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Abstract

In this short note, we will give the finite ring versions of some results on two-
variable expanders, which were studied over finite fields by Balog et al. and Hart
et al.

Data availability: Not applicable.

1 Introduction

Let q = pr be an odd prime power, and let Fq be a finite field of q elements. Bourgain,
Katz, and Tao ([3]) made the first investigation on the finite field analogs of the sum-
product problem. They showed that when 1 � |A| � q, then max {|A+A|, |A · A|} &
|A|1+ε, for some ε > 0, where X � Y means that Y = o(X), and X & Y means that
X ≥ CY for some large constant C, with X, Y are viewed as functions of the parameter
q. This improves the trivial bound |A +A||A · A| & |A|. The precise statement of their
result is as follows.

Theorem 1.1 (Bourgain-Katz-Tao, [3]). Let A be a subset of Fq such that qδ < |A| <
q1−δ for some δ > 0. Then one has a bound of the form

max {|A+A|, |A · A|} & |A|1+ε

for some ε = ε(δ) > 0.

The relationship between ε and δ in their result is difficult to determine. The explicit
bounds on ε can be found in [16, 19].

The Bourgain-Katz-Tao theorem has stimulated a lot of research on finite field analogs
of sum-product estimates in recent years, see for example [4, 5, 6, 8, 9, 12, 13, 14, 16, 19],
and references therein.

The main purpose of this short note is to study some two-variable expanders over
finite cyclic rings Zq := Z/qZ. Our first result is the finite ring analog of a result due to
A. Balog, A. Broughan, and E. Shparlinski [2].
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Theorem 1.2. For arbitrary set A ⊆ Z×q , of cardinality |A| & q
1
2 , with p be an odd prime,

q = pr. We have

|A+ A−1| & min

{√
pr|A|, |A|2√

rp2r−1

}
.

Our second result is the finite ring version of a result established by D. Hart, L. Li,
and C-Y. Shen [9].

Theorem 1.3. Let A ⊆ Zq, of cardinality |A| & q
1
2 , with p be an odd prime, q = pr. We

have

|A+ A2| & min

{√
pr|A|, |A|2√

2rp2r−1

}
.

To evaluate cardinality of the set A(A + 1) in the next theorem, we will use the
product graph Bq(d, λ) in [17]. The author needs to use division operations in this graph
construction, so we must avoid the non-invertible elements in the ring Zq. Therefore, here
we only consider the case of the set A ⊆ Zq \ {pZpr−1 , pZpr−1 − 1}. We also obtain the
following theorem using the same techniques as proof of the Theorem 1.3.

Theorem 1.4. Let A ⊆ Zq \ {pZpr−1 , pZpr−1 − 1}, of cardinality |A| & q
1
2 , with p be an

odd prime, q = pr. We have

|A(A+ 1)| & min

{√
pr|A|, |A|2√

2rp2r−1

}
.

2 Graphs over finite rings

For a graph G, let λ1 ≥ λ2 ≥ . . . ≥ λn be the eigenvalues of its adjacency matrix. The
quantity λ(G) = max{λ2,−λn} is called the second eigenvalue of G. A graph G = (V,E)
is called an (n, d, λ)-graph if it is d-regular, has n vertices and the second eigenvalue of G
is at most λ. It is well known (see [1, Chapter 9] for more details) that if λ is much smaller
than the degree d, then G has certain random-like properties. For two (not necessarily)
disjoint subsets of vertices U,W ⊂ V , let e(U,W ) be the number of ordered pairs (u,w)
such that u ∈ U , w ∈ W , and (u,w) is an edge of G. For a vertex v of G, let N(v)
denote the set of vertices of G adjacent to v and let d(v) denote its degree. Similarly, for
a subset U of the vertex set, let NU(v) = N(v) ∩ U and dU(v) = |NU(v)|. We will need
the following well-known fact.

Lemma 2.1. ([1, Corollary 9.2.5]) Let G = (V,E) be an (n, d, λ)-graph. For any two
sets B,C ⊂ V , we have ∣∣∣∣e(B,C)− d|B||C|

n

∣∣∣∣ ≤ λ
√
|B||C|.

2



2.1 Product graphs over finite rings

Suppose that q = pr for some odd prime p and r ≥ 2. We identify Zq with {0, 1, . . . , q−1},
then pZpr−1 is the set of nonunits in Zq. For any λ ∈ Zq, the product graph Bq(d, λ) is
defined as follows. The vertex set of the product graph Bq(d, λ) is the set V (Bq(d, λ)) =
Zdpr\(pZpr−1)d. Two vertices a and b ∈ V (Bq(d, λ)) are connected by an edge, (a, b) ∈
E(Bq(d, λ)), if and only if a · b = λ. When λ = 0, the graph is a variant of Erdős-Rényi
graph, which has many interesting applications (see [18]) . We now study the product
graph when λ ∈ Z×q .

Lemma 2.2. ([17, Theorem 2.4]) For any d ≥ 2 and λ ∈ Z×pr , the product graph Bq(d, λ)
is an

(prd − p(r−1)d, pr(d−1),
√

2rp(d−1)(2r−1))− graph.

2.2 Sum-square graphs over finite rings

Suppose that q = pr for a sufficiently large prime p. The sum-square the graph SRq is
defined as follows. The vertex set of the sum-product graph SRq is the set V (SRq) =
Zq ×Zq. Two vertices (a, b) and (c, d) ∈ V (SRq) are connected by an edge in E(SRq), if
and only if a+c = (b+d)2. We have the following pseudo-randomness of the sum-product
graph SRq.

Theorem 2.3. ([7, Theorem 3.4]) The sum-square graph SRq is a(
p2r, pr,

√
2rp2r−1

)
− graph.

3 Proof of Theorem 1.2

In this section, we will need the following Fourier-analytic result, which is an easy variant
of the corresponding estimate from [10] and [11]. Define the Fourier transform f̂ of f(x)
as

f̂(m) = q−2
∑
x∈Z2

q

f(x) · χ(−x ·m),

where χ(x) = exp(2πix/q).
Firstly, we will need the following additional Lemmas.

Lemma 3.1. Let p be an odd prime, q = pr and j ∈ Z×q . Let Sj = {x ∈ Z2
q : x1 ·x2 = j}.

Then,
|Sj| = pr − pr−1.

Proof. Since x1 · x2 = j ∈ Z×q , hence for every x1 ∈ Z×q there exists a unique x2, this
completes the proof of Lemma 3.1.
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Lemma 3.2. Identify Sj with its indicator function. For j ∈ Z×q with q = pr, we have

sup
m 6=(0,0)

|Ŝj(m)| ≤ rp−r−
1
2 .

Proof. We write

Ŝj(m) = q−2
∑
x∈Z2

q

Sj(x)χ(−m · x),

= q−2
∑

x1·x2=j

χ(−m · x),

= q−2
∑

x1·x2=j

χ(−x1 ·m1 − x2 ·m2),

= q−2
∑
x1∈Z×

q

χ(−x1 ·m1 −m2jx
−1
1 ).

By Kloosterman sums [20], we have

|Ŝj(m)| ≤ q−2τ(q)
√
gcd(m1, jm2, q)q

1/2 ≤ rp−r−
1
2 .

This completes the proof of Lemma 3.2.

Lemma 3.3. Let E ,F ∈ Z2
q. Then

|{(x,y) ∈ E × F : (x1 − y1) · (x2 − y2) = j}| ≤ |E||F|q−1 + rpr−
1
2

√
|E||F|.

Proof. Let
Sj = {x ∈ Z2

q : x1 · x2 = j}.
We have

|{(x,y) ∈ E × F : (x1 − y1) · (x2 − y2) = j}|

=
∑

x,y∈Z2
q

E(x)F (y)Sj(x− y), (3.1)

where E and F are characteristic functions of E and F respectively.
Using Fourier transform, (3.1) equals∑

x,y,m∈Z2
q

χ(m · (x− y))E(x)F (y)Ŝj(m),

= q4
∑
m∈Z2

q

Ê(m)F̂ (m)Ŝj(m),

= q−2|E||F||Sj|+ q4
∑
m6=0

Ê(m)F̂ (m)Ŝj(m) = A+B,
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By Lemma 3.1 we have

|A| = q−2|E||F||Sj| = q−2(pr − pr−1)|E||F| ≤ q−1|E||F|. (3.2)

Using Cauchy- Schwartz we see that

|B| ≤ q4

∑
m∈Z2

q

|Ê(m)|2
 1

2
∑

m∈Z2
q

|F̂ (m)|2
 1

2

· sup
m6=(0,0)

|Ŝj(m)| (3.3)

By Parseval identity [15], we have∑
m∈Z2

q

|Ê(m)|2 = q−2
∑
x∈Z2

q

|E(x)|2 = q−2|E|, (3.4)

∑
m∈Z2

q

|F̂ (m)|2 = q−2
∑
x∈Z2

q

|F (x)|2 = q−2|F|. (3.5)

Plugging (3.4) and (3.5) into (3.3) we get

|B| ≤ q2
√
|E||F| sup

m 6=(0,0)

|Ŝj(m)|.

By Lemma 3.2, we have

|B| ≤ q2
√
|E||F|rp−r−

1
2 = rpr−

1
2

√
|E||F|. (3.6)

Combining (3.6) and (3.2) estimates. This completes the proof of Lemma 3.3.

We are now ready to give a proof of Theorem 1.2. Let N be the number of solutions
of equation

c+ (s− b)−1 = t, (s, b, c, t) ∈ S ×B × C × T,

where
S = A+B, T = A−1 + C.

It is clear that N ≥ |A||B||C|. Let E = T × S, F = C ×B, from Lemma 3.3, we have

|A||B||C| ≤ N ≤ |S||B||C||T |
pr

+
√
rp2r−1|S||B||C||T |,

Let t =
√
|S||T | ≥ 0, then√

|B||C|
pr

t2 +
√
rp2r−1t− |A|

√
|B||C| ≥ 0,

which implies that
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√
|S||T | ≥

−
√
rp2r−1 +

√
rp2r−1 + 4|A||B||C|/pr

2
√
|B||C|/pr

=
2|A|

√
|B||C|√

rp2r−1 +
√
rp2r−1 + 4|A||B||C|/pr

& min

{√
pr|A|,

√
|A|2|B||C|
rp2r−1

}
.

We replace B by A−1 and C by A. This concludes the proof of the Theorem 1.2.

4 Proof of Theorem 1.3

Let N be the number of solutions of equation

(s− d)2 + c = t, (s, d, c, t) ∈ S ×D × C × T,

where
S = A+B2, D = B2, T = A2 + C.

It is clear that N ≥ |A||B||C|/2. Besides, N is the number of edges between (−C)×(−B)
and T × S of the sum-square graph SRq. From Lemma 2.1 and Lemma 2.3, we have∣∣∣∣N − |S||B2||C||T |

q

∣∣∣∣ ≤√q|S||B2||C||T |,

Similar to the previous section, we have

√
|S||T | & min

{√
pr|A|,

√
|A|2|D||C|

2rp2r−1

}
.

We replace B and C by A. This concludes the proof of the Theorem 1.3.

5 Proof of Theorem 1.4

Let N be the number of solutions of equation

(sb−1 + 1)c = t, (s, b, c, t) ∈ S ×B × C × T,

where
S = A(D + 1), B = D + 1, T = C(A+ 1).
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It is clear that N ≥ |A||B||C|. Besides, N is the number of edges between C−1 × B−1
and T × (−S) of the product graph Bq(2, 1). From Lemma 2.1 and Lemma 2.2, we have∣∣∣∣N − |S||B||C||T |pr(1− 1/p2)

∣∣∣∣ ≤√2rp2r−1|S||B||C||T |,

Similar to the previous section, we have

√
|S||T | & min

{√
pr|A|,

√
|A|2|D||C|

2rp2r−1

}
.

We replace C and D by A. This concludes the proof of the Theorem 1.4.
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[13] N. Hegyvári, F. Hennecart, Conditional expanding bounds for two-variable functions
over prime fields, European J. Combin., 34(2013), 1365–1382.

[14] D. Hart, A. Iosevich, Sums and products in finite fields: an integral geometric view-
point, Contemp. Math. 464(2008).

[15] A. Terras, Fourier Analysis on Finite Groups and Applications. London Mathematical
Society, Student Texts 43, 1999.
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