e) T(R,a)\T(R,e€)

10



—i—// (v-s*Vu)®dS = /// s [ul? dx—l—// (v-s*Vu)®dS.
A(T(R,a)\T(Rye)) T(R,a)\T(R,e) OT(Rye)

We need to prove
lim // (v - s*Vu)®dS = 0. (27)
=0t J Joar(R,e)

In coordinate system (s, 6, @), we rewrite

27 2T
/ / (v * V) DdS — / / (R € cos O)ua(e, 0)D(e, 0, 0)dbdp. (23)
AT (R.¢) o Jo

By integrating f: ds both sides of (26) we get
a® (R + acosO)us(a,d) — e (R + ecos O)uy(e, ) =
- / Op(s* Y (R + scosO)ug)ds — / s (R + scosf) ul” ds.

By multiplying ®(e, 6, @) and then integrating fo% 0277 dfdp both sides of the
above equation, we get

2m T
/ / a® (R + acos)us(a, 0)P(e, 0, p)didp—
o Jo
2 27
1 / / (R + ecosO)uy(e, 0)®(e, 0, 0)dOdy
o Jo
/ / / R+ scos@)ug(s, 0)Pg(e, 0, p)dOdpds

a 2m 2w
— / / / SR + scos ) [ul (e, 0, p)dOdpds. (29)
€ 0

Since u € HyS, (T(R,a)) < L?

0,sym £,sym

a 27 27
/ / / s (R 4+ scos0) |u|’ dddpds < 400,
o Jo Jo
/ / / R + scosf) |ue| dfdpds < 4oc.

Moreover, ® € C}(T(R,a)) so the right side of (29) converges as € — 07. Thus,

there exists a limit A = lim._,o+ 0% 027r TR + ecosO)uy(e,0)P(e, 0, )dOdp.

(T'(R,a)), we have

11



To prove (27), from (28) we only need to prove A = 0. Suppose that A # 0.
Then there exists ¢y > 0 such that

27 27 A
/ / (R + ecos 0)u,(e, 0)®(e, 0, p)dOdyp| > %,O < €< €.
o Jo

Since ® € C}(T (R, a)), there exists M > 0 such that
|D(e,0,0)| < M,Y(e,0,p) € T(R,a).
Then

27 2T
/ / YR + ecos ) |uy(e, 0))* dfdp > Ce™ 710 < € < .
o Jo

2

This contradicts to [ [07 €™ (R + ecos ) |us(e, 0)]° dedd < +oo. Therefore,

A=0. m
Next we will prove that u > 0 in T'(R,a). In fact, by Lemma 4 and Proposition
3 we have
/// s*Vu.Vu dr = /// s* JulP udx
T(R,a) T(R,a)
or

—/// SQ‘VU_}de—/// Sg‘u_‘pdac.
T(R,a) T(R,a)

So u~ = 0 ae. in T(R,a). In other words, u > 0 a.e. in T(R,a). Since
—div(s*Vu) = s |u|’ > 0in T(R,a)\S, and u # 0, by strong maximum principle
u>01in T'(R,a)\S,. Theorem 1 is proved.

4.2 The proof of Theorem 2

To prove Theorem 2 for nonexistence of nontrivial solution of problem (1) - (2),
we need the following Pohozaev-type identity.

Lemma 5. Suppose that u is a weak solution of problem (1) - (2). Choose a field

m = (=L, =Lz, Ez;). Then we have

///T(R’a)(div m)KCF (u)dx + ///T(R’a)(m - VK)F(u)dz =
B % V//T(R,a)(di” m)J |Vul® da + ///T(Rm(m V) [Vul? da | —

3
- Z /// J(0;m;)O;ud;udz + ! // J(m - v)|0,ul’dS
T(R,a) 2 9T(R,a)

ij=1

where K = st, J = %, f(u) = [uf' " u, F(u) = [ f(t)dt =

1
= oy lu

‘P+1'

12



Proof. Because (2), we have Vu = (Vu, v)v and

dyu(m - Vu) = (m - v) |d,ul”. (30)

Since u is a solution of (1),

///T(Ra)dw (JVu).(m - Vu)d /// RCCER Y

Since f(s) = F'(s),we have K f(u)m;0;u = m;0;(KF(u)) — (m;0;K)F (u). Then

///Ra) mVudx—///T(RamVICF ))dz— ///Ra)mv )F(u)dz.

By using integation by parts we get

/// m-V(KF(u /// (div m)KF(u dx—l—// (m-v)KF(u)dS.
T(R,a) T(R,a) 0T (R,a)

From (2), we get F(u )‘6T =0. So

///Ra) )(m-Vu)d ///T(Radw m)K f (u)dz— ///T(Ra (m-V () F (u)dz.

32)

By using integation by parts again we get

///T(R,a) div (JVu)(m - Vu)d ///R JVu -V (m - Vu)de+

+ // JO,u(m - Vu)dS. (33)
0T (R,a)
We have

3 3
JVu-V(m-Vu) = Z J@iu@(z m;0;u)
3 3
ij 1 1,j=1

= ZJ +ZJOmj(9u0u

7,7=1 2,7=1

3
= Z Jm; %
=1

Vul? i

ij=1

13
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TRa) 2 T(Ra)

So

/// JVu-V(m-Vu)d :——/// (div m)J | Vu|” dz—

T(R,a) T(R,a)

—1/// (m-VJ)J|Vu]2dx+1// J(m-v)| Vul|* dS+
2 T(R,a) 2 JJor(ra)

—i—Z///T(Ra (0ym;)Oiu.0;udz. (34)

3,7=1

From (30), (33), (34) we have

/// div(JVu)(m - Vu)d /// (div m)J | Vu|* dz+
T(R,a) T(R,a)

/// (m-VJ)J| Vul’ dz + = // J(m-v)| Vu|* dS—
T(R,a) AT (R,a)

—Z/// e J(0;m;)0;u.0judzx. (35)

2,J=1

From (31), (32), (35), we have the conclusion. O
For m, K, J as in Lemma 5, and A = a/R we have the following lemma.

Lemma 6. (i) div(m)

(ii) (VJ -m) = as*? ((_ R)? + &%) > 125

>/

+1

) 1 for £ >0,
(i) (VK -m) = s ((7“ — R)*+ %x%) S ﬁIC where 0 = {—1 for ¢ <.

(z’v)m-l/:@—i—l%xg >0 onaT(R a).
(0) 32 Omytie; = T T 2 B2y WRmyma e, Rmzag g, Rogmagoe,

Assume that u € Hy®(T(R, a)) is a nontrivial weak solution of (1) - (2), we

e / / /T - JIVul*dz = (p+1) / / /T - KF(u)dz. (36)

14

2
AV
T // Jm;v; | u]
0T (R,a)

—dS.



From Lemma 5 and Lemma 6 we obtain that

() [ = () ], e

3
— J O;m;0;ud;udz. 37
///T(R,a) Z ’ ’ ( )

ij=1
For € > 0 we consider the following matrix
€ + Rx% _ Rzxjizo Rxiz3
r3 o, 2r3
M= | _Buzy 4 By Ragag
3 r3 273
Rzizs Rzoxs 14+¢— R
2r3 2r3 r

In order to have Zij:l oim;&& < (14 €)|¢]%, V¢ € R?, the matrix M is positive

semi-define. It is not difficult to see that if

2.2 3.2
(62—1—56) <1+6—§>—Rx3€—Rx320
r

r 4yt 45

for (r/R —1)* + (z3/R)* < A? then M is positive semi-define. So we can choose
e =2V /(1 = \)? > 0 such that

3
> amggi&; < (1+€)l€f,vE € R®.

ij=1

Hence, from (37) - (36) and noting that u is nontrivial solution we get

14 a

So for «,¢,p as in Theorem 2 there is €y > 0 such that (38) does not hold if
0 < A=a/R < ¢. Therefore Theorem 2 is proved.
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