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Abstract. In this paper, we study the existence and non existence of nontriv-
ial solutions to the Dirichlet boundary value problem for the following degenerate
elliptic equation

−div(sα∇u) = sℓ |u|p−1 u in T (R, a), (1)

u = 0 on ∂T (R, a) (2)

where

T (R, a) = {(x1, x2, x3) ∈ R : x2
3 + (r −R)2 < a2},

r =
√
x2
1 + x2

2, 0 < a < R

is a torus in R3, s =
√

x2
3 + (r −R)2 and α ≥ 0, ℓ ≥ −2, 1 < p < ∞. The main

results show that when p is small then the problem has a nontrivial positive
solution. On the other hand, when p is big there is not a nontrivial soltion. To
obtain the existence of nontrivial solutions we use the variational method and
the symmetric property of the torus. To obtain the nonexistence of nontrivial
solutions we derive a Pohozaev’s type identity and then apply it.

1 Introduction

Boundary value problems (BVP) for degenerate elliptic equations (DEE), espe-
cially nontrivial solutions to BVP for DEE, have been extensively studied recently.
Many results concerning the existence, nonexistence, multiplicity of nontrivial so-
lutions to BVP for DEE were obtained, see for example [9], [10], [14], [4], [6] and
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the references therein. In this paper we deal with a DEE on a torus. We essen-
tially use the symmetric property of the torus to obtain the results. Recall that
nontrivial solutions to BVP for elliptic equations were considered in [13], [3], [1],
[2], [7], [12], [11] (see also the references therein). The plan of the paper is as
follows: In §2 we introduce some notations and the formulations of main results.
Next in §3 we present some auxilliary statements. Finally in §4 we give the proofs
of the results.

2 Main Results

Let us first introduce the notations that will be used later on.
Lp
ℓ(T (R, a)), ℓ ∈ R, 1 ≤ p < ∞ is the space of measurable functions f on T (R, a)

such that sℓ |f |p ∈ L1(T (R, a)).
Lp
ℓ(T (R, a)), ℓ ∈ R, 1 ≤ p < ∞ is a Banach space with the norm

∥f∥Lℓ
p
=

(∫∫∫
T (R,a)

sℓ |f |p dx
) 1

p

. (3)

In this paper, we are only interested in measurable functions f on T (R, a) de-
pending only on r =

√
x2
1 + x2

2 and x3, i.e.

f(x) = g(r, x3). (4)

In particular, we consider the subspace Lp
ℓ,sym(T (R, a)) containing all functions

f ∈ Lp
ℓ(T (R, a)) which satisfy (4). Then the norm in (3) is rewritten as follows

∥f∥Lℓ
p
=

(
2π

∫∫
Ba

sℓ |g|p rdrdx3

) 1
p

with Ba = {(r, x3) : (r −R)2 + x2
3 < a2} .

If (r, x3) ∈ Ba then R − a < r < R + a so we can consider Lp
l,sym(T (R, a)) as

Lp
l (Ba).

H1,α
0 (T (R, a)), α ≥ 0, is the closure of C1

0(T (R, a)) in the norm

∥u∥H1,α =

(∫∫∫
T (R,a)

sα |∇u|2 dx
) 1

2

. (5)

As above, we are interested in the subspace H1,α
0,sym(T (R, a)) containing all func-

tions u ∈ H1,α
0 (T (R, a)) written as u(x) = v(r, x3). Then the norm in (5) is

rewritten as

∥u∥H1,α =

(
2π

∫∫
T (R,a)

sα |∇v|2 rdrdx3

) 1
2
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with ∇v = (vr, vx3) . Then we can consider H1,α
0,sym(T (R, a)) as H1,α

0 (Ba).
Now we are in a position to state the main theorems.

Theorem 1. The problem (1)-(2) has a positive solution u ∈ H1,α
0,sym(T (R, a))

when either α = 0, ℓ ≥ −2 and 1 < p < ∞ or α > 0, ℓ ≥ α − 2 and 1 < p <
2(ℓ+2)

α
− 1.

Theorem 2. When α > 0, ℓ ≥ α− 2, p > 2(ℓ+2)
α

− 1, there exists ϵ0 > 0 such that

for 0 < α
R
< ϵ0 the problem (1)-(2) has only trivial solution in H1,α

0 (T (R, a)).

3 Some auxilliary statements

Proposition 1. We have the following continuous embedding

H1,α
0,sym(T (R, a)) ↪→ Lp

ℓ,sym(T (R, a)) (6)

when either α = 0, ℓ > −2 and 1 ≤ p < ∞ or α > 0, ℓ ≥ α−2 and 1 ≤ p ≤ 2(ℓ+2)
α

.
The embedding (6) is compact when either α = 0, ℓ > −2 and 1 ≤ p < ∞ or

α > 0, l ≥ α− 2 and 1 ≤ p < 2(ℓ+2)
α

.

In order to prove Proposition 1, we only need to prove the following lemma.

Lemma 1. The embedding H1,α
0 (Ba) ↪→ Lp

ℓ(Ba) is continuous when α > 0, ℓ ≥
α−2 and 1 ≤ p ≤ 2(ℓ+2)

α
. It is compact when either α = 0, ℓ > −2 and 1 ≤ p < ∞

or α > 0, ℓ ≥ α− 2 and 1 ≤ p < 2(ℓ+2)
α

.

Proof. We recall Caffarelli - Kohn - Nirenberg inequality(∫∫
Ba

sℓ |v|
2(ℓ+2)

α drdx3

) α
ℓ+2

≤ C

∫∫
Ba

sα |∇v|2 drdx3 (7)

when α > 0, ℓ ≥ α − 2. Therefore, in order to prove Lemma 1, we only need to
prove these embeddings are compact.

Case 1: α = 0, ℓ > −2, 1 ≤ p < ∞.

Since Ba is a disk in R2, the embeddingH1
0 (Ba) ↪→ Lq(Ba), 1 ≤ q < ∞ is compact.

Now we only need to prove the embedding Lq(Ba) ↪→ Lp
ℓ(Ba) is continuous when

−2 < ℓ < 0, 1 ≤ p < ∞, for some q > p. Choose q > 2p
ℓ+2

> p. By using Holder’s
inequality we have∫∫

Ba

sℓ |v|p drdx3 ≤
(∫∫

Ba

s
ℓq

q−pdrdx3

)1− p
q
(∫∫

Ba

|v|q drdx3

) p
q

.
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Since ∫∫
Ba

s
ℓq

q−pdrdx3 = 2π

∫ a

0

s1+
ℓq

q−pds =
2π(q − p)

(ℓ+ 2) q − 2p
a2+

ℓq
q−p ,

the embedding Lq(Ba) ↪→ Lp
ℓ(Ba) is continuous. Thus case 1 is proved.

Case 2: α > 0, ℓ ≥ α− 2, 1 ≤ p < 2(ℓ+2)
α

.

We can consider u ∈ H1,α
0 (Ba) as u ∈ H1,α

0 (R2) by setting u = 0 outside Ba.
Similarly for Lp

ℓ(Ba). Let F be a bounded subset in H1,α
0 (Ba). In order to prove

the embedding is compact for Case 2, we will show that F is relatively compact
subset in Lp

ℓ(Ba). For 1 ≤ p < 2(ℓ+2)
α

, by using the Holder’s inequality we have∫∫
Ba

sℓ |u|p drdx3 ≤
(∫∫

Ba

sℓ |u|
2(l+2)

α drdx3

) αp
2(l+2)

(∫∫
Ba

sℓdrdx3

)1− αp
2(l+2)

.

Since
∫∫

Ba
sℓdrdx3 = 2π

∫ a

0
sℓ+1ds = 2π

ℓ+2
aℓ+2 and Caffarelli - Kohn - Nirenberg

inequality, F is bounded in Lp
ℓ(Ba) (or L

p
ℓ(R2)). When p = 1, in order to prove

F is relatively compact in L1
ℓ(Ba) we show that G =

{
sℓu : u ∈ F

}
is relatively

compact in L1(Ba) (or L
1(R2)). Because F is bounded in L1

ℓ(R2), G is bounded
in L1(R2). Thus, in order to prove G is relatively compact in L1(R2), according
to Frechet-Kolmogorov, we only need to prove

sup
v∈G

∫∫
R2

|v (y + h)− v (y)| dy → 0

as h → 0. Let ϵ > 0, |h| < ϵ, we have∫∫
R2 |v (y + h)− v (y)| dy =

∫∫
|y|>a

|v (y + h)− v (y)| dy+

+
∫∫

2ϵ<|y|<a
|v (y + h)− v (y)| dy+

∫∫
|y|<2ϵ

|v (y + h)− v (y)| dy := I1 + I2 + I3

where y = (r −R, x3) , h = (h1, h2) .
Since v = sℓu, u ∈ F , suppv ⊂ Ba. Therefore, for 0 ≤ |h| < ϵ < a

I1 =

∫∫
a<|y|<a+ϵ

|y + h|ℓ |u (y + h)| dy

≤ (2a)|ℓ|
∫∫

a<|y|<a+ϵ

|u (y + h)| dy

≤ (2a)|ℓ|
(∫∫

a−ϵ<|y|<a

sℓ |u (y)|
2(l+2)

α dy

) α
2(ℓ+2)

(∫∫
a−ϵ<|y|<a

s−
α

2(ℓ+2)−α

)1− α
2(ℓ+2)

.

Since 0 < α ≤ ℓ+ 2 and∫∫
a−ϵ<|y|<a

s−
α

2(ℓ+2)−αdy = 2π

∫ a

a−ϵ

s1−
α

2(ℓ+2)−αds ≤ Cϵ,
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we have
I1 ≤ Cϵ1−

α
2(ℓ+2) ,∀u ∈ F . (8)

Because

I3 ≤
∫∫

|y|<2ϵ

(|v (y + h)|+ |v (y)|) dy ≤ 2

∫∫
|y|<3ϵ

|v (y)| dy = 2

∫∫
|y|<3ϵ

sℓ |u (y)| dy

≤ 2

(∫∫
|y|<3ϵ

sℓdy

)1− α
2(l+2)

(∫∫
|y|<3ϵ

sℓ |u (y)|2
(ℓ+2)

α dy

) α
2(ℓ+2)

and ∫∫
|y|<3ϵ

sℓdy = 2π

∫ 3ϵ

0

sℓ+1ds =
2π

l + 2
(3ϵ)ℓ+2

we get

I3 ≤ Cϵ
2(ℓ+2)−α

2 ,∀u ∈ F . (9)

Note that v (y + h)− v (y) =
∫ 1

0
h ·∇v (y + th) dt and ∇v = sℓ∇u+

(
ℓsℓ−2u

)
y so

I2 =

∫∫
2ϵ<|y|<a

∣∣∣∣∫ 1

0

h · ∇v (y + th) dt

∣∣∣∣ dy
≤ |h|

∫ 1

0

(∫∫
2ϵ<|y|<a

|∇v (y + th)| dy
)
dt

≤ ϵ

∫∫
ϵ<|y|<a

|∇v (y)| dy

≤ Cϵ

[∫∫
ϵ<|y|<a

sℓ |∇u| dy +
∫∫

ϵ<|y|<a

sℓ−1 |u| dy
]
:= Cϵ [J1 + J2] . (10)

Again using Holder’s inequality we have

J1 ≤
(∫∫

ϵ<|y|<a

sα |∇u|2 dy
) 1

2
(∫∫

ϵ<|y|<a

s2ℓ−αdy

) 1
2

, (11)

J2 ≤
(∫∫

ϵ<|y|<a

sα |u|
2(2+ℓ)

α dy

) α
2(2+ℓ)

(∫∫
ϵ<|y|<a

sℓ−
2(2+ℓ)

2(2+ℓ)−αdy

)1− α
2(2+ℓ)

. (12)

Note that ℓ− 2(ℓ+2)
2(ℓ+2)−α

+ 2 = (ℓ+2)
2(ℓ+2)−α

(2ℓ− α + 2) .

If 2ℓ− α = −2 then ℓ− 2(ℓ+2)
2(ℓ+2)−α

= −2. Since∫∫
ϵ<|y|<a

s−2dy = 2π

∫ a

ϵ

s−1ds = 2π ln
(α
ϵ

)
5



and (10)-(11)-(12), we get

I2 ≤ Cϵ ln
(α
ϵ

)
, ∀u ∈ F . (13)

If 2ℓ− α < −2 then∫∫
ϵ<|y|<a

s2ℓ−2dy = 2π

∫ a

ϵ

s2ℓ−α+1ds ≤ 2π

α− 2− 2ℓ
ϵ2ℓ−α+2,

∫∫
ϵ<|y|<a

sℓ−
2(2+ℓ)

2(2+ℓ)−αdy = 2π

∫ a

ϵ

sℓ+1− 2(2+ℓ)
2(2+ℓ)−αds

≤ 2π (2 (2 + ℓ)− α)

(ℓ+ 2) (α− 2− 2ℓ)
ϵ
(ℓ+2)(2ℓ−α+2)

2(2+ℓ)−α .

Thus, from (10)-(11)-(12) we get

I2 ≤ Cϵ
2(ℓ−α+2)+α

2 , ∀u ∈ F . (14)

If 2ℓ− α > −2 then from∫∫
ϵ<|y|<a

s2ℓ−αdy ≤ C1,

∫∫
ϵ<|y|<a

sℓ−
2(2+ℓ)

2(2+ℓ)−αdy ≤ C2

and (10)-(11)-(12) we get
I2 ≤ Cϵ,∀u ∈ F . (15)

From (8)-(9) and (13)-(14)-(15) we conclude that F is relatively compact in
L1
ℓ(Ba).

Consider the case 1 < p < 2(ℓ+2)
α

we have∫∫
Ba

sℓ |u|p dy ≤
(∫∫

Ba

sℓ |u|
2(ℓ+2)

α dy

)λ (∫∫
Ba

sℓ |u| dy
)1−λ

with p = 1− λ+ 2(2+ℓ)
α

λ. Therefore, F is relatively compact in Lp
ℓ(Ba).

Proof of Proposition 1. We can consider H1,α
0,sym(T (R, a)) as H1,α

0 (Ba) so from
Lemma 1 we obtain Proposition 1.

Proposition 2. The Nemytskii mapping u 7→ sℓ |u|p is continuous from Lpq
ℓ (T (R, a))

to Lq
ℓ(1−q)(T (R, a)), when ℓ ∈ R, 1 ≤ p < ∞, 1 < q < ∞. Moreover, it is com-

pact from H1,α
0,sym(T (R, a)) to Lq

ℓ(1−q)(T (R, a)) when either α = 0, ℓ > −2 and

1 ≤ p < ∞, 1 < q < ∞ or α > 0, ℓ ≥ α− 2, 1 ≤ p < 2(ℓ+2)
α

− 1, q = 2(ℓ+2)
2(ℓ+2)−α

.
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Proof. Using Propopsition 1 and the continuity of Nemytskii mapping it is not
difficult to get the compactness of this mapping. The proof of the continuity of
Nemytskii is elementary.

Proposition 3. Let u ∈ H1,α
0,sym(T (R, a)). Then we have u− ∈ H1,α

0,sym(T (R, a)),
u− ≥ 0, ∇u− = −χ{u<0}∇u, where u− = max {0,−u}.

Proof. Noting that C1
0 is dense in H1,α

0,sym, the proof of Proposition 3 is similar to
the proof of the same result for u ∈ H1

0 .

4 The proofs of the main results

4.1 The proof of Theorem 1

To prove problem (1) - (2) has a positive solution u ∈ H1,α
0,sym(T (R, a)), we consider

the following function
J : H1,α

0,sym(T (R, a)) → R

J (u) =
1

2

∫∫∫
T (R,a)

sα |∇u|2 dx− 1

p+ 1

∫∫∫
T (R,a)

sℓu |u|p dx. (16)

By using Mountain Pass Lemma, we imply that J has a nontrivial critical point
u ∈ H1,α

0,sym(T (R, a)), i. e.

J ′ (u) (ϕ) =

∫∫∫
T (R,a)

sα∇u·∇ϕdx−
∫∫∫

T (R,a)

sℓ |u|p ϕdx = 0,∀ϕ ∈ H1,α
0,sym(T (R, a)).

(17)
Next we show that (17) is valid for all ϕ ∈ H1,α

0 (T (R, a)), that means the non-
trivial critical point u is a weak solution of the following problem

−div (sα∇u) = sℓ |u|p in T (R, a), (18)

u = 0 on ∂T (R, a). (19)

By using the Maximum Principle for solution of the problem (18) - (19) we have
u > 0 in T (R, a). Therefore u is a positive solution of the problem (1) - (2). In
order to use Mountain Pass Lemma, we will show that J satisfies all conditions
of Mountain Pass Lemma.

Lemma 2. We have the following assertions:
(i) J (0) = 0.
(ii) ∃ρ > 0,∃γ > 0 such that ∀u ∈ H1,α

0,sym(T (R, a)), ∥u∥ = ρ then J (u) ≥ γ.

(iii) ∃e ∈ H1,α
0,sym(T (R, a)), ∥e∥H1,α > ρ, J (e) = 0.
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Proof. (i) is obvious.
(ii) From the assumptions of α, ℓ, p we imply that the embedding

H1,α
0,sym(T (R, a)) ↪→ Lp+1

ℓ,sym(T (R, a)) is continuous. Then we have∣∣∣∣∫∫∫
T (R,a)

sℓu |u|p dx
∣∣∣∣ ≤ ∫∫∫

T (R,a)

sℓ |u|p+1 dx ≤ C

(∫∫∫
T (R,a)

sα |∇u|p dx
) p+1

2

.

Thus,

J (u) ≥ 1

2
∥u∥2H1,α − C

p+ 1
∥u∥p+1

H1,α . (20)

Because p > 1, from (20), (ii) is obvious.
(iii) Fix u0 ∈ H1,α

0,sym(T (R, a)) such that u0 ≥ 0, ∥u0∥H1,α > 0. Let α > 0, we
have

J (λu0) =
λ2

2

∫∫∫
T (R,a)

sα |∇u0|2 dx− λp+1

p+ 1

∫∫∫
T (R,a)

sℓ |u0|p+1 dx.

It is easy to see that, since p > 1, limλ→+∞ J (λu0) = −∞. From here, it is obvious
that (iii) holds.

We only need to prove that J satisfies the Palais-Smale condition.

Lemma 3. Suppose that {un}n∈N in H1,α
0,sym(T (R, a)) satisfies

|J (un)| ≤ M,∀n ∈ N, (21)

lim
n→+∞

J ′ (un) = 0. (22)

Then there exists a subsequence of {un}n∈N that converges in H1,α
0,sym(T (R, a)).

Proof. For u ∈ H1,α
0,sym(T (R, a)) we have J ′ (un) ∈

(
H1,α

0,sym(T (R, a))
)′
. According

to Riesz representation Theorem, there exists a unique element v ∈ H1,α
0,sym(T (R, a))

such that

J ′ (u) (ϕ) =

∫∫∫
T (R,a)

sα∇v · ∇ϕdx,∀ϕ ∈ H1,α
0,sym(T (R, a)).

We will define v as follows.
Case 1. α = 0. For q > 1, by Proposition 2, we have f (x, u) = sℓ |u|p ∈

Lq
ℓ(1−q)(T (R, a)). Also we have∣∣∣∣∫∫∫

T (R,a)

f(x, u)ϕ(x)dx

∣∣∣∣ ≤ (∫∫∫
T (R,a)

sℓ(1−q) |f |q dx
) 1

q
(∫∫∫

T (R,a)

sℓ |ϕ|
q

q−1 dx

)1− 1
q

8



Since the embedding H1,0
0,sym(T (R, a)) ↪→ L

q
q−1

ℓ (T (R, a)) is continuous, the func-

tional ϕ 7→
∫∫∫

T (R,a)
f(x, u)ϕ(x)dx is an element in

(
H1,0

0,sym(T (R, a))
)′
.

Case 2. α > 0. By Proposition 2, we have f (x, u) = sℓ |u|p ∈ L
2(ℓ+2)

2(ℓ+2)−α

−αℓ
2(ℓ+α)−α

(T (R, a)).

Also we have∣∣∣∣∫∫∫
T (R,a)

f(x, u)ϕ(x)dx

∣∣∣∣ ≤ (∫∫∫
T (R,a)

s
−αl

2(l+α)−α |f |
2(ℓ+2)

2(ℓ+2)−α dx

)1− α
2(ℓ+2)

×

×
(∫∫∫

T (R,a)

sℓ |ϕ|
2(ℓ+2)

α dx

) α
2(ℓ+2)

.

Since the embedding H1,α
0,sym(T (R, a)) ↪→ L

2(ℓ+2)
α

ℓ (T (R, a)) is continuous, the func-

tional ϕ 7→
∫∫∫

T (R,a)
f(x, u)ϕ(x)dx is an element in

(
H1,α

0,sym(T (R, a))
)′
.

Then according to Riesz representation Theorem, there exists a unique element
w = Tu ∈ H1,α

0,sym(T (R, a)) such that∫∫∫
T (R,a)

sα∇v · ∇ϕdx =

∫∫∫
T (R,a)

f(x, u)ϕ(x)dx,∀ϕ ∈ H1,α
0,sym(T (R, a)).

Therefore, from (17) we can rewrite

v = J ′(u) = u− w = u− Tu ∈ H1,α
0,sym(T (R, a)) (23)

We look at the way to define Tu

T : H1,α
0,sym(T (R, a)) → L

2(ℓ+2)
2(ℓ+2)−α

−αℓ
2(ℓ+α)−α

(T (R, a)) → H1,α
0,sym(T (R, a)), u 7→ sℓ |u|p 7→ w.

By Proposition 2, u 7→ sℓ |u|p is compact. Since sℓ |u|p 7→ w is continuous, the
map

T : H1,α
0,sym(T (R, a)) → H1,α

0,sym(T (R, a))

is compact. From (23) and from the assumption that J ′(un) → 0 as n → ∞ we
only need to prove that {un} is bounded in H1,α

0,sym(T (R, a)). We have

J ′(un)(un) =

∫∫∫
T (R,a)

sα |∇un|2 dx−
∫∫∫

T (R,a)

sℓ |un|p undx.

Since J ′(un) → 0 as n → ∞, there exists N0 such that∣∣∣∣∫∫∫
T (R,a)

sα |∇un|2 dx−
∫∫∫

T (R,a)

sℓ |un|p undx

∣∣∣∣ ≤ ∥un∥H1,α , ∀n ≥ N0. (24)
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Since |J(un)| ≤ M or∣∣∣∣12
∫∫∫

T (R,a)

sα |∇un|2 dx− 1

p+ 1

∫∫∫
T (R,a)

sℓun |un|p dx
∣∣∣∣ ≤ M, ∀n,

and (24) we have

∥un∥2H1,α ≤ 2M +
2

p+ 1

∫∫∫
T (R,a)

sℓun |un|p dx

≤ 2M +
2

p+ 1

(
∥un∥H1,α + ∥un∥2H1,α

)
,∀n ≥ N0.

Therefore, p−1
p+1

∥un∥2H1,α − 2
p+1

∥un∥H1,α ≤ 2M,∀n ≥ N0. So {un} is bounded in

H1,α
0,sym(T (R, a)).

In conclusion, J satisfies all conditions of Mountain Pass Lemma, so J has a
nontrivial critical solution u ∈ H1,α

0,sym(T (R, a)), i.e. u ̸= 0 and

J ′(u)(ϕ) =

∫∫∫
T (R,a)

sα∇u·∇ϕdx−
∫∫∫

T (R,a)

sℓ |u|p ϕdx = 0,∀ϕ ∈ H1,α
0,sym(T (R, a))

(25)
We consider the coordinate x1 = (R + s cos θ) cosϕ, x2 = (R + s cos θ) sinϕ,
x3 = s sin θ we have T (R, a) = {0 ≤ s < a, 0 ≤ θ, ϕ < 2π}. Then from (25),
u ∈ C2,β(T (R, a)\Sa) for some β ∈ (0, 1), where Sa = {(x1, x2, 0) : x

2
1 + x2

2 = a2},
satisfies the following equation

∂s
(
sα+1(R + s cos θ)∂su

)
+ ∂θ(s

α−1(R + s cos θ)∂θu) + sℓ+1(R + s cos θ) |u|p = 0
(26)

in T (R, a)\Sa.
Next we will show that the critical point u ∈ H1,α

0,sym(T (R, a)) is the weak
solution of the following problem

−div(sα∇u) = sℓ |u|p in T (R, a), u = 0 on ∂T (R, a).
Specifically, we prove the following lemma.

Lemma 4. (25) holds for all Φ ∈ H1,α
0 (T (R, a)).

Proof. Because of density, it is enough to prove Lemma 4 for Φ ∈ C1
0(T (R, a)).

Let ϵ ∈ (0, a). Note that u ∈ C2,β(T (R, a)\Sa) satisfies
−div(sα∇u) = sℓ |u|p in T (R, a)\T (R, ϵ), u = 0 on ∂T (R, a).

Then by using Divergence Theorem we have

∫∫∫
T (R,a)\T (R,ϵ)

sα∇u.∇Φdx = −
∫∫∫

T (R,a)\T (R,ϵ)

div(sα∇u)Φdx+

10



+

∫∫
∂(T (R,a)\T (R,ϵ))

(ν·sα∇u)ΦdS =

∫∫∫
T (R,a)\T (R,ϵ)

sℓ |u|p dx+
∫∫

∂T (R,ϵ)

(ν·sα∇u)ΦdS.

We need to prove

lim
ϵ→0+

∫∫
∂T (R,ϵ)

(ν · sα∇u)ΦdS = 0. (27)

In coordinate system (s, θ, φ), we rewrite∫∫
∂T (R,ϵ)

(ν · sα∇u)ΦdS =

∫ 2π

0

∫ 2π

0

ϵα+1(R + ϵ cos θ)us(ϵ, θ)Φ(ϵ, θ, φ)dθdφ. (28)

By integrating
∫ a

ϵ
ds both sides of (26) we get

aα+1(R + a cos θ)us(a, θ)− ϵα+1(R + ϵ cos θ)us(ϵ, θ) =

−
∫ a

ϵ

∂θ(s
α−1(R + s cos θ)uθ)ds−

∫ a

ϵ

sℓ+1(R + s cos θ) |u|p ds.

By multiplying Φ(ϵ, θ, φ) and then integrating
∫ 2π

0

∫ 2π

0
dθdφ both sides of the

above equation, we get∫ 2π

0

∫ 2π

0

aα+1(R + a cos θ)us(a, θ)Φ(ϵ, θ, φ)dθdφ−

−ϵα+1

∫ 2π

0

∫ 2π

0

(R + ϵ cos θ)us(ϵ, θ)Φ(ϵ, θ, φ)dθdφ

= −
∫ a

ϵ

∫ 2π

0

∫ 2π

0

sα−1(R + s cos θ)uθ(s, θ)Φθ(ϵ, θ, φ)dθdφds

−
∫ a

ϵ

∫ 2π

0

∫ 2π

0

sℓ+1(R + s cos θ) |u|p Φ(ϵ, θ, φ)dθdφds. (29)

Since u ∈ H1,α
0,sym(T (R, a)) ↪→ Lp

ℓ,sym(T (R, a)), we have∫ a

0

∫ 2π

0

∫ 2π

0

sℓ+1(R + s cos θ) |u|p dθdφds < +∞,

∫ a

0

∫ 2π

0

∫ 2π

0

sα−1(R + s cos θ) |uθ|2 dθdφds < +∞.

Moreover, Φ ∈ C1
0(T (R, a)) so the right side of (29) converges as ϵ → 0+. Thus,

there exists a limit A = limϵ→0+
∫ 2π

0

∫ 2π

0
ϵα+1(R + ϵ cos θ)us(ϵ, θ)Φ(ϵ, θ, φ)dθdφ.

11



To prove (27), from (28) we only need to prove A = 0. Suppose that A ̸= 0.
Then there exists ϵ0 > 0 such that∣∣∣∣∫ 2π

0

∫ 2π

0

ϵα+1(R + ϵ cos θ)us(ϵ, θ)Φ(ϵ, θ, φ)dθdφ

∣∣∣∣ > |A|
2
, 0 < ϵ < ϵ0.

Since Φ ∈ C1
0(T (R, a)), there exists M > 0 such that

|Φ(ϵ, θ, φ)| ≤ M, ∀(ϵ, θ, φ) ∈ T (R, a).

Then ∫ 2π

0

∫ 2π

0

ϵα+1(R + ϵ cos θ) |us(ϵ, θ)|2 dθdφ ≥ Cϵ−α−1, 0 < ϵ < ϵ0.

This contradicts to
∫ a

0

∫ 2π

0
ϵα+1(R + ϵ cos θ) |us(ϵ, θ)|2 dϵdθ < +∞. Therefore,

A = 0.

Next we will prove that u > 0 in T (R, a). In fact, by Lemma 4 and Proposition
3 we have ∫∫∫

T (R,a)

sα∇u.∇u−dx =

∫∫∫
T (R,a)

sℓ |u|p u−dx

or

−
∫∫∫

T (R,a)

sα
∣∣∇u−∣∣2 dx =

∫∫∫
T (R,a)

sℓ
∣∣u−∣∣p dx.

So u− = 0 a.e. in T (R, a). In other words, u ≥ 0 a.e. in T (R, a). Since
−div(sα∇u) = sℓ |u|p ≥ 0 in T (R, a)\Sa and u ̸= 0, by strong maximum principle
u > 0 in T (R, a)\Sa. Theorem 1 is proved.

4.2 The proof of Theorem 2

To prove Theorem 2 for nonexistence of nontrivial solution of problem (1) - (2),
we need the following Pohozaev-type identity.

Lemma 5. Suppose that u is a weak solution of problem (1) - (2). Choose a field
m = ( r−R

r
x1,

r−R
r
x2,

R
r
x3). Then we have∫∫∫

T (R,a)

(div m)KF (u)dx+

∫∫∫
T (R,a)

(m · ∇K)F (u)dx =

=
1

2

[∫∫∫
T (R,a)

(div m)J |∇u|2 dx+

∫∫∫
T (R,a)

(m · ∇J) |∇u|2 dx
]
−

−
3∑

i,j=1

∫∫∫
T (R,a)

J(∂imj)∂iu∂judx+
1

2

∫∫
∂T (R,a)

J(m · ν) |∂νu|2 dS

where K = sℓ, J = sα, f(u) = |u|p−1 u, F (u) =
∫ u

0
f(t)dt = 1

p+1
|u|p+1.
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Proof. Because (2), we have ∇u = (∇u, ν)ν and

∂νu(m · ∇u) = (m · ν) |∂νu|2 . (30)

Since u is a solution of (1),∫∫∫
T (R,a)

div (J∇u).(m · ∇u)dx = −
∫∫∫

T (R,a)

Kf(u)(m · ∇u)dx. (31)

Since f(s) = F ′(s),we have Kf(u)mj∂ju = mj∂j(KF (u))− (mj∂JK)F (u). Then∫∫∫
T (R,a)

Kf(u)(m·∇u)dx =

∫∫∫
T (R,a)

m·∇(KF (u))dx−
∫∫∫

T (R,a)

(m·∇(K)F (u)dx.

By using integation by parts we get∫∫∫
T (R,a)

m·∇(KF (u))dx = −
∫∫∫

T (R,a)

(div m)KF (u)dx+

∫∫
∂T (R,a)

(m·ν)KF (u)dS.

From (2), we get F (u)
∣∣∣
∂T (R,a)

= 0. So∫∫∫
T (R,a)

Kf(u)(m·∇u)dx = −
∫∫∫

T (R,a)

div (m)Kf(u)dx−
∫∫∫

T (R,a)

(m·∇(K)F (u)dx.

(32)
By using integation by parts again we get∫∫∫

T (R,a)

div (J∇u)(m · ∇u)dx = −
∫∫∫

T (R,a)

J∇u · ∇(m · ∇u)dx+

+

∫∫
∂T (R,a)

J∂νu(m · ∇u)dS. (33)

We have

J∇u · ∇(m · ∇u) =
3∑

i=1

J∂iu.∂i(
3∑

j=1

mj∂ju)

=
3∑

i,j=1

Jmj∂iu∂
2
i,ju+

3∑
i,j=1

J(∂imj)∂iu.∂ju

=
3∑

i,j=1

Jmj
∂j |∂iu|2

2
+

3∑
i,j=1

J(∂imj)∂iu.∂ju

=
3∑

j=1

Jmj
∂j | ∇u|2

2
+

3∑
i,j=1

J(∂imj)∂iu.∂ju,
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∫∫∫
T (R,a)

Jmj
∂j | ∇u|2

2
dx = −

∫∫∫
T (R,a)

∂j(Jmj)
| ∇u|2

2
dx+

∫∫
∂T (R,a)

Jmjνj
| ∇u|2

2
dS.

So ∫∫∫
T (R,a)

J∇u · ∇(m · ∇u)dx = −1

2

∫∫∫
T (R,a)

(div m)J | ∇u|2 dx−

−1

2

∫∫∫
T (R,a)

(m · ∇J)J | ∇u|2 dx+
1

2

∫∫
∂T (R,a)

J(m · ν) | ∇u|2 dS+

+
3∑

i,j=1

∫∫∫
T (R,a)

J(∂imj)∂iu.∂judx. (34)

From (30), (33), (34) we have∫∫∫
T (R,a)

div(J∇u)(m · ∇u)dx =
1

2

∫∫∫
T (R,a)

(div m)J | ∇u|2 dx+

+
1

2

∫∫∫
T (R,a)

(m · ∇J)J | ∇u|2 dx+
1

2

∫∫
∂T (R,a)

J(m · ν) | ∇u|2 dS−

−
3∑

i,j=1

∫∫∫
T (R,a)

J(∂imj)∂iu.∂judx. (35)

From (31), (32), (35), we have the conclusion.

For m,K, J as in Lemma 5, and λ = a/R we have the following lemma.

Lemma 6. (i) div(m) = 2.
(ii) (∇J ·m) = αsα−2

(
(r −R)2 + R

r
x2
3

)
≥ α

λ+1
J.

(iii) (∇K ·m) = ℓsℓ−1
(
(r −R)2 + R

r
x2
3

)
≤ ℓ

1−δλ
K where δ =

{
1 for ℓ ≥ 0,

−1 for ℓ < 0.

(iv) m · ν = (r−R)2

a
+

Rx2
3

ra
> 0 on ∂T (R, a).

(v)
∑3

i,j=1 ∂imjξiξj =
r3−Rx2

2

r3
ξ21+

r3−Rx2
1

r3
ξ22+

R
r
ξ23+

2Rx1x2

r3
ξ1ξ2−Rx1x3

r3
ξ1ξ3−Rx2x3

r3
ξ2ξ3.

Assume that u ∈ H1,α
0 (T (R, a)) is a nontrivial weak solution of (1) - (2), we

have ∫∫∫
T (R,a)

J |∇u|2dx = (p+ 1)

∫∫∫
T (R,a)

KF (u)dx. (36)
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From Lemma 5 and Lemma 6 we obtain that(
2 +

ℓ

1− δλ

)∫∫∫
T (R,a)

KF (u)dx ≥
(
1 +

α

2(1 + λ)

)∫∫∫
T (R,a)

KF (u)dx−

−
∫∫∫

T (R,a)

J
3∑

i,j=1

∂imj∂iu∂judx. (37)

For ϵ > 0 we consider the following matrix

M =

ϵ+
Rx2

2

r3
−Rx1x2

r3
Rx1x3

2r3

−Rx1x2

r3
ϵ+

Rx2
1

r3
Rx2x3

2r3
Rx1x3

2r3
Rx2x3

2r3
1 + ϵ− R

r

 .

In order to have
∑3

i,j=1 ∂imjξiξj ≤ (1 + ϵ)|ξ|2, ∀ξ ∈ R3, the matrix M is positive
semi-define. It is not difficult to see that if(

ϵ2 +
R

r
ϵ

)(
1 + ϵ− R

r

)
− R2x2

3

4r4
ϵ− R3x2

3

4r5
≥ 0

for (r/R − 1)2 + (x3/R)2 < λ2 then M is positive semi-define. So we can choose
ϵ = 2

√
λ/(1− λ)2 > 0 such that

3∑
i,j=1

∂imjξiξj ≤ (1 + ϵ)|ξ|2,∀ξ ∈ R3.

Hence, from (37) - (36) and noting that u is nontrivial solution we get

2 +
ℓ

1− δλ
≥ (p+ 1)

(
α

2(1 + λ)
− ϵ

)
. (38)

So for α, ℓ, p as in Theorem 2 there is ϵ0 > 0 such that (38) does not hold if
0 < λ = a/R < ϵ0. Therefore Theorem 2 is proved.
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