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Abstract
In this short note, we will give the finite ring versions of some results on two-

variable expanders, which were studied over finite fields by Balog et al. and Hart
et al.

Data availability: Not applicable.

1 Introduction

Let ¢ = p” be an odd prime power, and let F, be a finite field of ¢ elements. Bourgain,
Katz, and Tao ([3]) made the first investigation on the finite field analogs of the sum-
product problem. They showed that when 1 < |A| < ¢, then max {|A+ A|,|A- A|} 2
|A|F€, for some € > 0, where X > Y means that Y = o(X), and X 2> Y means that
X > CY for some large constant C', with X,Y are viewed as functions of the parameter
q. This improves the trivial bound |A + A||A - A| 2 | A|. The precise statement of their
result is as follows.

Theorem 1.1 (Bourgain-Katz-Tao, [3]). Let A be a subset of F, such that ¢° < |A| <
q'~° for some 6 > 0. Then one has a bound of the form

max {| A+ A, [A- A} 2 [A"
for some € = €(§) > 0.

The relationship between € and ¢ in their result is difficult to determine. The explicit
bounds on € can be found in [16, 19].

The Bourgain-Katz-Tao theorem has stimulated a lot of research on finite field analogs
of sum-product estimates in recent years, see for example [4, 5, 6, 8,9, 12, 13, 14, 16, 19],
and references therein.

The main purpose of this short note is to study some two-variable expanders over
finite cyclic rings Z, := Z/qZ. Our first result is the finite ring analog of a result due to
A. Balog, A. Broughan, and E. Shparlinski [2].
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Theorem 1.2. For arbitrary set A C Z;, of cardinality |A| 2, q%, with p be an odd prime,
qg=7p". We have

AQ
A4+ A7 > min{VpﬂALL_l}.

/r.pQ’l‘

Our second result is the finite ring version of a result established by D. Hart, L. Li,
and C-Y. Shen [9].

Theorem 1.3. Let A C Z,, of cardinality |A| 2 q%, with p be an odd prime, ¢ = p". We
have

2
|A+ A?| 2 min {\/pT|A|, Ll} :

2rp?r—

To evaluate cardinality of the set A(A + 1) in the next theorem, we will use the
product graph B,(d, \) in [17]. The author needs to use division operations in this graph
construction, so we must avoid the non-invertible elements in the ring Z,. Therefore, here
we only consider the case of the set A C Z, \ {pZyr—1,pZ,—1 — 1}. We also obtain the
following theorem using the same techniques as proof of the Theorem 1.3.

Theorem 1.4. Let A C Zy \ {pZy—1,pZy—1 — 1}, of cardinality |A| 2 g2, with p be an
odd prime, ¢ = p". We have

AQ
A(A+1)] Z min {\/p‘r\Ar, L} |

27np27“—1

2 Graphs over finite rings

For a graph G, let \; > Ay > ... > )\, be the eigenvalues of its adjacency matrix. The
quantity A(G) = max{Ay, —A,} is called the second eigenvalue of G. A graph G = (V, E)
is called an (n,d, A)-graph if it is d-regular, has n vertices and the second eigenvalue of G
is at most A. It is well known (see [1, Chapter 9] for more details) that if A is much smaller
than the degree d, then G has certain random-like properties. For two (not necessarily)
disjoint subsets of vertices U, W C V, let e(U, W) be the number of ordered pairs (u, w)
such that v € U, w € W, and (u,w) is an edge of G. For a vertex v of G, let N(v)
denote the set of vertices of G adjacent to v and let d(v) denote its degree. Similarly, for
a subset U of the vertex set, let Ny(v) = N(v) NU and dy(v) = |Ny(v)|. We will need
the following well-known fact.

Lemma 2.1. (1, Corollary 9.2.5]) Let G = (V, E) be an (n,d, \)-graph. For any two
sets B,C C V', we have

e(8.0) - WP <\ 1BTIEn



2.1 Product graphs over finite rings

Suppose that ¢ = p” for some odd prime p and r > 2. We identify Z, with {0,1,...,¢—1},
then pZ,--1 is the set of nonunits in Z,. For any A € Z,, the product graph B,(d, \) is
defined as follows. The vertex set of the product graph B,(d, A) is the set V(B,(d,\)) =
ZEN(pZyr—1)?. Two vertices @ and b € V(B,(d, X)) are connected by an edge, (a,b) €
E(B,(d,\)), if and only if @ - b = A. When A = 0, the graph is a variant of Erdés-Rényi
graph, which has many interesting applications (see [18]) . We now study the product
graph when A € Z.

Lemma 2.2. (/17, Theorem 2.4]) For any d > 2 and X\ € Z,;, the product graph By(d, \)

15 an
(pd — plr—Dd pr(d=1), 2rpld=1@r=1)) — graph.

2.2 Sum-square graphs over finite rings

Suppose that ¢ = p” for a sufficiently large prime p. The sum-square the graph SR, is
defined as follows. The vertex set of the sum-product graph SR, is the set V(SR,) =
Zg % Zy. Two vertices (a,b) and (¢, d) € V(SR,) are connected by an edge in E(SR,), if
and only if a+c = (b+d)?. We have the following pseudo-randomness of the sum-product
graph SR,,.

Theorem 2.3. ([7, Theorem 5.4]) The sum-square graph SR, is a

(p%,p’“, 27“19”*) — graph.

3 Proof of Theorem 1.2

In this section, we will need the following Fourier-analytic result, which is an easy variant
of the corresponding estimate from [10] and [11]. Define the Fourier transform f of f(x)

fm) =2 Y @) - x(—z-m),

2
TEL

where x(z) = exp(2miz/q).
Firstly, we will need the following additional Lemmas.

Lemma 3.1. Let p be an odd prime, ¢ =p" and j € Z). Let S; = {x € Zg DX =7}
Then,

|S]| — pr _prfli
Proof. Since zy - x5 = j € Z;, hence for every x, € Z; there exists a unique x, this
completes the proof of Lemma 3.1. n



Lemma 3.2. Identify S; with its indicator function. For j € Z; with ¢ = p", we have
sup \gj(mﬂ <rp TR
m#(0,0)
Proof. We write

Sitm) =q2 Y S;(@)x(-m - ),

2
TELy

- q_2 Z X(_m ’ 33'),

x1-T2=]

=q Z X(—21 - my — 22 - ma),

x1-T2=]

=q? Z X(—z1 - my — maojayt).

x1 EZ;

By Kloosterman sums [20], we have

S(m)| < ¢ (q)v/ged(my, jmz, q)g/* < rp 2.
This completes the proof of Lemma 3.2. m
Lemma 3.3. Let £, F € Z2. Then

{(@,y) € EXF : (x1— 1) - (x2 — y2) = 3} < |EIFlg™" + rp" 2 V/|E]| F.
Proof. Let

S;={w el z - x=j}.
We have

{(z.y) €EXF : (x1—y1) (x2— 32) = j}
= ) E@)F(y)s;(z —y). (3.1)

m,yEZg

where E and F' are characteristic functions of £ and F respectively.
Using Fourier transform, (3.1) equals

Y. x(m-(z—y)E(x)F(y)S;(m),

x,y,meZ2
=q¢" Y E(m)F(m)S;(m),
m€22
= ¢ 2E||FIS;] +¢* Y E(m)F(m)S;(m) = A+ B,
m#0



By Lemma 3.1 we have
Al = ¢ 2IEN|FIIS;] = a2 (0" = " )IENF| < a7 YENIFI- (3.2)

Using Cauchy- Schwartz we see that

=
=

Bl<g'| > |Em)P Yo IEm)P] - sup |Sj(m) (3-3)

meZ2 meZ2 m#(0,0)

By Parseval identity [15], we have

YT IEm)P=q2> |E@)? =q2E], (3.4)
mEZZ :cezg

S IFEm)P =g |F(@)] =q%F| (3.5)
mezg mezg

Plugging (3.4) and (3.5) into (3.3) we get
Bl < ¢’ VIENIF] sup  155(m)l

By Lemma 3.2, we have

el 1
Bl < #VIEFIrp™ =2 = rp" 2 /|E]|F]. (3.6)
Combining (3.6) and (3.2) estimates. This completes the proof of Lemma 3.3. O

We are now ready to give a proof of Theorem 1.2. Let N be the number of solutions
of equation
c+(s=b =t (s,bc,t) €S xBxCxT,

where
S=A+B,T=A"+C.

It is clear that N > |A||B||C|. Let € =T x S, F = C x B, from Lemma 3.3, we have

|A|[B||C] <N <
Let t = /|S||T| > 0, then
\/|Bl|C
&ﬁ_i_ Tp2r—1t_|A| /|B||C'|2(),

r

S||B||C||T
BB =TsTBrer

which implies that



—Vrpr T+ rpt + AJA]|BJ[C

VISITI =
2yIBlICl/p
2|AlV|BJ[C]

VPP 4 /rpP L AA[BIC/pr
A !AI | BJ|C]
Z { ’A 27" 1 :
We replace B by A~! and C by A. This concludes the proof of the Theorem 1.2.

4 Proof of Theorem 1.3

Let N be the number of solutions of equation
(s—d)?+c=t,(s,dc,t) e SxDxCxT,

where

S=A+B>D=B*T=A+C.

It is clear that N > |A||B||C|/2. Besides, N is the number of edges between (—C') x (—B)
and 7" x S of the sum-square graph SR,. From Lemma 2.1 and Lemma 2.3, we have

S||B%||C||T
v - BIZIC) < arsizien.

Similar to the previous section, we have

wmzm{mm WWW@

2p2r 1

We replace B and C' by A. This concludes the proof of the Theorem 1.3.

5 Proof of Theorem 1.4
Let N be the number of solutions of equation
(sb' +1)c=t, (s,b,c,t) € Sx Bx C x T,

where

S=AD+1),B=D+1,T=C(A+1).



It is clear that N > |A||BJ||C|. Besides, N is the number of edges between C~! x B~!
and T x (—S) of the product graph B,(2,1). From Lemma 2.1 and Lemma 2.2, we have

_ISIBICT
pr(1—1/p?)

< v/ 2rp 1 S||BI|CIIT],

Similar to the previous section, we have

2
ST 2 mm{mj W}

27np2'r71

We replace C' and D by A. This concludes the proof of the Theorem 1.4.
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