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Abstract

Considering Bernoulli percolation on Zd, in the supercritical regime, Garet
and Marchand [GM09] proved a diffusive concentration for the graph distance. In
this paper, we sharpen this result by establishing the subdiffusive concentration
inequality in sublinear scale for the graph distance. As consequence, we revisit
a recent result by Dembin [Dem22] on the sublinear variance of distance.

1 Introduction

1.1 Model and main result

Bernoulli percolation is a simple but well-known probabilistic model for porous
material introduced by Broadbent and Hammersley [BH57]. Let d ≥ 2 and E(Zd) be
the set of the edges e = ⟨x, y⟩ of endpoints x = (x1, . . . , xd), y = (y1, . . . , yd) ∈ Zd

such that ∥x− y∥1 :=
∑d

i=1 |xi − yi| = 1. Given the parameter p ∈ (0, 1), we let each
edge e ∈ E(Zd) be open with probability p and closed otherwise, independently of the
state of other edges. The phase transition of model has been well-known since 1960s.
There exists a critical parameter pc ∈ (0, 1), such that there is almost surely a unique
infinite open cluster C∞ if p > pc, whereas all open clusters are finite if p < pc, see
[Gri89]. Let x ∈ Zd, we denote by x∗ the closest point to x in C∞ (in ∥.∥∞ distance),
called regularized point of x. We define the graph distance as

∀x, y ∈ Zd, D∗(x, y) = D(x∗, y∗) = inf
γ:x∗→y∗

#γ,

where infimum is taken over the set of lattice open paths

γ = (u0 = x∗, u1, . . . , y
∗ = uN ), ∥ui+1 − ui∥1 = 1.

Notice that if these points x, y are not in C∞ then D(x, y) might be∞. Hence, Garet
and Marchand [GM09] introduced the definition of graph distance using regularized
points, which guarantees that D∗(x, y) = D(x∗, y∗) < ∞ almost surely for all x and
y. Let e1 = (1, 0, . . . , 0) be the first standard basis vector. We aim to study the graph
distance from the original 0 to ne1:

D∗
n = D∗(0, ne1).
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First passage percolation. We consider the general model of the first passage
percolation on Zd. Now each edge e ∈ E(Zd), we assign a random weight te taking
values in [0,∞] such that the family (te)e∈E(Zd) is independent and identically dis-
tributed with distribution ζ. We interpret te as the time needed to cross the edge e.
Similarly, the quantity we are interested in is the passage time:

T (x, y) = inf
γ:x→y

∑
e∈γ

te,

where infimum is taken over the set of lattice paths

γ = (u0 = x, u1, . . . , y = uN ), ∥ui+1 − ui∥1 = 1.

We will assume throughout that

ζ([0,∞)) > pc, ζ({0}) < pc, (1)

where pc is the critical probability for Bernoulli percolation on Zd. Under the condi-
tion (1), we now look at the supercritical Bernoulli Percolation as a particular case
of first passage percolation with the distribution

ζ = ζp = pδ1 + (1− p)δ∞, p > pc. (2)

Here one mean that the edge e ∈ E(Zd) is open if te = 1 (with probability p) and
closed if te = ∞ (with probability 1 − p). The first passage time travel from the
original 0 to ne1 was denote by

T ∗
n = T ∗(0, ne1) = inf

γ:0∗→(ne1)∗

∑
e∈γ

te,

Time constant. The first order of growth of T ∗
n was described by Cerfa and

Théret [CT16]: under the assumption (1), there exists a constant µ(e1) ∈ [0,∞) such
that,

lim
n→∞

T ∗
n

n
= µ(e1) a.e and in L1.

The function µ is the so-called time constant. Moreover, we also obtain lower tail
large deviations by Kesten [Kes86]: for any ε > 0 small enough,

lim
n→∞

logP[T ∗
n ≤ (µ(e1)− ε)n]

n
= r(ε) < 0, (3)

In [BSG21], Basu, Sly and Ganguly have just shown that for any bounded distribution
ζ ∈ [0, b] with continuity densities and d = 2,

∀ε ∈ (0, b− µ(e1)), lim
n→∞

logP[T ∗
n ≥ (µ(e1) + ε)n]

n2
= r(ε, ζ) < 0, (4)

and some further results for unbounded distribution was done by Cosco and Naka-
jima [CN21] (the speed of large deviation and rate function now depend on the tail
assumption of te). In the Bernoulli percolation case, Garet and Marchand [GM07]
showed that:

∀ε > 0 lim sup
n→∞

logP[ D∗
n

nµ(e1)
/∈ (1− ε, 1 + ε)]

n
< 0,

2



Fluctuation and concentration. It is expected in the physics literature that
the variance T ∗

n should have the order nα for some α < 1 depending on the dimension
d for general distribution ζ. However, these predictions are far from being proved in
the first-passage percolation model. In particular, the best known upper bound of
variance obtained in [DHS15] by Damron, Hanson and Sosoe for the general distri-
bution ζ: if ζ(0) < pc and

E[t2e log+ te] <∞, (5)

then there exists a constant C > 0 such that

Var[T ∗
n ] ≤ C

n

log n
. (6)

Recently, Dembin [Dem22] extend this result to supercritical Bernoulli percolation
(note that the moment condition (5) is failed). The sublinearity of variance is also
called the superconcentration, see e.g. (6). Chatterjee [Cha14] discover the deep
connection among properties of superconcentration, chaos and multiplevaleys in, for
example, the Gaussian polymer and mixed-p spin model. Under stronger assumptions
on the moments, this phenomenon can be supplemented with concentration results
by Damron, Hanson and Sosoe [DHS14]: if E[e2αte ] < ∞, then there exist c1, c2 > 0
such that

P
(
|T ∗

n − E[T ∗
n ]| ≥

√
n

log n
λ

)
≤ c1e

−c2λ for λ ≥ 0.

either E[t2e log+ te] <∞, there exist c1, c2 > 0 such that

P
(
T ∗
n − E[T ∗

n ] ≤ −
√

n

log n
λ

)
≤ c1e

−c2λ for λ ≥ 0.

To our best knowledge, the moderate deviation of D∗
n was established in the super-

critical Bernoulli percolation by Garet and Marchand [GM09]: for each c4 > 0, there
exist some constants c1, c2, c3 such that for all λ ∈ [c3(1 + log n),

√
n],

P[|D∗
n − E[D∗

n]| ≥
√
nλ] ≤ c1e

−c2λ.

The aim of the present paper is to prove a sub-diffusive concentration of D∗
n for

supercritical Bernoulli percolation as follows.

Theorem 1.1. Let p > pc. There exist some constant c1, c2 > 0 depending on p and
d such that

P
(
|D∗

n − E[D∗
n]| ≥

√
n

log n
κ

)
≤ c1e

−c2κ for all κ ≥ 0. (7)

Consequently, we recover the sub-linear bound for the variance:

Var[D∗
n] ≤ C0

n

log n
, (8)

where C0 is a positive constant depending on p and d.
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1.2 Setup for proof

We will use a strategy of Benjamini, Kalai and Schramm [BKS11] (called BKS trick)
that allows to show the subdiffusive concentration of D∗

n. First of all, we define a
partial average version of D∗

n,

F ∗
m =

1

#B(m)

∑
z∈B(m)

D∗(z, z + x) =
1

#B(m)

∑
z∈B(m)

D∗
z , (9)

where D∗(z, z + x) = D∗
z

B(m) = {x : ∥x||1 ≤ m}, m = n1/4.

We will show the concentration bounds for F ∗
m are analogous to those for D∗

n. In
particular, we will show that the following result can imply Theorem 1.1 (see more
detail at Section 4).

Theorem 1.2. Under the assumption (2), there exist c1, c2 > 0 such that

P
(
|F ∗

n − E[F ∗
n ]| ≥

√
n

log n
κ

)
≤ c1e

−c2κ for κ ≥ 0. (10)

Based on the strategy introduced in [[BR08], Lemma 4.1] and [DHS14], to prove
Theorem 1.2 we will derive appropriate bounds for Var[eλF

∗
m ].

Theorem 1.3. There exist a constant c > 0 such that

Var[eλF
∗
m/2] ≤ Kλ2E[eλF

∗
m ] <∞ for |λ| < 1

2
√
K

, (11)

where K =
cn

log n
.

1.3 Organization of this paper

In Section 2, we present some standard results of the supercritical percolation and
recall the concentration inequalities. In Section 3, we prove two key components of
the proof. Finally, we prove Theorem 1.1 in Section 4.

2 Preliminaries

2.1 Background on Percolation

Let R be a positive integer, and let Bx(R) = x + [−R,R]d be a box centering at
x ∈ Zd with radius R. We now suppose that Mx(R) the largest (open) cluster in
Bx(R) (if there exist two or more largest clusters, we pick one according to some
predetermined rule). We say that Mx(R) crosses Bx(R) in the ith direction if Mx(R)
contains an open path γ = (y1, . . . , yn) satisfying y1i = xi − R and yni = xi + R. In
addition, we call Mx(R) a crossing cluster of Bx(R) if Mx(R) crosses Bx(R) in all
directions. Furthermore, for A ⊂ Zd, let

Li = inf{yi : y ∈ A}, Ri = inf{yi : y ∈ A}, (12)
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and we define the diameter diam(A) by

diam(A) = max(Ri − Li : 1 ≤ i ≤ d).

We define the following events:

LR = {there exists a crossing cluster in Bx(R)},

TR = {Bx(R) has a crossing cluster and contains at least two open clusters

having diameter at least R}.

Lemma 2.1. (Lemma 7.104,[Gri89]) Let p > pc and d ≥ 2. There exist two positive
constants β1 and β2 depending on p, such that

P(TR) ≤ β1e
−β2R. (13)

Lemma 2.2. (Theorem 8.97,[Gri89]) Let p > pc. Then there exists a positive con-
stant β2 depending on p, such that

P[L(R) ≥ 1− e−β2R. (14)

Lemma 2.3. (Lemma 2.3,[GM09]) Let p > pc. There exist positive constants ρ1, ρ2, α, β >
0, such that for any x ∈ Zd

(i)

∀t ≥ ρ1∥x∥1, P[D∗(0, x) ≥ t] ≤ e−ρ2t. (15)

(ii)

E[eαD
∗(0,x)] ≤ eβ∥x∥1 . (16)

2.2 Entropy inequalities

Fix λ ∈ R, we define

G = Gλ = eλF
∗
m .

We notice that G = eλF
∗
m is a function on {1,∞}E(Zd). Hence, sometimes we write

G = G(tei , teci )

to emphasize the dependence of G on the random variables tei and teci = (tej )j ̸=i. Let

us enumerate the edges of E(Zd) as e1, e2, . . . and define a sequence of σ-algebra by

F0 = ∅, Fi = σ(X1, . . . , Xi),

for i ≥ 0. Now we consider the martingale increments

∆i = E[G | Fi]− E[G | Fi−1] = E[G(t′ei , teci )−G(tei , teci ) | Fi−1],
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where t′ei is an independent copy of tei and G(t′ei , teci ) is obtained from G = G(tei , teci )
by replacing the variable tei by t′ei . It is clear that

G− E[G] =
∞∑
i=1

∆i.

Combining this with the orthogonality of the (∆i)
∞
i=1, we have

Var[G] =
∞∑
i=1

∆2
i . (17)

To control the concentration of the averaged passage time F ∗
m, we bound the variance

of G based on an entropy inequality due to Falik and Samorodnitsky[FS07].

Lemma 2.4.

∞∑
i=1

Ent[∆2
i ] ≥ Var[G] log

Var[G]∑∞
i=1(E[|∆i|])2

, (18)

where Ent denotes the entropy operator:

Ent[f ] = E
[
f log

f

E[f ]

]
.

We will need the following lemma to control the entropy:

Lemma 2.5. There exists a constant C > 0 depending on p such that

∞∑
i=1

Ent[∆2
i ] ≤ C

∞∑
i=1

E[(G(∞, teci )−G(1, teci ))
2]. (19)

This lemma is a direct consquence of the two following results.

Lemma 2.6. (Bernoulli log-Sobolev inequalities). Assume that f : {a, b} → R and
ζ = pδa + (1− p)δb. There exist a constant C > 0 depending on p such that

Ent[f(ζ)2] ≤ C|f(b)− f(a)|2.

Proposition 1. Let g be a non-negative function on a product probability space
(
∏∞

i=1Ωi,F =
∨∞

i=1 Gi, ζ =
∏∞

i=1 ζi) where (Ωi,Gi, ζi) is a probability space for all
i. Then

Ent[g] ≤
∞∑
i=1

E[Entζi [g], (20)

where Entζi is the entropy of g with respect to ζi, all other coordinates remain fixed.
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3 Construction of detour and its application

3.1 The linearization of the graph distance

For any z ∈ Zd, we denote D∗
z by

D∗
z := D∗(z, z + ne1).

Proposition 2. Let p > pc(d) and γz be a geodesic from z∗ to (z+ne1)
∗. Then there

exists a collection of random variables (Re, Rz, Rz+ne1)e∈E(Zd), such that the following
holds.

(i) There exist a constant C > 1,

0 ≤
∣∣D∗

z(∞, tē)−D∗
z(1, tē)

∣∣ ≤ C(Re +Rz +Rz+ne1)I(e ∈ γz(1, tē)), (21)

(ii) There exist constants α1 and α2 depending on p, such that for all t ∈ N

max{P[Re ≥ t],P[Rz ≥ t],P[Rz+ne1 ≥ t]} ≤ α1 exp(−α2t) (22)

(iii) For any t ∈ N, the event {Re ≤ t} depends only on the status of edges in Be(t),
where Be(t) is the set of edges having distance at most t from e.

Proof. We first observe that D∗
z(∞, tec) ≥ D∗

z(1, tec). Now if e /∈ γz(1, tec) then by
the definition of chemical distance,

D∗
z(∞, tec) ≤ D∗

z(1, tec).

Hence,

(D∗
z(∞, tec)−D∗

z(1, tec))I(e /∈ γz(1, tec)) = 0. (23)

On the other hand, it is more complicated if e ∈ γ(1, tec). In the cases that distri-
bution ζ of each edges is bounded, resampling an edge on geodesic γz cannot affect
too much to the passage time T ∗

z . We can bound this discrepancy by a constant
that known for as the linearization of the passage time. However, in the context of
Bernoulli percolation, closing one edge on the geodesic can have big impact on the
graph distance D∗

n. To solve this issue, all we need to do now is to build a detour
bypassing one closed edge. Additionally, the closest point of z, z + ne1 in infinite
cluster can be changed when close one edge e in γz.
Construction of detour avoiding one closed edge. Let Ce∞ be the infinite clus-
ter of C∞ \ {e} which is unique almost surely. For x ∈ Zd, we denote the regularized
point x∗e of x is the closest point of x in Ce∞. First we built two box Be(R) ⊂ Be(2R)
having the same center and depending on e (see Figure 1). We also denote annulus
Ae(R) by

Ae(R) = Be(2R) \Be(R).

For Γ1,Γ2 two crossing path joining Be(R) to ∂Be(2R), we define

D(Γ1,Γ2) = inf{#γ : γ is an open path connecting Γ1 and Γ2 in Ae(R)}
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Figure 1: The open detour from z∗e to (z + ne1)
∗
e bypass the closed edge e (when e is

not in Bz(Rz))

Figure 2: The open detour from z∗e to (z + ne1)
∗
e bypass the closed edge e (when e is

in Bz(Rz))
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Figure 3: Illustration of the construction of consecutive small boxes control the length
of bypass avoiding the closed edge e

For some C1 > 0 and R ≥ 1, let us define the event

Ue(R) = {∀Γ1,Γ2 : D(Γ1,Γ2) ≤ C1R}.

We now set

Re = inf{R > 0 : Ue(R) occurs }.

To prove large deviation for Re, we prove the key following property: there exists a
constant β = β(p) such that

P[Ue(R)] ≥ 1− exp(−βR), (24)

Indeed, we built a family of consecutive small boxes with radius εR (see Figure 3).
Let C∞(Ae(R)) be the part of infinite cluster C∞ in annulus Ae(R). We denote N for
the number of small boxes B(εR), thus N ≤ 16/ε. Assuming that these boxes are
enumerated by B0(εR), . . . , BN (εR) and

C∞(Ae(R))
⋂ N⋃

i=0

Bi(εR) = {x0, . . . , xN}, x0 ∈ Γ1, xN ∈ Γ2.

Notice that there exist some constant c1, c2 such that for all i ≥ 1

P[C∞(Ae(R)) ∩Bi(εR)] ≥ 1− c1e
−c2R.
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Using Lemma 2.3 (ii), we deduce that

max
N≥i≥1

max
xi−1,xi∈Bi−1(εR)∪Bi(εR)

P [D(xi−1, xi) ≤ R] ≥ 1− α1e
−α2R.

As a result, we obtain that

P [∀Γ1,Γ2 : D(Γ1,Γ2) ≤ C1R] ≥ P [D(x0, xN ) ≤ C1R]

≥
16/ε∏
i=1

P[D(xi−1, xi) ≤ R] ≥ 1− α′
1e

−α2R.

Combining this with the definition of the event Ue(R), we have

P[Ue(R)] = P [∀Γ1,Γ2 : D(Γ1,Γ2) ≤ C1R] ≥ 1− exp(−βR). (25)

Furthermore, for each 0 ≤ i ≤ N , we denote γie the geodesic of D(xi, xi+1). By taking
γe =

⋃N
i=0 γ

i
e, we obtain

P
[
L(Ae(R) ∩ γz)

γe⊂Ae(R)←−−−−−→ R(Ae(R) ∩ γz)
⋂

#γe ≤ C1R

]
≥ P[Ue(R)] ≥ 1− exp(−βR).

(26)

Next, since using (25) we obtain the large deviation for Re,

P[Re ≥ t] ≤ P

 ⋂
R≤t−1

(Ue(R))c

 ≤ P
[
(Ue(R))ct−1

]
≤ α exp(−βt).

Finally, we observe that event {Re ≤ t} occures if and only if there exists R ≤ t
satisfies Ue(R). Therefore, this event depends only on the status of edges in Be(t).
We prove (iii).
Construction of open path linking between z∗ and z∗e . First we built a box
Bz(R) centering at z with radius R. We now consider some events

V 1
z (R) = {∀x, y ∈ Bz(R) : if x

Bz(R)←−−→ y then D(x, y) ≤ C2R},

and

V 2
z (R) = {there exist two disjoint path connecting from Bz(R) go to infinite}.

We thus define event Uz(R) by

Uz(R) = V 1
z (R) ∩ V 2

z (R).

By using Lemma 2.3 (i), it is easy to see that

P[V 1
z (R)] ≥ 1− e−ρ2R, (27)

for some constant ρ2. Next, we built a sequence of boxes with radius 2R, 4R, 6R, . . .,
namely B(z) := Bz(R), B(2R), B(4R), B(6R), . . . such that for all i ≥ 0

B(2i(R) ∩B(2(i+ 1)R) = B̂(2(i+ 1)/4R), (28)
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Figure 4: Illustration of the construction of a open path γ1∞ connect from B̂(2R) to
∞.

where B̂(2(i+ 1)/4R) is the box with radius 2(i+ 1)/4R. Using Lemma 2.2, we get
that for all i ≥ 0,

P[ there exist a crossing cluster in B(2iR)] ≥ 1− e−β2R

and

P[ there exist a crossing cluster in B̂(2iR)] ≥ 1− e−β2R.

By using these inequality and union bound we have

P[there exist a open path γ1∞ connect from B̂(R) to ∞]

≥ P[ for all i ≥ 0: there exist a crossing cluster in both B(2iR) and B̂(2iR)]

≥ 1−
∞∑
i=0

e−2iβ2R ≥ 1− β1e
−β2R

By using similar construction, we also indicate that there exits a open path γ2∞
(disjoint with γ1∞) with probability at least 1− β1e

−β2R. As a consequence, we have

P[V 2
z (R)] ≥ 1− β1e

−β2R, (29)

which implies that

P[Uz(R)] ≥ 1− β1e
−β2R. (30)
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If Uz(R) occurs then both z∗ and z∗e are in infinite cluster, moreover, D(z∗, z∗e ) ≤ C1R.
Therefore,

P[z∗ γ∗z←−−→ z∗e ,#γ∗z ≤ C1R] ≥ P[Uz(R)] ≥ 1− β1e
−β2R.

Finally, we set

Rz = inf{R : Uz(R) occurs }. (31)

By the definition of Rz and using union bound, we get that

P[Rz ≥ t] ≤ P

 ⋂
R≤t−1

(Uz(R))c

 ≤ P
[
(Uz(R))ct−1

]
≤ α exp(−βt).

Similarly, we have

P[(z + ne1)
∗ γ∗

z+ne1←−−−→ (z + ne1)
∗
e,#γ∗z+ne1 ≤ C1R] ≥ 1− β1e

−β2R,

and

P[Rz+ne1 ≥ t] ≤ α exp(−βt).

Notice that by construction of Rz, Rz+ne1 , Re, we claim (i).
We finish the proof of Proposition 2.

3.2 The weighted average of dependent edge-weights in geodesic

We first recall a result on controlling maximal weight of paths (Lemma 2.6, [CN19])
whose the proof is based on the theory of greedy lattice animals. Given M ≥ 1, let
{Be, e ∈ E(Zd)} be a collection of Bernoulli random variables satisfying

(E1) {Be, e ∈ E(Zd)} is M−dependent, i.e., for all e ∈ E(Zd), the variable Be is
independent of all variables {e′ : e′ /∈ Be(M)}.

(E2) There exist a function ϕ : R→ R such that ϕ(M) = O((3M + 1)−d) and

qM = sup
e∈E(Zd)

E[Be] ≤ ϕ(M).

For any self-avoiding path γ, we define

N(γ) =
∑
e∈γ

Be, NL,M = max
γ∈ΞL

N(γ),

where

ΞL = {γ : γ ⊂ B(L); #γ ≤ L}.

Lemma 3.1. [CN19, Lemma 2.6] Let M ≥ 1 and {Be : e ∈ E(Zd)} be a collection
of random variables satisfying (E1) and (E2). Then there is a positive constant
C = C(d) depending only on the dimension d such that
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(i) For all L ∈ N

E[NL,M ]

Lq
1/d
M

≤ CMd+1.

(ii) if t ≥ CMdmax
(
1,MLq

1/d
M

)
, then

P[NL,M ≥ t] < 2d exp(−t/(16M)d).

Let f : R→ R and consider the following condition:

(f(M))2Md+1(ϕ(M))1/d = o(1/M). (H)

The following lemma aim to control the weighted average of edges-weight in geodesic.

Lemma 3.2. There exist some positive constant C1 = C1(d) and C2 = C2(d) such
that the following holds for all L ≥ 1,

(i) If the functions f satisfies (H) then

E
[(

max
γ∈ΞL

∑
e∈γ

f(Re)
)2]
≤ C1L

2.

(ii) Suppose that γ is a random nearest-neighbor path starting from 0. If the func-
tions f2 satisfies (H) then

E
[(∑

e∈γ
f(Re)

)2]
≤ C1L

2 + C2

∑
ℓ≥L

ℓ2(P[#γ = ℓ])1/2.

Assume in addition that P(#γ = ℓ) = O(ℓ−6−ε), for some ε > 0. Then we have

E
[(∑

e∈γ
f(Re)

)2]
= O(L2).

(iii) Suppose that γ is a random path such that γ ⊂ B(m) almost surely for some
m ≥ 1. If the functions f2 satisfies (H) then

E
[(∑

e∈γ
f(Re)

)2]
≤ C1(m+ L)2 + C2

∑
ℓ≥L

(m+ ℓ)2(P[#γ = ℓ])1/2.

Assume in addition that P(#γ = ℓ) = O(ℓ−6−ε), for some ε > 0. Then we have

E
[(∑

e∈γ
f(Re)

)2]
= O(m2).

Proof. We first prove (i). By Cauchy-Schwarz inequality,

E
[(

max
γ∈ΞL

∑
e∈γ

f(Re)
)2]
≤ E

[
max
γ∈ΞL

(#γ)
∑
e∈γ

f2(Re)
]
≤ LE

[
max
γ∈ΞL

∑
e∈γ

f2(Re)
]
, (32)
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since #γ ≤ L for all γ ∈ ΞL. For any self-avoiding path γ, we define

Aγ
M = {e ∈ γ : Re = M}.

Thus we can express ∑
e∈γ

f2(Re) =
∑
M≥1

f2(M)(#Aγ
M ). (33)

Notice that it follows from the definition of Aγ
M ,

#Aγ
M =

∑
e∈γ

I(Re = M) =
∑
e∈γ

Be,M , (34)

where

Be,M = I(Re = M).

Plugging this into (33), we obtain

E

[
max
γ∈ΞL

∑
e∈γ

f2(Re)

]
= E

∑
M≥1

f2(M) max
γ∈ΞL

∑
e∈γ

Be,M


=
∑
M≥1

f2(M)E [NL,M ] . (35)

By Proposition 2 (iii), {Be, e ∈ E(Zd)} is a collection of M -dependent Bernoulli
random variables. Moreover,

qM = sup
e∈E(Zd)

E[Be] ≤ ϕ(M) = α1 exp(−α2M),

since Proposition 2 (ii). Therefore, the conditions (E1) and (E2) are satisfied for all
M ≥ M0, with M0 = M0(d) is a large enough constant. Now using Lemma 3.1, we
obtain that for all M ≥M0,

E[NL,M ] ≤ CLMd+1ϕ(M)1/d. (36)

In contrast, it yields that for M ≤M0,

NL,M ≤ max
γ∈ΞL

#Aγ
M ≤ L. (37)

By using (35) with (36) and (37), we get that

E

[
max
γ∈ΞL

∑
e∈γ

f2(Re)

]
≤ L

[
M0∑
M=1

f2(M) + C
∑

M≥M0

f2(M)Md+1(ϕ(M))1/d

]
≤ C1L.

Here for the last inequality we used the condition (H1). Finally, combining this with
(32), we conclude that

E
[(

max
γ∈ΞL

∑
e∈γ

f(Re)
)2]
≤ C1L

2.

14



Next, we will prove (ii). We first obverse that for all L ≥ 1,

E
[(∑

e∈γ
f(Re)

)2]
= E

[(∑
e∈γ

f(Re)
)2

I(γ ≤ L)
]
+ E

[(∑
e∈γ

f(Re)
)2

I(#γ ≥ L)
]

≤ E
[(

max
γ∈ΞL

∑
e∈γ

f(Re)
)2

+

∞∑
l=L

E
[
#γ
∑
e∈γ

f2(Re)I(#γ = l)
]

≤ C1L
2 +

∞∑
l=L

lE
[
max
γ∈Ξl

∑
e∈γ

f2(Re)I(#γ = l)
]
. (38)

Here the last line we used (i) for the function f(Re). Besides, thanks to (i) for the
function (f(Re))

2 again,

E
[
max
γ∈Ξl

∑
e∈γ

f2(Re)I(#γ = l)
]
≤ E

(max
γ∈Ξl

∑
e∈γ

f2(Re)

)2
1/2

E [I(#γ = l)]1/2

≤ C2l(P[(#γ = l)])1/2.

Combining this with (38), we obtain

E
[(∑

e∈γ
f(Re)

)2]
≤ C1L

2 + C2

∞∑
l=L

l2(P[(#γ = l)])1/2. (39)

Finally, we prove (iii). We now separate the expectation into two parts,

E
[(∑

e∈γ
f(Re)

)2]
= E

[(∑
e∈γ

f(Re)
)2

I(#γ ≤ L)
]
+ E

[(∑
e∈γ

f(Re)
)2

I(#γ > L)
]
.

(40)

By the hypothesis that γ is a random path such that γ ⊂ B(m) almost surely,
moreover if #γ ≤ L then γ ∈ ΞL+m. As a result, using (i) for the function f(Re), we
obtain that

E
[(∑

e∈γ
f(Re)

)2
I(#γ ≤ L)

]
≤ E

[
max

γ∈ΞL+m

(∑
e∈γ

f(Re)
)2]

= E
[(

max
γ∈ΞL+m

∑
e∈γ

f(Re)
)2]

≤ C1(L+m)2.

For the second part of (40) we have

E
[(∑

e∈γ
f(Re)

)2
I(#γ > L)

]
=

∞∑
l=L

E
[(∑

e∈γ
f(Re)

)2
I(#γ = l)

]
≤

∞∑
l=L

E
[
#γ
∑
e∈γ

f2(Re)I(#γ = l)
]

≤
∞∑
l=L

lE
[

max
γ∈Ξl+m

∑
e∈γ

f2(Re)I(#γ = l)
]

≤
∞∑
l=L

l
(
E
[(

max
γ∈Ξl+m

∑
e∈γ

f2(Re)
)2])1/2

(P[(#γ = l)])1/2

≤ C2

∞∑
l=L

l(l +m)(P[(#γ = l)])1/2. (41)
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Here the last line thanks to (i) for the function (f(Re))
2. Combining this with (40),

it follows that

E
[(∑

e∈γ
f(Re)

)2]
≤ C1(L+m)2 + C2

∞∑
l=L

l(l +m)(P[(#γ = l)])1/2.

We complete the proof.

4 Proof of Theorem 1.1

We have known that Theorem 1.2 could be deduced from Theorem 1.3. Now we
clarify how Theorem 1.2 implies Theorem 1.1. Assume that the average passage time
F ∗
m such that subdiffusive concentration,

P
[
|F ∗

m − E[F ∗
m]| ≥

√
n

log n
κ
]
≤ c1e

−c2κ, κ ≥ 0, (42)

where c1, c2 > 0. Our task is to give the corresponding estimate for the first passage
time D∗

n from (42):

P
[
|D∗

n − E[D∗
n]| ≥

√
n

log n
κ
]
≤ c′1e

−c′2κ, κ ≥ 0, (43)

We first write

D∗
n − E[D∗

n] = F ∗
m − E[D∗

n] +D∗
n − F ∗

m

= F ∗
m − E[F ∗

m] +D∗
n − F ∗

m

here we used E[F ∗
m] = E[D∗

n]. Let M > 0 we will choose later. Using triangle
inequality we observe that if event {|D∗

n−E[D∗
n]| ≥ 4M} occur then {|F ∗

m−E[F ∗
m]| ≥

2M} or {|D∗
n − E[F ∗

m]| ≥ 2M}. By union bound we estimate,

P[|D∗
n − E[D∗

n]| ≥ 4M ] ≤ P[|F ∗
m − E[F ∗

m]| ≥ 2M ] + P[|D∗
n − E[F ∗

m]| ≥ 2M. (44)

Using subadditivity property, we can write,

|D∗
n − E[F ∗

m]| =
∣∣∣D∗

n −
1

#B(m)

∑
z∈B(m)

D∗
z

∣∣∣ ≤ 1

#B(m)

∑
z∈B(m)

|D∗(0, z)−D∗(z, z + ne1)|

≤ 1

#B(m)

∑
z∈B(m)

(D∗(0, z) +D∗(ne1, ne1 + z)).

Now we see that if event
{ 1

#B(m)

∑
z∈B(m)(D

∗(0, z) + D∗(ne1, ne1 + z)) ≥ 2M
}

occurs then

max
z∈B(m)

D∗(0, z) ≥M or max
z∈B(m)

D∗(ne1, ne1 + z) ≥M. (45)

Combining this with union bound we obtain that

P
[ 1

#B(m)

∑
z∈B(m)

(D∗(0, z) +D∗(ne1, ne1 + z)) ≥ 2M
]

≤ P[ max
z∈B(m)

D∗(0, z) ≥M ] + P[ max
z∈B(m)

D∗(ne1, ne1 + z) ≥M ]

= 2P[ max
z∈B(m)

D∗(0, z) ≥M ],
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where the last line we used the translation invariant. By Lemma 2.3, the right hand
side was bounded by

2(#B(m)) max
z∈B(m)

P[D∗(0, z) ≥M ] ≤ 2(#B(m))e−αMeβm

≤ 2mdeβme−αM . (46)

Taking 4M =
√

n
lognκ, we have

P
[
|D∗

n − F ∗
m| ≥

κ

2

√
n

log n

]
≤ 2nd/4 exp

(
−α
√

n

4 log n
κ+ βn1/4

)
= O(1)e−O(1)κ.

Combining this with (42) and (44) we claim (43).

4.1 Bound on influence

Theorem 4.1. Assume that α2 and C be two constants in Lemma 2.3 and Proposition
2, respectively. There exists a constant C1 > 0,

∞∑
i=1

(E[|∆i|])2 ≤ C1λ
2E
[
e2λF

∗
m
]
n1−d, ∀λ ∈ R.

The above theorem is a direct consequence of the following propositions:

Proposition 3. There exists a constant C2 such that for all i ≥ 1, we have

E[|∆i|] ≤ C2m
1−d
2 , ∀λ ∈ R. (47)

Proposition 4. There exists a constant C3 such that

∞∑
i=1

E[|∆i|] ≤ C3n, ∀λ ∈ R. (48)

4.1.1 Proof of Proposition 3

We first note that

∆i = E[G|Fi]− E[G|Fi−1] = E[G(t′ei)−G(tei)|Fi−1]. (49)

Thus,

E[|∆i|] ≤ E[|G(t′ei)−G(tei)|] = 2E
[(
eλF

∗
m(t′ei ) − eλF

∗
m(tei )

)
+

]
.

Hence, using the inequality that (eλa − eλb)+ ≤ |λ|(eλa + eλb)(a− b)+, we get

E[|∆i|] ≤ 2|λ|E
[(
eλF

∗
m(t′ei ) + eλF

∗
m(tei )

)
(F ∗

m(t′ei)− F ∗
m(tei))+

]
= 4|λ|E

[
eλF

∗
m(tei )(F ∗

m(t′ei)− F ∗
m(tei))+

]
. (50)

By Proposition 2 (i), there exists a positive constant C and random variables Rz,
Rz+ne1 and Rei , such that

D∗
z(t

′
ei)−D∗

z(tei) ≤
(
D∗

z(t
′
ei)−D∗

z(tei)
)
+
= D∗

z(∞, teci )−D∗
z(1, teci )

≤ CRz,eiI(ei ∈ γz), (51)
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where
Rz,ei = Rei +Rz +Rz+ne1 . (52)

Therefore,

F ∗
m(t′ei)− F ∗

m(tei) ≤
(
F ∗
m(t′ei)− F ∗

m(tei)
)
+

≤ 1

#B(m)

∑
z∈B(m)

(D∗
z(t

′
ei)−D∗

z(tei))+ ≤ Ai, (53)

where

Ai =
C

#B(m)

∑
z∈B(m)

Rz,eiI(ei ∈ γz).

Combining (50) and (53), we obtain

E[|∆i|] ≤ 4|λ|E
[
eλF

∗
mAi

]
(54)

≤ 4|λ|E
[
e2λF

∗
m
]1/2E[E[A2

i

]1/2
, (55)

here for the equation in the first line, we remark that F ∗
m(tei) = F ∗

m and for the last
inequality, we used Hölder’s inequality.

We now consider E[A4
i ]. Using Cauchy-Schwarz inequality,

A2
i ≤

C2

#B(m)

∑
z∈B(m)

R2
z,eiI(ei ∈ γz)

≤ 3C4

#B(m)

∑
z∈B(m)

(R2
z +R2

ei +R2
z+ne1)I(ei ∈ γz). (56)

Therefore, thanks to translation invariant we have

E[A2
i ] ≤

3C2

#B(m)

(
E
[ ∑
z∈B(m)

R2
ei−zI(ei − z ∈ γn)

]
+ E

[
R2

0

∑
z∈B(m)

I(ei − z ∈ γn)
]

+ E
[
R2

ne1

∑
z∈B(m)

I(ei − z ∈ γn)
])

=
3C2

#B(m)

(
E
[∑
e∈γ

R2
e

]
+ E

[
R2

0#γ
]
+ E

[
R2

ne1#γ
] )

, (57)

where

γ = γn ∩ {ei −B(m)},

and

{ei −B(m)} = {(xei − z, yei − z) : z ∈ B(m)}.

We will focus on our effort to compute the upper bound for each terms of the right-
hand side of (57). By using Cauchy-Schwarz inequality, the second term was bounded
by (

E
[
R4

0

])1/2
(E[(#γ)2])1/2. (58)
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Since Proposition (2) (ii), we obtain

(E[R4
0])

1/2 = O(1). (59)

It is clear that if event {#{(ei − B(m)) ∩ γn} = l} occurs, then we may find the
first and last intersections (that we call x and y respectively) of γn with V , the set
of vertices in {ei − B(m)}. Moreover, the portion of γn from x to y denoted by γx,y
is then a geodesic with at least l edges. Using the union bound, we have for any
l ≥ ρ1m,

P[#γ ≥ l] ≤ P [∃x, y ∈ V : #γx,y ≥ l] ≤ (2m+ 1)2d max
x,y∈V

P[#γx,y ≥ l]

= (2m+ 1)2d max
x,y∈V

P[T (x, y) ≥ l]

≤ (2m+ 1)2de−ρ2l, (60)

where the last line we used Lemma 2.3 (i). As a result, we get

E[(#γ)2] ≤ (ρ1m)2 +
∑

l≥ρ1m

l(2m+ 1)2de−ρ2l ≤ O(1)m2. (61)

Combining (58) with (59) and (61), it follows that

E
[
R2

0#γ
]
≤ O(1)m. (62)

Similarly, we also have

E
[
R2

ne1#γ
]
≤ O(1)m. (63)

We next control the first term of (57). Note that the function f(x) = x2 satisfies
(H1) and (H2). Therefore, applying Lemma 3.2 (iii) to f(x) = x2, γ = γn ∩ {ei −
B(m), L = ρ1m we obtain that

E
[∑
e∈γ

R2
e

]
≤
(
E
[(∑

e∈γ
R2

e

)2])1/2
≤ C1(m+ ρ1m)2 + C2

∑
l≥ρ1m

m(m+ l)
√
P[#γ = l]

≤ 4C1ρ
2
1m

2 + C2

∑
l≥ρ1m

2l2 exp(−ρ2l) = O(1)m2. (64)

Here for the last line we used (60). By combining (57) with (62), (63) and (64) we
have

E[A2
i ] ≤ O(1)m1−d. (65)

Finally, we summarize (55) with (65) to conclude that

E[|∆i|] ≤ O(1)|λ|
(
E
[
e2λF

∗
m
])1/2

m(1−d)/2. (66)
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4.1.2 Proof of Proposition 4

By using (55), we have the following bound,

∞∑
i=1

E[|∆i|] ≤ 4|λ|E

[
eλF

∗
m(tei )

∞∑
i=1

Ai

]

≤ 4|λ|
(
E
[
e2λF

∗
m(tei )

])1/2(E[( ∞∑
i=1

Ai

)2])1/2
, (67)

where we recall that

Ai =
C

#B(m)

∑
z∈B(m)

Rz,eiI(ei ∈ γz).

Now we can write

E
[( ∞∑

i=1

Ai

)2]
≤ C2

(#B(m))2
E
[( ∑

z∈B(m)

∞∑
i=1

Rz,ei

)2]

≤ C2

(#B(m))

∑
z∈B(m)

E
[( ∞∑

i=1

Rz,ei

)2]
. (68)

Since the definition of Rz,ei and Cauchy-Schwarz inequality, we get

E
[( ∞∑

i=1

Rz,ei

)2]
≤ E

[( ∞∑
i=1

ReiI(ei ∈ γz)
)2

+
( ∞∑

i=1

RzI(ei ∈ γz)
)2

+
( ∞∑

i=1

Rz+ne1I(ei ∈ γz)
)2]

. (69)

Thanks to Cauchy-Schwarz inequality and Proposition 2.3 (i),

E
[( ∞∑

i=1

RzI(ei ∈ γz)
)2]
≤
(
E
[
R2

z

])1/2(
E
[( ∞∑

i=1

I(ei ∈ γz2)
)4])1/2

≤ O(1)(E[(#γz2)
4])1/2 ≤ O(1)n2, (70)

Similarly, we have

E
[( ∞∑

i=1

Rz+ne1I(ei ∈ γz)
)2]
≤ O(1)n2. (71)

We next get the bound for the first term of (69). We observe that

E
[( ∞∑

i=1

ReiI(ei ∈ γz)
)2]

= E
[(∑

e∈γz
Rei

)2]
. (72)
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It clears that the function f(x) = x satisfies (H1) and (H2). Thus, applying Lemma
3.2 (ii) to f(x) = x, γ = γz, L = ρ1n, we obtain

E
[(∑

e∈γz
Rei

)2]
≤ C1(ρ1n)

2 + C2

∑
l≥ρ1n

l2
√
P[#γz2 = l]

≤ C1(ρ1n)
2 + C2

∑
l≥ρ1n

l2e−ρ2l/2 ≤ O(1)n2. (73)

Here for the last line we used Lemma 2.3 (i). Combining (69) with (70), (71) and
(73), it follows that

E
[( ∞∑

i=1

Ai

)2]
≤ O(1)n2.

Combining this with (67), it yields that

∞∑
i=1

E[|∆i|] ≤ O(1)|λ|n
(
E
[
e2λF

∗
m
])1/2

.

The result follows.

4.2 Entropy bound

We obtain the upper bound of the entropy thank to Lemma 2.5,
∞∑
i=1

Entζ [∆
2
i ] ≤ C

∞∑
i=1

E
[
(G(∞, teci )−G(1, teci ))

2
]

≤ |λ|2
∞∑
i=1

E
[(

e
2λF ∗

m(∞,tec
i
)
+ e

2λF ∗
m(1,tec

i
)
)
(F ∗

m(∞, teci )− F ∗
m(1, teci ))

2
]
. (74)

Notice that

E
[
e
2λF ∗

m(∞,tec
i
)
(F ∗

m(∞, teci )− F ∗
m(1, teci ))

2
]

=
1

1− p
E
[
e
2λF ∗

m(∞,tec
i
)
(F ∗

m(∞, teci )− F ∗
m(1, teci ))

2I(te =∞)

≤ 1

1− p
E
[
e2λF

∗
m(F ∗

m(∞, teci )− F ∗
m(1, teci ))

2
]
.

and

E
[
e
2λF ∗

m(1,tec
i
)
(F ∗

m(∞, teci )− F ∗
m(1, teci ))

2
]

=
1

p
E
[
e
2λF ∗

m(∞,tec
i
)
(F ∗

m(∞, teci )− F ∗
m(1, teci ))

2I(te = 1)

≤ 1

p
E
[
e2λF

∗
m(F ∗

m(∞, teci )− F ∗
m(1, teci ))

2
]
.

Combining these inequalities with (74) we obtain

∞∑
i=1

Entζ [∆
2
i ] ≤ Cλ2

∞∑
i=1

E
[
e2λF

∗
m(F ∗

m(∞, teci )− F ∗
m(1, teci ))

2
]

≤ Cλ2
∞∑
i=1

E
[
e2λF

∗
mA2

i ],
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where we recall that

Ai =
C

#B(m)

∑
z∈B(m)

Rz,eiI(ei ∈ γz).

Now by similar argument as in the proof of Proposition 4 we have the following bound
for entropy,

Proposition 5. There exists a constant C > 0 such that

∞∑
i=1

Entζ [∆
2
i ] ≤ Cλ2nE

[
e2λF

∗
m
]
, ∀λ ∈ R. (75)

4.3 Proof of Theorem 1.3

We have already proved the final result via Falik-Samorondonesky inequality. By
using Lemma 2.4, Theorem 4.1, Proposition 5, we have

Var
[
eλF

∗
m

]
≤ O(1)

(
log

Var[eλF
∗
m ]

O(1)n(1−d)/8

)−1

|λ|2nE
[
e2λF

∗
m

]
. (76)

From this bound, we may assume that

Var[eλF
∗
m ] ≥ O(1)|λ|2n15/16E

[
e2λF

∗
m

]
, (77)

otherwise there is nothing to do. By both (76) and (77), for any λ ∈ R,

Var[eλF
∗
m ] ≥ O(1)|λ|2 n

log n
E
[
e2λF

∗
m

]
.

The result follows.
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