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Abstract

We prove several quantitative stability estimates for solutions of complex Monge-
Ampère equations when both the cohomology class and the prescribed singularity vary.
In a broad sense, our results fit well into the study of degeneration of families of special
Kähler metrics. The key mechanism in our method is the pluripotential theory in the
space of potentials of finite lower energy.
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1 Introduction

Let (X,ω) be a compact Kähler manifold of dimension n and let α be a big cohomology
(1, 1)-class in X. Let θ be a closed smooth real (1, 1)-form in α and let µ be a non-pluripolar
finite measure on X. Consider the complex Monge-Ampère equation

θnu = µ, (1.1)

where u is a θ-psh function, and θu := ddcu+ θ, and the left-hand side of (1.1) denotes the
non-pluripolar self-product of θu (see [1, 7, 33, 65]). By monotonicity of non-pluripolar
products (see [15, 65, 66]), if (1.1) has a solution, then it is necessary that µ(X) ≤ vol(α),
where vol(α) denotes the volume of the big class α. When µ(X) = vol(α), the equation
(1.1) admits a unique solution by [7, 8, 22, 40, 69], and this solution is of minimal singu-
larity in α if µ is sufficiently regular (for example, µ has a Lp (p > 1) density with respect
to a smooth volume form on X).

One expects that the regularity of solutions agrees well with that of the measure µ.
This expectation is true at least for the following two classes of extreme regularities. The
first one is the class of measures which are Hölder continuous as a linear functional on the
space PSH0(X,ω) of ω-psh functions u with

∫
X uω

n = 0 endowed with L1-metric (we call
such measures Hölder continuous ones). The second one is the class of measures of finite
lower energy (i.e, non-pluripolar measures). These two classes are important because they
are two regularities governing the range of measures where (1.1) is solvable (within the
framework of the theory of non-pluripolar products of currents). We refer to [18, 24, 26,
31, 45, 43, 49, 51, 52, 57, 62, 63] and references therein for more informations in the
setting where µ(X) = vol(α).

Consider now the case where the mass of µ is not necessarily equal to vol(α), i.e, where
µ(X) ≤ vol(α). In this case one can still solve (1.1) by putting it in the context of prescribed
singularity. We need several notions. Denote by PSH(X, θ) the set of θ-psh functions. Let
u1, u2 ∈ PSH(X, θ). Recall that u1 is more singular than u2 if u1 ≤ u2 + O(1), and u1 is of
the same singularity type as u2 if u1 − u2 is bounded.

Let ϕ ∈ PSH(X, θ) such that ϕ ≤ 0 and
∫
X θ

n
ϕ > 0. Denote by PSH(X, θ, ϕ) the set of

θ-psh functions u with u ≤ ϕ. Note that it is slightly different from the usual definition of
PSH(X, θ, ϕ) in which u is only required to be more singular than ϕ. This difference is not
essential. We say that ϕ is a model θ-psh function (see [15, 53]) if ϕ = Pθ[ϕ] and

∫
X θ

n
ϕ > 0,

where
Pθ[ϕ] :=

(
sup{ψ ∈ PSH(X, θ) : ψ ≤ 0, ψ ≤ ϕ+O(1)}

)∗
.
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The function Pθ[ϕ] is called a roof-top envelope in [15]. By [15], the function Pθ[u] is a
model one for every u ∈ PSH(X, θ) with

∫
X θ

n
u > 0, and for every u ∈ PSH(X, θ, ϕ) with∫

X θ
n
u =

∫
X θ

n
ϕ we have Pθ[u] = Pθ[ϕ].

Let ϕ be now a model θ-psh function. Let µ be a non-pluripolar measure with µ(X) =∫
X θ

n
ϕ. We want to solve the equation

(ddcu+ θ)n = µ, (1.2)

for u ∈ PSH(X, θ, ϕ) and supX(u−ϕ) = 0. We note that since ϕ is a model, if u ∈ PSH(X, θ)

such that u ≤ 0 and u ≤ ϕ + O(1), then u ≤ ϕ, and supX(u − ϕ) = supX u. Thus the
normalization condition supX(u− ϕ) = 0 can be rewritten as supX u = 0.

The hypothesis that ϕ is model is a minimal requirement so that (1.2) is solvable in
a meaningful way; see [15] for an explanation about the nature of this assumption. Let
E(X, θ, ϕ) be the set of u ∈ PSH(X, θ, ϕ) such that

∫
X θ

n
u =

∫
X θ

n
ϕ. By [16] (or [15, 31]),

the equation (1.2) admits a unique solution in E(X, θ, ϕ), and if µ has Lp density then the
solution is of the same singularity type as ϕ. Furthermore a characterization of the class of
measures µ where (1.2) admits a solution of finite pluricomplex energy was given in [31].

A θ-singularity type (in α) is an equivalence class of θ-psh functions of the same singu-
larity type. The space of θ-singularity types is denoted by S(θ)(or S(α) when θ is clear from
the context). A natural pseudo-metric dS(θ) in S(θ) was introduced in [17]. We refer to
Section 4 for a recap of this pseudodistance. A model θ-singularity type is by definition the
class of a model θ-psh function. By [15, Theorem 1.3], every model θ-singularity type con-
tains a unique model θ-psh function. Hence there is a 1-1 correspondence between model
θ-singularity types and model θ-psh functions. For u ∈ PSH(X, θ), we denote by [u]θ (or
simply [u] when θ is clear) the θ-singularity type of u. To ease the notation we will denote
by dS(θ)(u, v) the distance dS(θ)

(
[u]θ, [v]θ

)
.

In Proposition 4.3 (in Section 4), we push further the study of metrics on the space of
singularity types by observing that if we embed S(θ) into a bigger space S(θ′) for θ′ ≥ θ

(notice that θ′ is not necessarily in the cohomology class of θ), then the pseudodistance dS(θ)
is actually comparable with that induced by dS(θ′). This allows us to compare singularity
types in different cohomology classes without changing the nature of the distance dS(θ). By
this we will sometimes ignore θ and only write dS . In view of the resolution of (1.2), we
are led to the following natural stability question. We fix a C 0-norm on the space of smooth
(1, 1)-forms on X.

Problem 1.1. Let θ1, θ2 be closed smooth real (1, 1)-forms on X. Let ϕj be model θj-psh
functions and µj be a non-pluripolar measure of mass equal to

∫
X θ

n
ϕj

for j = 1, 2. Let uj
be the solution of (1.2) for µj , ϕj for j = 1, 2. Compare u1 with u2 in terms of dS(ϕ1, ϕ2),
∥θ1 − θ2∥C 0 , and a suitable distance between µ1, µ2?

Here by dS(ϕ1, ϕ2), we mean dS(Aω)(ϕ1, ϕ2), where A is a big constant so that θj ≤
Aω for j = 1, 2. As discussed above, the condition that dS(Aω)(ϕ1, ϕ2) converges to 0 is
independent of the choice of A. To get motivated about the above problem, let’s consider
the following simple situation. Let (αj)j be a sequence of cohomology Kähler (1, 1)-classes
converging to a big class α∞ as j → ∞. We know that there exists a unique closed positive
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(1, 1)-current Tj ∈ αj such that Tnj = vol(αj)ω
n/
∫
X ω

n. One thus asks further: what can
we say about the convergence of the sequence (Tj)j? Even when α∞ is also Kähler, it seems
that known methods are not sufficient to deal with such a question.

We will develop in this paper a quite satisfactory method to treat the above stability
problem. The emphasis of our approach is the quantitative point of view. As it will be clear
later, even when one is only interested in obtaining qualitative stability as in the above
simplified situation (with varied cohomology classes), it is still essential in proofs to obtain
beforehand quantitative stability estimates. To be more precise, one of the main protagonists
in our work is a quantitative stability for solutions to (1.2) of finite lower energy in the setting
where the cohomology class and the prescribed singularity are fixed, i.e, where θ and ϕ are
fixed. To our best knowledge, no such estimate was established in the literature. Consider
in the simplest setting when θ = ω and ϕ = 0, and let µj = (ddcuj+ω)

n be a non-pluripolar
measure of mass equal to

∫
X ω

n and supX uj = 0 for j = 1, 2. If µ1 = µ2, then it is well-
known that u1 = u2 by [22]. However there has been no available result comparing u1, u2
when µ1, µ2 are close to each other. This is due to the fact that arguments in [22] (and in
other known proofs of this uniqueness property, see ([7, 15, 22, 49]) are non-quantitative.

In another aspect, the stability of solutions when the cohomology class varies is closely
related to the question of degenerations of special Kähler metrics on manifolds, or more
generally, families of Kähler-Einstein metrics. There is rich literature on this topic; see for
example [19, 38, 37, 55, 54, 58]. We would like to stress that although in some typical
model of degenerations of Ricci flat Kähler metric an optimal local C∞ convergence of
potentials (i.e, solutions) on some Zariski open subset of the ambient manifold was obtained
in [38, 37, 55, 54], it seems that the global convergence of potentials (solutions) has not
been well-studied. Our work fits well into this research direction.

The first stability result for varied prescribed singularities, which is not quantitative,
was given in [17, Theorem 1.4]. Previously there were several stability results in the fixed
prescribed singularity setting in the literature: some are quantitative and some are not. We
refer to [2, 6, 23, 42, 44, 34, 49, 63] and references therein for more details. Key tech-
nical tools to obtain quantitative stability has been so far (variants of) Kołodziej’s capacity
method ([42]) and an integration by parts arguments originally in [6]. All of these cited
results require the measures in the right-hand side of the Monge-Ampère equations to be
sufficiently regular (to be more precise, measures must be at least the Monge-Ampère of
θ-psh functions in E1(X, θ)).

Finally, we underline that our interest in the stability of solutions also comes from com-
plex dynamics because equilibrium measures associated to holomorphic dynamical systems
are, in many important cases, natural Monge-Ampère measures; see [27, 30]. Stability
of solutions of (1.1) is hence relevant to the bifurcation theory of these holomorphic dy-
namical systems (see [5]). We also refer [56] for a recent application of Monge-Ampère
equations to dynamical systems and vice versa.

Statement of main results. The first main result of this paper is the following non-
quantitative stability theorem:

Theorem 1.2. Let (θj)j∈N∪{∞} be a sequence of closed smooth real (1, 1)-forms in X such that
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θj → θ∞ in C 0 topology as j → ∞. Let ϕj be a model θj-psh function for j ∈ N ∪ {∞} such
that

dS(ϕj , ϕ∞) → 0

as j → ∞. Let µj be a non-pluripolar measure on X such that

µj(X) =

∫
X
(ddcϕj + θj)

n

for every j and µj → µ∞ in the mass norm. Let uj be the θ-psh function satisfying

(ddcuj + θj)
n = µj , sup

X
(uj − ϕj) = 0

for j ∈ N ∪ {∞}. Then uj → u∞ in capacity as j → ∞.

Here by dS(ϕj , ϕ∞) we mean the pseudodistance dS(Aω) between the (Aω)-singularity
types of ϕj and ϕ∞, where A > 0 is a big enough constant such that θj ≤ Aω for every j.
The property dS(ϕj , ϕ∞) → 0 is independent of the choice of A. Moreover, as mentioned
above when θj is equal to a fixed θ, the pseudometric dS(Aω) is comparable with dS(θ).

Theorem 1.2 considerably extends [34, Proposition A] (which treats the case where
the cohomology class is fixed, (ϕj)j is constant and of minimal singularity types, and only
the convergence in L1 was obtained) and [17, Theorem 1.4] which treats the case where
again the cohomology class is fixed, and µj has Lp density with respect to ωn; see also [21,
Theorem 2.14] for a particular version of Theorem 1.2. The assumption that µj has Lp

density is crucial in the plurisubharmonic envelope approach in [17, Theorem 1.4]. It is
well-known that it is not possible to have uj → u∞ in L1 if µj only converges weakly to µ∞
in general (see [9, 34] and references therein for examples).

For every Borel set E in X, recall that the capacity of E is given by

cap(E) = capω(E) := sup
{w∈PSH(X,ω):0≤w≤1}

∫
E
ωnw.

We usually remove the subscript ω from capω if ω is clear from the context. There are
generalizations of capacity in big cohomology classes, many of them are comparable; see
Theorem 3.17 below and [47]. Recall that a sequence of Borel functions (uj)j is said
to converge to a Borel function u in capacity if for every constant ϵ > 0, we have that
cap({|uj − u| ≥ ϵ}) converges to 0 as j → ∞. The convergence in capacity is of great
importance in pluripotential theory in part because it implies the convergence of Monge-
Ampère operators under reasonable circumstances. To study quantitatively the convergence
in capacity, it is convenient to introduce the following distance function on PSH(X,ω):

dcap(u, v) := sup
w∈PSH(X,ω):0≤w≤1

∫
X
|u− v|1/2ωnw

for every u, v ∈ PSH(X,ω) (note that dcap(u, v) <∞ thanks to the Chern-Levine-Nirenberg
inequality). The number 1

2 in the definition of dcap can be replaced by any constant in (0, 1).
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One can see that for uj , u ∈ PSH(X,ω) for j ∈ N, dcap(uj , u) → 0 if and only if |uj − u| → 0

in capacity.
For θ-psh functions u, v, we put

dθ(u, v) := 2

∫
X
θnmax{u,v} −

∫
X
θnu −

∫
X
θnv .

The function dθ is comparable to dS(θ) (see Proposition 4.3). For quantitative estimates,
it is more convenient to use dθ than dS(θ). It is perhaps worth noting that our method to
prove the stability results below also implies that dcap is bounded from above by a power of
dθ for model θ-potentials (see Proposition 4.12 for details).

Let W− be the set of convex increasing functions χ : R≤0 → R≤0 so that χ(0) = 0

and χ(−∞) = −∞. It follows from [7, Proposition 3.2] that for every non-positive θ-psh
function u, there exists χ ∈ W− and C > 0 such that

−
∫
X
ψ θnu ≤ C,

for every ψ ∈ PSH(X,ω) with supX ψ = 0. Theorem 1.2 is a consequence of the following
much stronger quantitative result:

Theorem 1.3. Let θ be a closed smooth real (1, 1)-form such that θ ≤ Aω for a given constant
A ≥ 1. Let u ∈ PSH(X, θ) such that supX u = 0 and

∫
X θ

n
u := δ > 0. Let B ≥ A and χ̃ ∈ W−

with χ̃(−1) = −1 such that ∫
X
−χ̃(ψ)θnu ≤ Bδ,

for every ψ ∈ PSH(X, (A+ 1)ω) with supX ψ = 0. Let h(s) := (−χ̃(−s))1/2 for s ≤ 0. Then,
for every constant 0 < γ < 1, there exists a constant C > 0 depending only on n,X, ω and γ
such that

dcap(u, v)
2 ≤ C(AB)2

(
h◦(n)

(
δ

∥θnu − ηnv ∥+An∥θ − η∥C 0 + d(A+1)ω(u, v)

))−γ
, (1.3)

for every closed smooth real (1, 1)-form η ≤ Aω and for each v ∈ PSH(X, η) with supX v = 0.

Here, we denote by ∥µ − µ′∥ the mass norm of µ − µ′. The condition that χ̃(−1) = −1

is merely a normalization one. For an arbitrary χ̃ ∈ W−, we can consider χ̃/|χ̃(−1)| which
satisfies the last requirement. Theorem 1.3 says that under a very weak assumption on the
regularity of the Monge-Ampère of u, one can bound from above the distance dcap of u with
any other quasi-psh function v.

We now turn our attention to the class of Hölder continuous measures whose definition
is recalled below. Let PSH0(X,ω) be the set of ω-psh functions u with

∫
X uω

n = 0. We
endow PSH0(X,ω) with the L1(ωn) distance. Let µ be a measure on X such that quasi-
psh functions are µ-integrable. We say that µ is Hölder continuous with Hölder constant A
and Hölder exponent γ if it is so as a functional on PSH0(X,ω), in other words, for every
u1, u2 ∈ PSH0(X,ω), we have∫

X
|u1 − u2|dµ ≤ A∥u1 − u2∥γL1(ωn)

. (1.4)
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This notion was introduced in [26]. By expressing every ω-psh function u as u = u −∫
X uω

n +
∫
X uω

n, we deduce from (1.4) that∫
X
|u1 − u2|dµ ≤

(
A+ µ(X)

)
max{∥u1 − u2∥γL1(ωn)

, ∥u1 − u2∥L1(ωn)} (1.5)

for every ω-psh function u1, u2. Clearly the last inequality also implies that µ is Hölder with
Hölder exponent γ and with Hölder constant λ

(
A+ µ(X)

)
, for some constant λ depending

only on (X,ω). Recall that a measure is Hölder continuous if and only if it can be written as
(ddcu+ω)n for some Hölder continuous ω-psh function u on X; see [18, 26] and also [43].
We refer to these papers and [39, 46, 52, 62] for examples of Hölder continuous measures.
Most basic examples are measures with Lp density or smooth volume forms of (immersed)
generic (real) Cauchy-Riemann submanifolds on X.

Recall that the set of Radon measures on X endowed with the weak topology is a metric
space with the distance dist−δ for δ ∈ [0,∞) defined as follows: for measures µ, µ′,

dist−δ(µ, µ
′) := sup

∥v∥
Cδ≤1

∣∣⟨µ− µ′, v⟩
∣∣, (1.6)

where v is a smooth real-valued function on X (see [61, Theorem 6.9]). Note that dist−δ
induces the same weak topology when δ > 0. When δ = 0, it is the mass norm of µ1 − µ2.
We also have the following interpolation inequality: for 0 ≤ β0 < β1 < β2,

dist−β1 ≤ dist
β2−β1
β2−β0
−β0 dist

β1−β0
β2−β0
−β2 . (1.7)

We refer to [50, 59] for a proof (see also [62]). This kind of estimate is very important in
complex dynamics since the appearance of [29] where a more general version of (1.7) for
currents was introduced.

Our third main result is as follows:

Theorem 1.4. Let θ1, θ2 be closed smooth real (1, 1)-forms and A be positive constant at least
1 such that θj ≤ Aω for j = 1, 2. Let 0 < δ ≤ 1 and M ≥ 1 be constants and uj ∈ PSH(X, θj)

(j = 1, 2) such that

sup
X
uj = 0,

∫
X
θnuj ≥ δ,

and µj := (θj+dd
cuj)

n (j = 1, 2) are Hölder continuous measures on X with Hölder exponent
β and with Hölder constant Mδ. Then, there exists a constant C > 0 depending only on
n,X, ω,A and M such that

(
dcap(u1, u2)

)2 ≤ C

(
τβ/8 + ∥θ1 − θ2∥C 0 + d(A+1)ω(u1, u2)

δ

)2−n−1

,

where τ := dist−1(µ1, µ2).

By interpolation inequality (1.7), an analogous inequality also holds for dist−β in place
of dist−1 for any constant β > 0. Our last main result is a generalization of Cegrell-
Kołodziej-Xing stability theorem ([9, 68]) which treated the case where θ = ω and ϕ = 0
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(and only for the class of potentials of full Monge-Ampère mass). We also underline that
the original result in [9, 68] is non-quantitative and Theorem 1.5 already strengthens their
results in their setting.

Theorem 1.5. Let θ1, θ2 be closed smooth real (1, 1)-forms and A be positive constant at least
1 such that θj ≤ Aω for j = 1, 2. Let 0 < δ ≤ 1 and uj ∈ PSH(X, θj) (j = 1, 2) such that
supX uj = 0 and

∫
X θ

n
uj ≥ δ. Assume that there exists a Radon measure µ on X such that µ

vanishes on pluripolar sets and (θj + ddcuj)
n ≤ µ for j = 1, 2. Then, there exists a continuous

increasing function fµ : R≥0 → R≥0 depending only on n,X, ω,A, δ and µ such that f(0) = 0

and
dcap(u1, u2)

2 ≤ fµ
(
dist−1(µ1, µ2) + ∥θ1 − θ2∥C 0 + d(A+1)ω(u1, u2)

)
,

where µj := (θj + ddcuj)
n for j = 1, 2.

Theorem 1.5 implies particularly that for every model θ-psh function ϕ, the convergence
in capacity or in L1 and the weak convergence of Monge-Ampère measures are equivalent
in the class of potentials in E(X, θ, ϕ) whose Monge-Ampère measures are bounded from
above by a fixed non-pluripolar measure. This is more or less the original motivation of
Cegrell-Kołodziej in [9].

Finally we note that as an application of Theorem 1.5 or 1.4, one can recover a main
result in [17] that the pseudometric space of singularity types of volume bounded from
below by a fixed positive constant is complete, we refer to Remark 4.18 in the end of the
paper and Subsection 4.3 for details.

Key components in our method. As mentioned above the core of the method developed
in this paper is a solution to the quantitative stability for measures of lower energy in the
setting where the cohomology class and the prescribed singularity are fixed. We underline
that in what follows by convex weights we mean also bounded convex functions, although
such functions were not usually considered as weights. This point of view is the key al-
lowing us to treat the general setting when both the cohomology class and the prescribed
singularity of solution vary.

Let W̃− be the set of convex, non-decreasing functions χ : R≤0 → R≤0 such that χ(0) =
0 and χ ̸= 0. Note that χ can be bounded. Obviously W− is contained in W̃−. It is crucial in
our method that we consider also χ ∈ W̃− which is bounded. Let M ≥ 1 be a constant and
W+
M the usual space of increasing concave functions χ : R≤0 → R≤0 such that χ(0) = 0,

χ ̸≡ 0, and |tχ′(t)| ≤M |χ(t)| for every t ≤ 0.
Let ϱ :=

∫
X θ

n
ϕ. For χ ∈ W̃− ∪W+

M and u ∈ PSH(X, θ, ϕ), let

E0
χ,θ,ϕ(u) := −ϱ−1

∫
X
χ(u− ϕ)θnu

which is called the (normalized) χ-energy of u (with respect to θ, ϕ). We denote

Eχ(X, θ, ϕ) :=
{
u ∈ E(X, θ, ϕ) : Eχ,θ,ϕ(u) <∞

}
,

where E(X, θ, ϕ) is the space of θ-psh functions u ≤ ϕ with
∫
X θ

n
u =

∫
X θ

n
ϕ. Certainly if χ

is bounded, then Eχ(X, θ, ϕ) = E(X, θ, ϕ). We would like to point out however that our
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method is not about the finiteness of E0
χ,θ,ϕ(u) but estimating the size of that quantity. Thus

whether χ is bounded or not does not make much difference for our later arguments. Put

I0χ(u, v) := ϱ−1

∫
{u<v}

χ(u− v)(θnv − θnu) + ϱ−1

∫
{u>v}

χ(v − u)(θnu − θnv )

for u, v ∈ Eχ(X, θ, ϕ). The factor ϱ−1 in the defining formulae for E0
χ,θ,ϕ(u) and I0χ(u, v)

plays the role of a normalizing constant. In geometric applications it is important to treat
the case where ϱ → 0, i.e, to obtain estimates uniformly as ϱ → 0 (here we allow θ or its
cohomology class to vary).

Clearly if θnu = θnv , then I0χ(u, v) = 0. We will see later that each term in the sum
defining I0χ(u, v) is nonnegative. We recall that there is a natural (quasi-)metric on the space
Eχ(X, θ, ϕ) constructed in [12, 13, 36], and see [14, 20, 60, 67] as well. The functional
I0χ(u, v) has an intimate relation with these quasi-metrics. We refer to the end of Section 3
for details on this connection. Here is the first key ingredient in our proof of main results.

Theorem 1.6. Let θ be a closed smooth real (1, 1)-form and ϕ be a negative θ-psh function
such that ϱ :=

∫
X θ

n
ϕ > 0. Let χ, χ̃ ∈ W̃− ∪W+

M (M ≥ 1) such that χ̃ ≤ χ. Let B ≥ 1 be a
constant and let uj , ψj ∈ E(X, θ, ϕ) satisfy u1 ≤ u2 and

E0
χ̃,θ,ϕ(uj) + E0

χ̃,θ,ϕ(ψj) ≤ B,

for j = 1, 2. Then there exists a constant Cn > 0 depending only on n andM , and a continuous
increasing function f : R≥0 → R≥0 depending only on χ, χ̃ such that f(0) = 0 and∫

X
−χ(u1 − u2)(θ

n
ψ1

− θnψ2
) ≤ CnϱB

2f
(
I0χ(u1, u2)

)
.

The following result is the second key which is a consequence of the first one.

Theorem 1.7. Let θ be a closed smooth real (1, 1)-form, and let A ≥ 1 be a constant such that
θ ≤ Aω. Let ϕ be a model θ-psh function. Let χ, χ̃ ∈ W̃− ∪W+

M (M ≥ 1) such that χ̃ ≤ χ. Let
B ≥ 1 be a constant and u1, u2, ψ ∈ E(X, θ, ϕ) with supX u1 = supX u2 satisfy

E0
χ̃,θ,ϕ(u1) + E0

χ̃,θ,ϕ(u2) + E0
χ̃,θ,ϕ(ψ) ≤ B.

Then, for every constant m > 0 and 0 < γ < 1, there exist a constant C > 0 depending on
n,M,X, ω,m and γ, and a function f as in Theorem 1.6 such that∫

X
−χ
(
− |u1 − u2|

)
θnψ ≤ −ϱχ (−λm) + CϱB2

γ,mλ
γ ,

where λ := f
(
I0χ(u1, u2)

)
and Bγ,m = A(1−γ)/(2m)(B − χ̃(−A))(1− χ̃(−1)).

The condition supX u1 = supX u2 is simply a normalization one. By Theorem 1.7, one
sees in particular that if I0χ(u1, u2) → 0, then |u1 − u2| → 0 in Lp for every p > 0. The
function f can be made explicitly; see Theorems 3.1 and 3.2 below for more elaborated
versions of these above results.
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We note that the single theorem 1.6 contains the three important results in the pluripoten-
tial theory: the uniqueness of solutions of complex Monge-Ampère equations, the domination
principle, and the comparison of capacities. We obtain indeed quantitative (hence stronger)
versions of these results for which we refer to Subsection 3.4. Readers also find there a
quantitative version of the fact that the convergence in Darvas’s metric in Eχ(X, θ, ϕ) im-
plies the convergence in capacity. Notice that such an estimate seems to be not reachable
by using the usual plurisubharmonic envelope method.

The main novelty of Theorem 1.6 is that it deals with arbitrary weights. Similar state-
ments was already known for χ(t) = t (see [6, 34]). However the proof there only work
exclusively for this case. One should notice that the weight χ(t) = t is very special: it is
linear and lies in the middle between higher energy weights and lower energy weights. As
to the proof of Theorem 1.6, going up to the space of higher energy weights or going down
to the space of lower energy weights are equally difficult. We will explain this point in more
details in the paragraph after Theorem 1.8 below.

The key in the proof of Theorem 1.6 is Proposition 3.5 in Section 3 a simplified version
of which we state here for readers’ convenience.

Theorem 1.8. Let χ, χ̃ ∈ W̃− ∪ W+
M such that χ̃ ≤ χ and χ ∈ C 1(R). Let u1, u2, u3 ∈

E(X, θ, ϕ) such that u1 ≤ u2 and uj − ϕ is bounded (j = 1, 2, 3), where ϕ is a negative θ-psh
function satisfying ϱ := vol(θϕ) > 0. Then there exist a constant Cn > 0 depending only on n
and M , and a function f as in Theorem 1.6 such that∫

X
χ′(u1 − u2)d(u1 − u2) ∧ dc(u1 − u2) ∧ θn−1

u3 ≤ CnϱB
2f
(
I0χ(u1, u2)

)
,

where B :=
∑3

j=1max{E0
χ̃,θ,ϕ(uj), 1}.

As far as we know, all of previous works related to Theorem 1.8 only concern with
χ(t) = t. In this case, Theorem 1.8 was known with an explicit f and without χ̃ if ϕ is of
minimal singularity in the cohomology class of θ, by [6, 34].

The key ingredients in previous versions of Theorem 1.8 for χ(t) = t are integration
by parts arguments. Direct generalization of such reasoning immediately break down if
χ ̸= id: in a more precise but technical level, the integration by parts arguments give terms
like χ′(u1 − u2)d(u1 − u3) ∧ dc(u1 − u3), such quantity is easy to bound if χ = id (hence
χ′ ≡ 1), but it is no longer the case if χ ̸= id.

In order to prove Theorem 1.8, we still use this strategy but need to use a so-called
“monotonicity argument” from [31, 65, 64] to deal with general χ. In a nutshell it is about
using intensively the pluri-locality of Monge-Ampère operators together with the mono-
tonicity of pluricomplex energy which allow one to bound from above “Monge-Ampère
quantities” of bad potentials by that of nicer potentials. This method is a flexible tool to
deal with “low regularity”, and was a key in the proof of the convexity of the class of
potentials of finite χ-energy in [64], as well as, giving a characterization of the class of
Monge-Ampère measures with potentials of finite χ-energy in [31]. Moreover in order to
deduce Theorem 1.7 from Theorem 1.6, we use, among other things, an idea from [34]
together with a very simple but crucial lower bound of the sublevel sets of ω-psh functions;
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see Lemma 3.8 below. Such an estimate is of independent interest.

Organization of the paper. In Section 2, we recall the crucial integration by parts formula
from [64], auxiliary facts about weights are also collected there. Theorems 1.6, 1.7, and
1.8 are proved in Section 3. We prove Theorems 1.2, 1.3, 1.4 and 1.5 in Subsection 4.4.
Proposition 4.13 is proved at the end of the paper.

Acknowledgments. We would like to thank Vincent Guedj, Ahmed Zeriahi, Tamás Darvas,
Hoang Chinh Lu, Prakhar Gupta, and Tat Dat Tô for fruitful discussions.

2 Preliminaries

2.1 Integration by parts

In this subsection, we recall the integration by parts formula obtained in [64, Theorem
2.6]. This formula will play a key role in our proof of main results later.

Let X be a compact Kähler manifold. Let T1, . . . , Tm be closed positive (1, 1)-currents on
X. Let T be a closed positive current of bi-degree (p, p) on X. The T -relative non-pluripolar
product ⟨∧mj=1Tj∧̇T ⟩ is defined in a way similar to that of the usual non-pluripolar product
(see [65]). The product ⟨∧mj=1Tj∧̇T ⟩ is a closed positive current of bi-degree (m+p,m+p);
and the wedge product ⟨∧mj=1Tj∧̇T ⟩ as an operator on currents is symmetric with respect to
T1, . . . , Tm and is homogeneous. In latter applications, we will only use the case where T
is the non-pluripolar product of some closed positive (1, 1)-currents, say, T = ⟨Tm+1 ∧ · · · ∧
Tm+l⟩, where Tj is (1, 1)-currents for m+ 1 ≤ j ≤ m+ l. In this case, ⟨T1 ∧ · · · ∧ Tm∧̇T ⟩ is
simply equal to ⟨∧m+l

j=1 Tj⟩. We usually remove the bracket ⟨ ⟩ in the non-pluripolar product
to ease the notation.

Recall that a dsh function on X is the difference of two quasi-plurisubharmonic (quasi-
psh for short) functions on X (see [28]). These functions are well-defined outside pluripo-
lar sets. Let v be a dsh function on X. Let T be a closed positive current on X. We say that
v is T -admissible if there exist quasi-psh functions φ1, φ2 such that v = φ1 − φ2 and T has
no mass on {φj = −∞} for j = 1, 2. In particular, if T has no mass on pluripolar sets, then
every dsh function is T -admissible.

Assume now that v is T -admissible. Let φ1, φ2 be quasi-psh functions such that v =

φ1 − φ2 and T has no mass on {φj = −∞} for j = 1, 2. Let

φj,k := max{φj ,−k}

for every j = 1, 2 and k ∈ N. Put vk := φ1,k − φ2,k. Put

Qk := dvk ∧ dcvk ∧ T = ddcv2k ∧ T − vkdd
cvk ∧ T.

By the plurifine locality with respect to T ([65, Theorem 2.9]) applied to the right-hand
side of the last equality, we have

1∩2
j=1{φj>−k}Qk = 1∩2

j=1{φj>−k}Qs (2.1)
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for every s ≥ k. We say that ⟨dv ∧ dcv∧̇T ⟩ is well-defined if the mass of 1∩2
j=1{φj>−k}Qk is

uniformly bounded on k. In this case, using (2.1) implies that there exists a positive current
Q on X such that for every bounded Borel form Φ with compact support on X such that

⟨Q,Φ⟩ = lim
k→∞

⟨1∩2
j=1{φj>−k}Qk,Φ⟩,

and we define ⟨dv ∧ dcv∧̇T ⟩ to be the current Q. This agrees with the classical definition if
v is the difference of two bounded quasi-psh functions. One can check that this definition is
independent of the choice of φ1, φ2. By [64, Lemma 2.5], if v is bounded, then ⟨dv∧dcv∧̇T ⟩
is well-defined.

Let w be another T -admissible dsh function. If T is of bi-degree (n − 1, n − 1), we can
also define the current ⟨dv ∧ dcw∧̇T ⟩ by a similar procedure as above. More precisely, we
say ⟨dv∧dcw∧̇T ⟩ is well-defined if ⟨dv∧dcv∧̇T ⟩, ⟨dw∧dcw∧̇T ⟩, and ⟨d(v+w)∧dc(v+w)∧̇T ⟩
are well-defined. In this case, as in the classical case of bounded potentials, the defining
formula for ⟨dv ∧ dcw∧̇T ⟩ is obvious:

2⟨dv ∧ dcw∧̇T ⟩ = ⟨d(v + w) ∧ dc(v + w)∧̇T ⟩ − ⟨dv ∧ dcv∧̇T ⟩ − ⟨dw ∧ dcw∧̇T ⟩.

As above, if v, w are bounded T -admissible, then ⟨dv∧dcw∧̇T ⟩ is well-defined and given by
the above formula. The following Cauchy-Schwarz inequality is clear from definition.

Lemma 2.1. Assume that ⟨dv∧ dcw∧̇T ⟩ is well-defined. Then for every positive Borel function
χ, we have∫

X
χ⟨dv ∧ dcw∧̇T ⟩ ≤

(∫
X
χ⟨dv ∧ dcv∧̇T ⟩

)1/2(∫
X
χ⟨dw ∧ dcw∧̇T ⟩

)1/2

.

We put
⟨ddcv∧̇T ⟩ := ⟨ddcφ1∧̇T ⟩ − ⟨ddcφ2∧̇T ⟩

which is independent of the choice of φ1, φ2. The following integration by parts formula is
crucial for us later.

Theorem 2.2. ([64, Theorem 2.6] or [31, Theorem 3.1]) Let T be a closed positive current
of bi-degree (n − 1, n − 1) on X. Let v, w be bounded T -admissible dsh functions on X. If
χ : R → R is a C 3 function then we have∫

X
χ(w)⟨ddcv∧̇T ⟩ =

∫
X
vχ′′(w)⟨dw ∧ dcw∧̇T ⟩+

∫
X
vχ′(w)⟨ddcw∧̇T ⟩

= −
∫
X
χ′(w)⟨dw ∧ dcv∧̇T ⟩. (2.2)

Since the case where T is a non-pluripolar product of (1, 1)-currents plays an important
role in the study of the complex Monge-Ampère equation, we present below an equivalent
natural way to define the current ⟨dφ ∧ dcφ∧̇T ⟩ in this setting. It is just for the purpose of
clarification.
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Lemma 2.3. Let u1, . . . , um be negative psh functions on an open subset U in Cn such that
T := ⟨ddcu1∧· · ·∧ddcum⟩ is well-defined. Let v be the difference of two bounded psh functions
on U . For k ∈ N, put uj,k := max{uj ,−k} and

Tk := ddcu1,k ∧ · · · ∧ ddcum,k.

Then we have
dv ∧ dcv ∧ T = dv ∧ dcv ∧ Tk

on ∩mj=1{uj > −k}.

Proof. Put
ψk := k−1max{u1 + · · ·+ um,−k}+ 1.

Observe ψkTk = ψkT . Now regularizing v and using the continuity of Monge-Ampère
operators of bounded potentials, we obtain

ψkdv ∧ dcv ∧ T = ψkdv ∧ dcv ∧ Tk.

Hence

dv ∧ dcv ∧ T = dv ∧ dcv ∧ Tk

on U := ∩mj=1{uj > −k/(2m)} (for ψk ≥ 1/2 on U). Note that dv ∧ dcv ∧ Tk = dv ∧ dcv ∧
Tk/(2m) on U by the plurifine locality. Thus the desired assertion follows. This finishes the
proof.

Let T1, . . . , Tm be closed positive (1, 1)-currents on X. Let n := dimX. Consider now

T := ⟨T1 ∧ · · · ∧ Tm⟩.

Note that T has no mass on pluripolar sets. Let φ1, φ2 be negative quasi-psh function
on X. Let φj,k (j = 1, 2) be as before and v := φ1 − φ2. In the moment, we work
locally. Let U be an open small enough local chart (biholomorphic to a polydisk in Cn) in
X such that Tj = ddcuj for j = 1, . . . ,m, where uj is negative psh functions on U . Put
uj,k := max{uj ,−k} for k ∈ N, and

Tk := ddcu1,k ∧ · · · ∧ ddcum,k, Q′
k := dvk ∧ dcvk ∧ Tk.

Put Ak := ∩2
j=1{φj > −k} ∩ ∩mj=1{uj > −k}. By plurifine properties of Monge-Ampère

operators, we have
1Ak

Q′
k = 1Ak

Q′
s

for every s ≥ k. One can check that the condition that (1Ak
Q′
k)k is of mass bounded

uniformly (on compact subsets in U) in k is independent of the choice of potentials.

Proposition 2.4. The current 1Ak
Q′
k is of mass bounded uniformly in k on compact subsets

in U for every U (small enough biholomorphic to a polydisk in Cn) if and only if the current
⟨dv ∧ dcv∧̇T ⟩ is well-defined. In this case we have

⟨dv ∧ dcv∧̇T ⟩ = lim
k→∞

1Ak
Q′
k. (2.3)
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Proof. By writing a smooth form of bi-degree (n −m − 1, n −m − 1) as the difference of
two smooth positive forms, we can assume without loss of generality that T is of bi-degree
(n − 1, n − 1) (hence m = n − 1). Assume that ⟨dv ∧ dcv∧̇T ⟩ is well-defined. We will
check that 1Ak

Q′
k is of mass bounded uniformly in k on compact subsets in U . Let χ be a

nonnegative smooth function compactly supported on U . Put

ψ := φ1 + φ2 + u1 + · · ·+ um, ψk := k−1max{ψ,−k}+ 1.

and φjk := max{φj ,−k} for 1 ≤ j ≤ 2. Observe that 0 ≤ ψk ≤ 1 and if ψk > 0, then
φj > −k for 1 ≤ j ≤ 2; and

ψk(x) ≥ 1− s/k (2.4)

for every x ∈ As/(m+2) and 1 ≤ s ≤ k. Recall vk := φ1k − φ2k which is bounded (but
not necessarily uniformly in k). Observe that ⟨dv ∧ dcv∧̇T ⟩ has no mass on pluripolar sets
because T is so (see for example [65, Lemma 2.1]). Put Q′′

k := ψkQk = ψk1Ak
Q′
k By (2.4)

and Lemma 2.3, we have

⟨dv ∧ dcv∧̇T ⟩ = lim
k→∞

ψkdvk ∧ dcvk ∧ T (2.5)

= lim
k→∞

ψkdvk ∧ dcvk ∧ Tk = lim
k→∞

Q′′
k

on U . On the other hand, by (2.4) again, we see that the claim that Q′′
k is of mass uniformly

bounded on compact subsets in U is equivalent to that 1Ak
Q′
k is so. This together with

(2.5) yields the desired assertion.
Conversely, suppose now that 1Ak

Q′
k is of mass bounded uniformly in k on compact

subsets in U for every U . Thus there exists a positive current R on U such that 1Ak
R =

1Ak
Q′
k for every k and U . Set

ψ̃ := φ1 + φ2, ψ̃k := k−1max{ψ̃,−k}+ 1.

Let s ∈ N with s ≥ k. Observe

ψsR = ψ̃kψsR+ (1− ψ̃k)ψsR.

The second term in the right-hand side of the last inequality tends to 0 (uniformly in s) be-
cause ψ̃k converges pointwise to 1 outside a pluripolar set and R has no mass on pluripolar
sets. Using Lemma 2.3, we have

ψ̃kψsR = ψ̃kψsdvs ∧ dcvs ∧ Ts
= ψ̃kψsdvs ∧ dcvs ∧ T = ψ̃kψsdvk ∧ dcvk ∧ T,

here we used the plurifine topology properties with respect to T (see [65, Theorem 2.9]),
thanks to the fact that φj,k = φj,s on {ψ̃k ̸= 0} for j = 1, 2 (recall s ≥ k), and they are
bounded psh functions. Letting s→ ∞ gives

ψ̃kR = ψ̃k1∪m
j=1{uj>−∞}dvk ∧ dcvk ∧ T = ψ̃kdvk ∧ dcvk ∧ T

because the current dvk ∧dcvk ∧T has no mass on pluripolar sets. Now letting k → ∞ gives
the desired assertion. This finishes the proof.
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Thanks to Proposition 2.4, we can use the right-hand side of (2.3) to define ⟨dv∧dcv∧̇T ⟩
in the case where T is the non-pluripolar product of some closed positive (1, 1)-currents.
By the same reason, in this case, we will use the expression dv ∧ dcw ∧ T1 ∧ . . . ∧ Tn−1 to
denote

〈
dv ∧ dcw∧̇⟨T1 ∧ · · · ∧ Tn−1⟩

〉
whenever it is well-defined.

2.2 Auxiliary facts on weights

In this subsection, we present some facts about weights needed for the proofs of main
results.

Recall that W̃− is the set of all convex, non-decreasing functions χ : R≤0 → R≤0 such
that χ(0) = 0 and χ ̸≡ 0. Let M ≥ 1 be a constant and W+

M the usual space of increasing
concave functions χ : R≤0 → R≤0 such that χ(0) = 0, χ ̸≡ 0, and |tχ′(t)| ≤ M |χ(t)| for
every t ≤ 0. We have the following lemmas.

Lemma 2.5. Let c > 0, 0 < δ < 1 and χ : R → R such that χ(t) = ct for every t ≥ −δ and
χ|(−∞,0] ∈ W̃− ∪W+

M (M ≥ 1). Let g be a smooth radial cut-off function supported in [−1, 1]

on R, i.e, g(t) = g(−t) for t ∈ R, 0 ≤ g ≤ 1 and
∫
R g(t)dt = 1. Put gϵ(t) := ϵ−1g(ϵt) for every

constant ϵ > 0 and χϵ := χ ∗ gϵ (the convolution of χ with gϵ). Then the following assertions
are true:

(i) if χ ∈ W̃−, then χϵ|(−∞,0] ∈ W̃− for every 0 < ϵ < δ, χϵ ↘ χ as ϵ ↘ 0 and
sup(χϵ − χ) ≤ cϵ;

(ii) if χ ∈ W+
M and 0 < ϵ < δ2/2 then χϵ|(−∞,0] ∈ W+

M/(1−δ). Moreover, if 0 < ϵ < δ2/8

then
χϵ := χϵ(·+ ϵ)− cϵ ∈ W+

M/(1−δ)2 , χϵ ≥ χ− cϵ,

and χϵ converges uniformly to χ as ϵ→ 0 on compact subsets in R.

Proof. The part (i) follows from [31, Lemma 2.1]. The part (ii) can be obtained more or less
by similar arguments as in the last reference. We provide details for readers’ convenience.
It is clear that χϵ is a concave, increasing function with χϵ(0) = 0. We will show that

χ′
ϵ(t) ≤

M

1− δ

χϵ(t)

t
, (2.6)

for every t < 0 and 0 < ϵ < δ2/2.

If t < −δ
2

then we have

χ′
ϵ(t) =

∫ ϵ

−ϵ
χ′(t− s)gϵ(s)ds ≤

∫ ϵ

−ϵ

Mχ(t− s)

t− s
gϵ(s)ds ≤

∫ ϵ

−ϵ

Mχ(t− s)

t+ ϵ
gϵ(s)ds

=
Mχϵ(t)

t+ ϵ

=
Mt

t+ ϵ

χϵ(t)

t

≤ M

1− δ

χϵ(t)

t
,
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for every 0 < ϵ < δ2/2.

On the other hand, if t ≥ −δ
2

, then χϵ(t) = χ(t) = ct for every 0 < ϵ < δ2/2. As a

consequence, we have

χ′
ϵ(t) = χ′(t) ≤ Mχ(t)

t
=M

χϵ(t)

t
.

Thus, (2.6) follows. Hence, χϵ|(−∞,0] ∈ W+
M/(1−δ).

Now, we consider χϵ. Since χ is increasing, one sees that χϵ ≥ χ − cϵ and χϵ con-
verges uniformly to χ as ϵ → 0 on compact subsets in R. It remains to show that χϵ ∈
W+
M(1+δ)/(1−δ) for every 0 < ϵ < δ2/8. Note that

χϵ = hϵ ∗ gϵ,

where hϵ(t) = χ(t+ ϵ)− cϵ. The function χϵ(t) is concave, increasing and χ+ ϵ(0) = 0.
If −δ/2 ≤ t < 0 then hϵ(t) = χ(t) = ct for every 0 < ϵ < δ2/2. Therefore

h′ϵ(t) = χ′(t) ≤ Mχ(t)

t
=M

hϵ(t)

t
.

If t < −δ/2 then

h′ϵ(t) = χ′(t+ ϵ) ≤M
χ(t+ ϵ)

t+ ϵ
≤M

χ(t+ ϵ)− cϵ

t+ ϵ
=M

hϵ(t)

t+ ϵ
=

Mt

t+ ϵ

hϵ(t)

t

≤ M

1− δ

hϵ(t)

t
,

for every 0 < ϵ < δ2/2.
Then, for every 0 < ϵ < δ2/2, we have hϵ ∈ W+

M/(1−δ) and hϵ = ct for every t ≥ −δ/2.
Hence, for every 0 < ϵ < δ2/8, we have

χϵ = hϵ ∗ gϵ ∈ W+
M

(1−δ)(1−δ/2)

⊂ W+
M

(1−δ)2

.

The proof is completed.

Lemma 2.6. Let χ, χ̃ ∈ W̃− ∪W+
M (M ≥ 1) such that χ̃ ≤ χ. Then, there exist sequences of

functions χj , χ̃j ∈ W̃− ∪W+
Mj

(with Mj ↘M as j → ∞ ) satisfying the following conditions:

• χj ∈ C∞(R) for every j;

• χj ≥ χ̃j and χj ≥ χ− 2−j for every j big enough;

• χ̃− 2−j ≤ χ̃j ≤ χ̃ on (−∞,−1] for every j big enough;

• χj converges uniformly to χ on compact subsets in R≤0.

Proof. We split the proof into two cases.
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Case 1: χ ∈ W̃−.
For every j ≥ 1, we denote

χj(t) =

{
max{χ(t), cjt} if t < 0,

cjt if t ≥ 0,

where

cj :=
−χ(−2−j)

2−j
·

Then χj satisfies the hypothesis of Lemma 2.5 for δ := 2−j . Let g be a smooth radial cut-off
function supported in [−1, 1] on R, i.e, g(t) = g(−t) for t ∈ R, 0 ≤ g ≤ 1 and

∫
R g(t)dt = 1.

For every j ≥ 1, we define

χj = χj ∗ g4−j−1 and χ̃j = χ̃.

By Lemma 2.5, we have χj and χ̃j satisfy the desired conditions.

Case 2: χ ∈ W+
M .

Since χ ≥ χ̃, we also have χ̃ ∈ W+
M . Assume that g and cj are as in Case 1. For every j ≥ 1,

we define

χj(t) =

{
min{χ(t), cjt} if t < 0,

cjt if t ≥ 0,

and
χj(t) = (χj(·+ 4−j−1) ∗ g4−j−1)(t)− cj4

−j−1.

We also denote χ̃j(t) = min{χ̃(t), χj(t)}. By Lemma 2.5, we have χj and χ̃j satisfy the
desired conditions. The proof is completed.

Let ϕ be a negative θ-psh function. We denote by PSH(X, θ, ϕ) the set of θ-psh functions
u ≤ ϕ. Recall that by monotonicity, we always have

∫
X θ

n
u ≤

∫
X θ

n
ϕ, where for every θ-psh

function v, we put θv := ddcv + θ. We also define by E(X, θ, ϕ) the set of u ∈ PSH(X, θ, ϕ)

of full Monge-Ampère mass with respect to ϕ, i.e,
∫
X θ

n
u =

∫
X θ

n
ϕ.

Let χ ∈ W̃− ∪W+
M , and u ∈ PSH(X, θ, ϕ). We put

Eχ,θ,ϕ(u) :=

∫
X
−χ(u− ϕ)θnu .

We also define by Eχ(X, θ, ϕ) the set of u ∈ E(X, θ, ϕ) with Eχ,θ,ϕ(u) <∞.

Lemma 2.7. Let χ ∈ W̃−∪W+
M and u1, u2 ∈ Eχ(X, θ, ϕ). Then there exists a constant C1 > 0

depending only on n and M such that

−
∫
X
χ(u1 − ϕ)θnu2 ≤ C1

2∑
j=1

Eχ,ϕ,θ(uj),
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and

Eχ,θ,ϕ
(
au1 + (1− a)

)
u2 ≤ C1

2∑
j=1

Eχ,ϕ,θ(uj),

for every 0 < a < 1. Furthermore if u1 ≥ u2, then

Eχ,ϕ,θ(u1) ≤ C2Eχ,ϕ,θ(u2),

for some constant C2 depending only on n and M .

Proof. The first and third inequalities are from [31, Lemma 3.2] (see also [33, Propositions
2.3, 2.5] for the case where ϕ = 0 and θ is a Kähler form). The second desired inequality
was implicitly proved in the proof of convexity of finite energy classes in [64, Proposition
3.3] (in a much broader context). Alternatively one can use properties of envelopes in [15]
to get the same conclusion. We prove here the second desired inequality using ideas from
[64] for readers’ convenience.

Considering uj − ϵ for ϵ > 0 instead of uj , and taking ϵ → 0 later, without loss of
generality, we can assume that uj < ϕ ≤ 0 for j = 1.2. By replacing uj , θ by uj − ϕ, θϕ
respectively, we can assume that ϕ = 0, but θ is no longer a smooth form but a closed
positive (1, 1)-current. This change causes no trouble for us. Let v := au1 + (1 − a)u2.
Observe that X ⊂ {u1 < u2} ∪ {u1 > 2u2}. Hence

Eχ,θ(v) ≤
∫
{u1<u2}

−χ(v)θnv +

∫
{u1>2u2}

−χ(v)θnv

≤
∫
{u1<u2}

−χ(v)θnv +

∫
{u1>2u2}

−χ(v)θnv

≤
n∑
k=0

(∫
{u1<u2}

−χ(u1)θku1 ∧ θ
n−k
u2 +

∫
{u1>2u2}

−χ((2− a/2)u2)θ
k
u1 ∧ θ

n−k
u2

)

≤
n∑
k=0

∫
{u1<u2}

−χ(u1)θku1 ∧ θ
n−k
max{u1,u2}+

+

n∑
k=0

∫
{u1>2u2}

−2k+1χ(u2)θ
k
max{u1/2,u2} ∧ θ

n−k
u2

≤
n∑
k=0

(∫
X
−χ(u1)θku1 ∧ θ

n−k
max{u1,u2} + 2k+1

∫
X
−χ(u2)θkmax{u1/2,u2} ∧ θ

n−k
u2

)
≲ Eχ,θ(u1) + Eχ,θ(max{u1, (u1 + u2)/2}) + Eχ,θ(u2) + Eχ,θ(max{u1/4 + u2/2, u2})
≲ Eχ,θ(u1) + Eχ,θ(u2),

where the two last estimates hold due to the first and third inequalities of the lemma. This
finishes the proof.

Lemma 2.8. Let χ, χ̃ ∈ W̃− ∪ W+
M such that χ̃ ≤ χ and let u1, u2, ..., un+1 ∈ E(X, θ, ϕ).

Denote ϱ := vol(θϕ). Then there exists a constant C > 0 depending only on n and M such that

−
∫
X
χ(ϵ(u1 − ϕ))θu2 ∧ ... ∧ θun+1 ≤ C Bϱ(1− χ̃(−1))Q0(ϵ),
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for every 0 < ϵ ≤ 1, where

B = 1 +max1≤j≤n+1Eχ̃,θ,ϕ(uj)/ϱ and Q0(ϵ) := sup{t≤−1}
χ(ϵt)

χ̃(t)
·

Proof. Let L be the left-hand side of the desired inequality. We have

L ≤ −
∫
{u1≥ϕ−1}

χ(ϵ(u1 − ϕ))θu2 ∧ ... ∧ θun+1 −
∫
{u1<ϕ−1}

χ(ϵ(u1 − ϕ))θu2 ∧ ... ∧ θun+1

≤ −χ(−ϵ)ϱ−Q0(ϵ)

∫
{u1<ϕ−1}

χ̃(u1 − ϕ)θu2 ∧ ... ∧ θun+1

≤ −ϱQ0(ϵ)χ̃(−1)−Q0(ϵ)

∫
X
χ̃(u1 − ϕ)θu2 ∧ ... ∧ θun+1

≤ −ϱQ0(ϵ)χ̃(−1) + CQ0(ϵ) max
1≤j≤n+1

Eχ̃,θ,ϕ(uj),

where C > 0 depends only on n and M . The last estimate holds due to Lemma 2.7. Thus
the desired inequality follows.

By the convexity/concavity and by the assumption χ̃ ≤ χ, we have{
Q0(ϵ) ≥ ϵQ0(1) if χ ∈ W̃−,

Q0(ϵ) ≤ ϵQ0(1) if χ ∈ W+
M ,

(2.7)

for every 0 < ϵ ≤ 1. Moreover, if χ ∈ W̃− and χ(t)/χ̃(t) → 0 as t → −∞, then by the
definition of Q0, we also have

Q0(ϵ) ≤
χ(−ϵ1/2)
χ̃(−1)

+ sup
{t≤−ϵ−1/2}

χ(t)

χ̃(t)

ϵ→0+−→ 0. (2.8)

Let u1, u2 ∈ Eχ(X, θ, ϕ), and v := max{u1, u2}. Put

ν(u1, u2) := χ(−|u1 − u2|)(θnu2 − θnu1),

and

Iχ(u1, u2) :=

∫
{u1<u2}

ν(u1, u2) +

∫
{u1>u2}

ν(u2, u1) =

∫
X
ν(u1, v) +

∫
X
ν(u2, v). (2.9)

Proposition 2.9. Let χ ∈ W̃− ∪ W+
M . Let ϕ is a negative θ-psh function and u1, u2 ∈

Eχ(X, θ, ϕ). Then
Iχ(u1, u2) ≥ 0.
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Proof. Denote µ = θnu2 − θnu1 . Since χ is absolutely continuous, we have χ is differentiable
almost everywhere and −χ(t) =

∫ 0
t χ

′(s)ds for every t < 0. Hence∫
{u1<u2}

ν(u1, u2) = −
∫
{u1<u2}

(∫ 0

u1−u2
χ′(t)dt

)
dµ

= −
∫
{u1<u2}

(∫ 0

−∞
χ′(t)1{u1<u2+t}dt

)
dµ

= −
∫ 0

−∞
χ′(t)µ{u1 < u2 + t}dt.

Moreover, it follows from [16, Lemma 2.3] that µ{u1 < u2 + t} ≤ 0 for every t ≤ 0. Hence∫
{u1<u2}

ν(u1, u2) = −
∫ 0

−∞
χ′(t)µ{u1 < u2 + t}dt ≥ 0.

Similarly, we have ∫
{u2<u1}

ν(u2, u1) ≥ 0.

Thus
Iχ(u1, u2) =

∫
{u1<u2}

ν(u1, u2) +

∫
{u2<u1}

ν(u2, u1) ≥ 0.

3 Stability estimates for fixed singularity type

3.1 Main results

Let χ, χ̃ ∈ W̃− ∪W+
M (M ≥ 1) such that χ̃ ≤ χ. For each constant t ≥ 0, we denote

Q(t) = Qχ,χ̃(t) :=


1 if t ≥ 1,

(Q0(t)/Q0(1))
1/2 if 0 < t < 1 and χ ∈ W̃−,

t1/2 if 0 < t < 1 and χ ∈ W+
M ,

lims→0+ Q(s) if t = 0.

(3.1)

where Q0 is defined as in Lemma 2.8. We remove the subscript χ, χ̃ from Qχ,χ̃ if χ, χ̃ are
clear from the context. Note that Q is increasing continuous function in t and

Q(0) = 0 if either χ, χ̃ ∈ W+
M or lim

t→−∞

χ(t)

χ̃(t)
= 0. (3.2)

Now, we state the main results of this section. For the convenience, we normalize
energies with respect to ϱ :=

∫
X θ

n
ϕ as follows

E0
χ̃,θ,ϕ := ϱ−1Eχ̃,θ,ϕ, I0χ(u1, u2) = ϱ−1Iχ(u1, u2).
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Theorem 3.1. Let θ be a closed smooth real (1, 1)-form and ϕ be a negative θ-psh function
such that ϱ := vol(θϕ) > 0. Let χ, χ̃ ∈ W̃− ∪W+

M (M ≥ 1) such that χ̃ ≤ χ. Let B ≥ 1 be a
constant and let uj , ψj ∈ E(X, θ, ϕ) satisfy u1 ≤ u2 and

E0
χ̃,θ,ϕ(uj) + E0

χ̃,θ,ϕ(ψj) ≤ B,

for j = 1, 2. Then there exists a constant Cn > 0 depending only on n and M such that∫
X
−χ(u1 − u2)(θ

n
ψ1

− θnψ2
) ≤ CnϱB

2(1− χ̃(−1))2Q◦n(I0χ(u1, u2)), (3.3)

where Q is defined by (3.1), and Q◦n := Q ◦Q ◦ · · · ◦Q (n-iterate of Q).

Since the measure θnψ1
− θnψ2

is not positive, we need the following consequence of the
above theorem for later applications on stability estimates.

Theorem 3.2. Let θ be a closed smooth real (1, 1)-form and ϕ be a negative θ-psh function such
that ϕ = Pθ[ϕ], ϱ := vol(θϕ) > 0 and θ ≤ Aω for some constant A ≥ 1. Let χ, χ̃ ∈ W̃− ∪W+

M

(M ≥ 1) such that χ̃ ≤ χ. Let B ≥ 1 be a constant and u1, u2, ψ ∈ E(X, θ, ϕ) satisfying

E0
χ̃,θ,ϕ(u1) + E0

χ̃,θ,ϕ(u2) + E0
χ̃,θ,ϕ(ψ) ≤ B,

for j = 1, 2. Then, for every constant m > 0 and 0 < γ < 1, there exists a constant C > 0

depending on n,M,X, ω,m and γ such that∫
X
−χ
(
− |u1 − u2|

)
θnψ ≤ −ϱχ (−|a1 − a2| − λm) + CϱA(1−γ)/m(B − χ̃(−A))2(1− χ̃(−1))2λγ ,

where aj := supX uj and λ = Q◦n(I0χ(u1, u2)).
3.2 Proof of Theorem 3.1

Here is the first step in the proof of Theorem 3.1.

Lemma 3.3. If Theorem 3.1 holds for uj , ψj of the same singularity type as ϕ, then it holds
for the general case.

Proof. Let uj , ψj (j = 1, 2) be as in the statement of Theorem 3.1. For every k > 0, we
denote uj,k := max{uj , ϕ − k} and ψj,k = max{ψj , ϕ − k}. By Lemma 2.7, there exists a
constant C1 > 0 depending only on n and M such that

E0
χ̃,θ,ϕ(uj,k) + E0

χ̃,θ,ϕ(ψj,k) ≤ C1B,

for j = 1, 2 and for every k > 0. Therefore, by the assumption, there exists a constant
C2 > 0 depending only on n and M such that∫

X
−χ(u1,k − u2,k)(θ

n
ψ1,l

− θnψ2,l
) ≤ C2ϱB

2(1− χ̃(−1))2Q◦(n)(I0χ(u1,k, u2,k)),
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for every k, l > 0. Letting l → ∞ and using [17, Theorem 2.2], we get∫
X
−χ(u1,k − u2,k)(θ

n
ψ1

− θnψ2
) ≤ C2ϱB

2(1− χ̃(−1))2Q◦(n)(I0χ(u1,k, u2,k)) (3.4)

for every k > 0. We will show that

Iχ(u1, u2) = lim
k→∞

Iχ(u1,k, u2,k). (3.5)

Denote
f := χ(u1 − u2)(θ

n
u2 − θnu1), fk := χ(u1,k − u2,k)(θ

n
u2,k

− θnu1,k).

We have

Iχ(u1,k, u2,k) =

∫
X
fk =

∫
{u1>ϕ−k}

fk +

∫
{u1≤ϕ−k}

fk

=

∫
{u1>ϕ−k}

f +

∫
{u1≤ϕ−k}

fk

= Iχ(u1, u2)−
∫
{u1≤ϕ−k}

f +

∫
{u1≤ϕ−k}

fk.

Then

|Iχ(u1,k, u2,k)− Iχ(u1, u2)| =
∣∣∣∣ ∫

{u1≤ϕ−k}
f +

∫
{u1≤ϕ−k}

fk

∣∣∣∣
≤
∫
{u1≤ϕ−k}

µ+

∫
{u1≤ϕ−k}

−χ(u1,k − u2,k)(θ
n
u2,k

+ θnu1,k)

≤
∫
{u1≤ϕ−k}

µ+

∫
{u1≤ϕ−k}

−χ(−k)(θnu2,k + θnu1,k),

where µ = −χ(u1 − ϕ)(θnu1 + θnu2). By Lemma 2.7, we have
∫
X µ <∞. Then it follows from

Lebesgue’s dominated convergence theorem that limk→∞
∫
{u1≤ϕ−k} µ = 0. Therefore,

lim sup
k→∞

|Iχ(u1,k, u2,k)− Iχ(u1, u2)| ≤ lim sup
k→∞

∫
{u1≤ϕ−k}

−χ(−k)(θnu1,k + θnu2,k). (3.6)

By the fact that∫
X
θnu1,k =

∫
X
θnu1,k =

∫
X
θnϕ, 1{u1≤ϕ−k}θ

n
uj,k

= 1{u1≤ϕ−k}θ
n
uj (j = 1, 2),

we have

−χ(−k)
∫
{u1≤ϕ−k}

(θnu1,k + θnu2,k) = −χ(−k)
∫
{u1≤ϕ−k}

(θnu1 + θnu2) ≤
∫
{u1≤ϕ−k}

µ. (3.7)

By using (3.6), (3.7) and the fact limk→∞
∫
{u1≤ϕ−k} µ = 0, we get (3.5). Now, combining

(3.4) and (3.5), we obtain∫
X
−χ(u1 − u2)(θ

n
ψ1

− θnψ2
) ≤ C2ϱB

2(1− χ̃(−1))2Q◦(n)(I0χ(u1, u2)).

The proof is completed.
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Lemma 3.4. Let M ≥ 1 and χ, χ̃ ∈ W̃− ∪ W+
M such that χ̃ ≤ χ and χ ∈ C 1(R). Let

u1, u2, ..., un+2 ∈ E(X, θ, ϕ) such that u1 ≤ u2 and uj − ϕ is bounded (j = 1, 2, ..., n + 2),
where ϕ is a negative θ-psh function satisfying ϱ := vol(θϕ) > 0. Denote

T = θu4 ∧ ... ∧ θun+2 , I =

∣∣∣∣∫
X
χ′(u1 − u2)d(u1 − u2) ∧ dc(u1 − u3) ∧ T

∣∣∣∣ ,
and

J =

∫
X
χ′(u1 − u2)d(u1 − u2) ∧ dc(u1 − u2) ∧ T.

Then there exists C > 0 depending only on n and M such that

I ≤ CϱB(1− χ̃(−1))Q(J/ϱ),

where B :=
∑n+2

j=1 max{E0
χ̃,θ,ϕ(uj), 1} and Q is defined by (3.1).

Clearly if χ ∈ W̃−, then the above constant C does not depend on M .

Proof. In this proof, we use the symbols ≲ and ≳ for inequalities modulo a constant de-
pending only on n and M . By Theorem 2.2 and Lemma 2.7, we have

I =

∣∣∣∣∫
X
−χ(u1 − u2)dd

c(u1 − u3) ∧ T
∣∣∣∣ ≲ ϱB = ϱBQ(1).

Therefore, without loss of generality, we can assume that J/ϱ < 1. Approximating u3 by
u3 − δ with δ ↘ 0, we can assume that u3 < ϕ on X.

For each 0 < ϵ < 1/2 we denote

U(ϵ) = {u1 − u2 < ϵ(u1 + u3 − 2ϕ)}, V (ϵ) = {u1 − u2 > ϵ(u1 + u3 − 2ϕ)},

and Γ(ϵ) = {u1 − u2 = ϵ(u1 + u3 − 2ϕ)}. Since Γ(ϵ1) ∩ Γ(ϵ2) = ∅ for every ϵ1 ̸= ϵ2 (note
u3 < ϕ), we have ∫

Γ(ϵ)
d(u1 − u3) ∧ dc(u1 − u3) ∧ T = 0, (3.8)

for almost everywhere ϵ ∈ (0, 1/2).
Let 0 < ϵ < 1/2 be a constant satisfying (3.8). To simplify the notation, from now on,

we write U, V,Γ for U(ϵ), V (ϵ),Γ(ϵ) respectively. Denote

ũ1 =
u1 + ϵu3
1 + ϵ

, ũ2 = max

{
u2 + ϵu3
1 + ϵ

,
(1− ϵ)u1 + 2ϵϕ

1 + ϵ

}
and φ̃ = ũ1 − ũ2.
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Then φ := (u1 − u2) = (1 + ϵ)φ̃ on U . Hence

I =

∣∣∣∣∫
X
−χ(φ)ddc(u1 − u3) ∧ T

∣∣∣∣
≤
∣∣∣∣∫
U
−χ(φ)ddc(u1 − u3) ∧ T

∣∣∣∣+
∣∣∣∣∣
∫
X\U

−χ(φ)ddc(u1 − u3) ∧ T

∣∣∣∣∣
≤
∣∣∣∣∫
U
−χ((1 + ϵ)φ̃)ddc(u1 − u3) ∧ T

∣∣∣∣+
∣∣∣∣∣
∫
X\U

−χ(φ)(θu1 + θu3) ∧ T

∣∣∣∣∣
≤
∣∣∣∣∫
U
−χ((1 + ϵ)φ̃)ddc(u1 − u3) ∧ T

∣∣∣∣+
∣∣∣∣∣
∫
X\U

−χ(ϵ(u1 + u3 − 2ϕ))(θu1 + θu3) ∧ T

∣∣∣∣∣
:= I1 + I2,

where in the last inequality we used the fact that χ is increasing and φ ≥ ϵ(u1+u2−2ϕ) on

X\U . By Lemma 2.7, we have E0
χ̃,θ,ϕ

(
u1 + u3

2

)
≲ B. Therefore, it follows from Lemma

2.8 that

I2 ≤ 2

∫
X
−χ
(
2ϵ

(
u1 + u3

2
− ϕ

))
θ(u1+u3)/2 ∧ T ≲ Bϱ(1− χ̃(−1))Q0(2ϵ). (3.9)

In order to estimate I1, we divide it into two terms

I1 ≤
∣∣∣∣∫
X
−χ((1 + ϵ)φ̃)ddc(u1 − u3) ∧ T

∣∣∣∣+
∣∣∣∣∣
∫
X\U

−χ((1 + ϵ)φ̃)ddc(u1 − u3) ∧ T

∣∣∣∣∣
:= I3 + I4.

Note that ũ1 − ũ2 = ϵ(u1 + u3 − 2ϕ)/(1 + ϵ) on X \ U . Hence

I4 ≤
∫
X\U

−χ((1 + ϵ)φ̃)(θu1 + θu3) ∧ T ≤
∫
X\U

−χ(ϵ(u1 + u2 − 2ϕ))(θu1 + θu3) ∧ T.

Using Lemma 2.8 again, we get

I4 ≲ Bϱ(1− χ̃(−1))Q0(2ϵ). (3.10)

Using integration by parts, we have

I3 = (1 + ϵ)

∣∣∣∣∫
X
χ′((1 + ϵ)φ̃)dφ̃ ∧ dc(u1 − u3) ∧ T

∣∣∣∣ .
Moreover, by Cauchy-Schwarz inequality and by the choice of ϵ (see (3.8)), we get∫

Γ
χ′((1 + ϵ)φ̃)dφ̃ ∧ dc(u1 − u3) ∧ T = 0.

Hence

I3 = (1 + ϵ)

∣∣∣∣∫
U∪V

χ′((1 + ϵ)φ̃)dφ̃ ∧ dc(u1 − u3) ∧ T
∣∣∣∣ ≤ (1 + ϵ)(I5I6)

1/2 (3.11)
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where
I5 =

∫
U∪V

χ′((1 + ϵ)φ̃)d(u1 − u3) ∧ dc(u1 − u3) ∧ T,

and
I6 =

∫
U∪V

χ′((1 + ϵ)φ̃)dφ̃ ∧ dcφ̃ ∧ T.

Since (1 + ϵ)φ̃ ≤ ϵ(u1 + u3 − 2ϕ), if χ ∈ W̃− (hence χ′ is nonnegative and increasing on
R≤0) then

I5 ≤
∫
X
χ′(ϵ(u1 + u3 − 2ϕ))d(u1 − u3) ∧ dc(u1 − u3) ∧ T

≲
∫
X
χ′(ϵ(u1 + u3 − 2ϕ))d(u1 − ϕ) ∧ dc(u1 − ϕ) ∧ T

+

∫
X
χ′(ϵ(u1 + u3 − 2ϕ))d(u3 − ϕ) ∧ dc(u3 − ϕ) ∧ T

≤
∫
X
χ′(ϵ(u1 − ϕ))d(u1 − ϕ) ∧ dc(u1 − ϕ) ∧ T +

∫
X
χ′(ϵ(u3 − ϕ))d(u3 − ϕ) ∧ dc(u3 − ϕ) ∧ T

= ϵ−1

∫
X
χ(ϵ(u1 − ϕ))ddc(u1 − ϕ) ∧ T + ϵ−1

∫
X
χ(ϵ(u3 − ϕ))ddc(u3 − ϕ) ∧ T

≲ Bϱ(1− χ̃(−1))ϵ−1Q0(ϵ),

where the last estimate holds due to Lemma 2.8.
Denote v1 := (u1 + 2u3)/3 and v2 := (2u1 + u3)/3. Since

(1 + ϵ)(ũ1 − ũ2) ≥ u1 + u3 − 2ϕ, u1 − u3 = −(v1 − v2)/3,

one sees that if χ ∈ W+
M (hence χ′ is nonnegative and decreasing in R≤0) then

I5 ≤
∫
X
χ′((u1 + u3 − 2ϕ))d(u1 − u3) ∧ dc(u1 − u3) ∧ T

≲
∫
X
χ′((u1 + u3 − 2ϕ))

(
d(v1 − ϕ) ∧ dc(v1 − ϕ) + d(v2 − ϕ) ∧ dc(v2 − ϕ)

)
∧ T

≤
∫
X
χ′(3(v1 − ϕ))d(v1 − ϕ) ∧ dc(v1 − ϕ) ∧ T +

∫
X
χ′(3(v2 − ϕ))d(v2 − ϕ) ∧ dc(v2 − ϕ) ∧ T

=
1

3

∫
X
−χ(3(v1 − ϕ))ddc(v1 − ϕ) ∧ T +

1

3

∫
X
−χ(3(v2 − ϕ))ddc(v2 − ϕ) ∧ T

≤
∫
X
−χ(3(v1 − ϕ))(θv1 + θϕ) ∧ T +

∫
X
−χ(3(v2 − ϕ))(θv1 + θϕ) ∧ T

≤ 3M
∫
X
−χ(v1 − ϕ)(θv1 + θϕ) ∧ T + 3M

∫
X
−χ(v2 − ϕ)(θv1 + θϕ) ∧ T

≲ Bϱ,

where the two last estimates hold due to Lemma 2.7 and the fact

log(−χ(3t))− log(−χ(t)) =
∫ 3t

t

χ′(s)

χ(s)
ds ≤

∫ 3t

t

M

s
ds =M log 3,
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for every χ ∈ W+
M and t ≤ 0. Combining the estimates in both cases, we obtain

I5 ≲ Bϱ(1− χ̃(−1))
Q(ϵ)2

ϵ
, (3.12)

where we used the inequality Q(ϵ) ≥ ϵ1/2 if χ ∈ W̃−. Now, we estimate I6. Since U, V are
open in the plurifine topology and

(1 + ϵ)φ̃ =

{
φ on U

ϵ(u1 + u3 − 2φ) on V
,

we have

I6 =

∫
U
χ′((1 + ϵ)φ̃)dφ̃ ∧ dcφ̃ ∧ T +

∫
V
χ′((1 + ϵ)φ̃)dφ̃ ∧ dcφ̃ ∧ T

= (1 + ϵ)−2

∫
U
χ′(φ)dφ ∧ dcφ ∧ T

+
ϵ2

(1 + ϵ)2

∫
V
χ′(ϵ(u1 + u3 − 2φ))d(u1 + u3 − 2φ) ∧ dc(u1 + u3 − 2φ) ∧ T

≤ J + ϵ2
∫
X
χ′(ϵ(u1 + u3 − 2φ))d(u1 + u3 − 2φ) ∧ dc(u1 + u3 − 2φ) ∧ T

= J + ϵ

∫
X
−χ(ϵ(u1 + u3 − 2φ))ddc(u1 + u3 − 2φ) ∧ T.

Therefore, it follows from Lemma 2.8 that

I6 ≲ J +Bϱ(1− χ̃(−1))ϵQ0(2ϵ). (3.13)

Combining (3.9), (3.11), (3.10), (3.12) and (3.13), we get

I ≤ I1 + I2 ≤ I3 + I4 + I2

≲ (I5I6)
1/2 + I4 + I2

≲
(
Bϱ(1− χ̃(−1))ϵ−1J

)1/2
Q(ϵ) +Bϱ(1− χ̃(−1))ϵQ(2ϵ)2.

Letting ϵ↘ J/(2ϱ) (and ϵ satisfies (3.8)), we obtain

I ≲ Bϱ(1− χ̃(−1))Q(J/ϱ).

The proof is completed.

Proposition 3.5. Let χ, χ̃ ∈ W̃− ∪ W+
M such that χ̃ ≤ χ and χ ∈ C 1(R). Let u1, u2, u3 ∈

E(X, θ, ϕ) such that u1 ≤ u2 and uj − ϕ is bounded (j = 1, 2, 3), where ϕ is a negative θ-psh
function satisfying ϱ := vol(θϕ) > 0. Then there exists a constant Cn > 0 depending only on n
and M such that∫
X
χ′(u1 − u2)d(u1 − u2) ∧ dc(u1 − u2) ∧ θn−1

u3 ≤ CnϱB
2(1− χ̃(−1))2Q◦(n−1)

(
I0χ(u1, u2)

)
,

(3.14)

where B :=
∑3

j=1max{E0
χ̃,θ,ϕ(uj), 1} and Q is defined by (3.1).
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Proof. Let

φ := u1 − u2, T :=

n−1∑
j=1

θju1 ∧ θ
n−1−j
u2 ,

and
Tk,l := θku1 ∧ θ

l
u2 ∧ θ

n−k−l−1
u3 , Lk,l :=

∫
X
χ′(φ)dφ ∧ dcφ ∧ Tk,l.

Observe
θnu2 − θnu1 = −ddcφ ∧ T

and

Lk,n−1−k ≤
∫
X
χ′(φ)dφ ∧ dcφ ∧ T = ϱI0χ(u1, u2) (3.15)

by integration by parts. We now prove by inverse induction on m := k + l that

Lk,l ≤ Cm,nϱB
2(1− χ̃(−1))2Q◦(n−1−k−l)(I0χ(u1, u2)), (3.16)

for some constant Cm,n > 1 depending only on m,n and M . The desired assertion (3.14)
is the case where k = l = 0. In what follows we use the symbols ≲ and ≳ for inequalities
modulo a constant depending only on n and M . We have checked (3.16) for k + l = n− 1.
Suppose that (3.16) holds for k + l = m with 0 < m ≤ n − 1. We will verify it for Lk−1,l,
where k + l = m and k > 1. The case Lk,l−1 is done similarly.

Denote Sk−1,l = θk−1
u1 ∧ θlu2 ∧ θ

n−k−l−1
u3 . Then

Lk−1,l − Lk,l =

∫
X
χ′(φ)dφ ∧ dcφ ∧ ddc(u3 − u1) ∧ Sk−1,l.

Using integration by parts, we have

Lk−1,l − Lk,l =

∫
X
−χ(φ)ddc(φ) ∧ ddc(u3 − u1) ∧ Sk−1,l

=

∫
X
−χ(φ)ddc(u3 − u1) ∧ Tk,l −

∫
X
−χ(φ)ddc(u3 − u1) ∧ Tk−1,l+1

=

∫
X
χ′(φ)dφ ∧ dc(u3 − u1) ∧ Tk,l −

∫
X
χ′(φ)dφ ∧ dc(u3 − u1) ∧ Tk−1,l+1

Therefore, it follows from Lemma 3.4 that

Lk−1,l − Lk,l ≲ ϱB(1− χ̃(−1)) (Q(Lk,l/ϱ) +Q(Lk−1,l+1/ϱ)) .

Hence, by using the inductive hypothesis, we get

Lk−1,l ≲ ϱB2(1− χ̃(−1))2Q◦(n−1−m)
(
I0χ(u1, u2)

)
+ ϱB(1− χ̃(−1))Q

(
Cm,nB

2(1− χ̃(−1))2Q◦(n−1−m)
(
I0χ(u1, u2)

))
≲ ϱB2(1− χ̃(−1))2Q◦(n−m)

(
I0χ(u1, u2)

)
.

Here we use the fact Q(t1) ≤ (t1/t2)
1/2Q(t2) for every t1 > t2 > 0 (see Lemma 3.6).

Thus, (3.16) holds for Lk−1,l. This finishes the proof.
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Lemma 3.6. The function h(t) =
(Q(t))2

t
is non-increasing in R>0.

Proof. If χ ∈ W+
M then we have

h(t) =


1

t
if t ≥ 1,

1 if 0 < t < 1,

is a non-increasing function.
We consider the case χ ∈ W̃−. We have

h(t) =


1

t
if t ≥ 1,

Q0(t)

tQ0(1)
if 0 < t < 1.

It is clear that h is decreasing in [1,∞). We need to show that h is non-increasing in (0, 1).
Since χ is convex, we have

χ(t1s)

t1s
≤ χ(t2s)

t2s
,

for every 0 < t2 < t1 < 1 and s < 0. Dividing both sides of the last estimate by χ̃(s)/s, we
get

χ(t1s)

t1χ̃(s)
≤ χ(t2s)

t2χ̃(s)
.

Taking the supremum of both sides, we obtain

Q0(t1)

t1
= sup

s≤−1

χ(t1s)

t1χ̃(s)
≤ sup

s≤−1

χ(t2s)

t2χ̃(s)
=
Q0(t2)

t2
.

Then h(t1) ≤ h(t2). Hence, h is non-increasing in (0, 1). The proof is completed.

End of the proof of Theorem 3.1. By Lemma 3.3 and Lemma 2.6, the problem is reduced to
the case where χ ∈ C 1(R) and uj , ψj are of the same singularity type as ϕ.

Let L be the left-hand side of the desired inequality. We have

L =

∫
X
−χ(u1 − u2)(θ

n
ψ1

− θnu1)−
∫
X
−χ(u1 − u2)(θ

n
ψ2

− θnu1)

=

∫
X
−χ(u1 − u2)dd

c(ψ1 − u1) ∧ T1 −
∫
X
−χ(u1 − u2)dd

c(ψ2 − u1) ∧ T2

= L1 − L2,

where Tj =
∑n−1

l=0 θ
l
ψj

∧ θn−l−1
u1 . Using integration by parts and Lemma 3.4, we get

L1 =

∫
X
χ′(u1 − u2)d(u1 − u2) ∧ dc(ψ1 − u1) ∧ T1

≤ C1ϱB(1− χ̃(−1))Q

(
ϱ−1

∫
X
χ′(u1 − u2)d(u1 − u2) ∧ dc(u1 − u2) ∧ T1

)
,
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where C1 > 0 depends only on n and M . Moreover, it follows from Proposition 3.5 that

ϱ−1

∫
X
χ′(u1 − u2)d(u1 − u2) ∧ dc(u1 − u2) ∧ T1 ≤ C2B

2(1− χ̃(−1))2Q◦(n−1)
(
I0χ(u1, u2)

)
,

where C2 > 1 depends only on n and M . Then

L1 ≤ C3ϱB
2(1− χ̃(−1))2Q◦n (I0χ(u1, u2)) ,

where C3 > 0 depends only on n and M . Here we use the fact Q(t1) ≤ (t1/t2)
1/2Q(t2) for

every t1 > t2 > 0.
By the same arguments, we also have

−L2 ≤ C4ϱB
2(1− χ̃(−1))2Q◦n (I0χ(u1, u2)) ,

where C4 > 0 depends only on n and M .
Hence

L = L1 − L2 ≤ (C3 + C4)ϱB
2(1− χ̃(−1))2Q◦n (I0χ(u1, u2)) .

The proof is completed.

3.3 Proof of Theorem 3.2

Recall that for every Borel set E in X, we define

capθ,ϕ(E) := sup

{∫
E
θnh : h ∈ PSH(X, θ), ϕ− 1 ≤ h ≤ ϕ

}
.

The following is an improvement of results from [16, 15] (see also [7, 41]).

Theorem 3.7. Let A ≥ 1 be a constant and let θ be a closed smooth real (1, 1)-form such
that θ ≤ Aω. Let ϕ ∈ PSH(X, θ) and 0 ≤ f ∈ Lp(X) for some constant p > 1 such that
ϕ = P [ϕ] and 0 <

∫
X fω

n =
∫
X θ

n
ϕ := ϱ. Assume u ∈ E(X, θ, ϕ) satisfies supX(u − ϕ) = 0

and θnu = fdV. Then, there exists a constant C ≥ 1 depending only on X,ω, n and p such that

u ≥ ϕ− C A (log ∥f volω(X)q/ϱ∥Lp + logA+ 1) , (3.17)

where volω(X) :=
∫
X ω

n and q =
p

p− 1
.

By Hölder inequalities, one sees that

1 =

∫
X

f

ϱ
ωn ≤ ∥f/ϱ∥Lp (volω(X))q ,

and then log ∥f volω(X)q/ϱ∥Lp ≥ 0.
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Proof. Without loss of generality, we can assume that volω(X) = 1. Recall that there exists
a constant ν > 0 depending only on X,ω such that∫

X
exp (−ψ/ν)ωn ≤ C2

0 ,

for every ψ ∈ PSH(X,ω) with supX ψ = 0, where C0 > 0 is a constant depending only on
X and ω. Consequently, one gets∫

X
exp (−ψ/(Aν))ωn ≤ C2

0 ,

for every ψ ∈ PSH(X, θ) ⊂ PSH(X,Aω) with supX ψ = 0. By the same arguments as in
the proof of [15, Proposition 4.30] (use [16, Lemma 3.9] instead of [15, Lemma 4.9]), we
have ∫

E
ωn ≤ C0 exp

(
− 1

2Aν

(
capθ,ϕ(E)

ϱ

)−1/n
)
,

for every Borel set E ⊂ X. Therefore, by the Hölder inequality and the fact e−1/t ≤ m!tm

for every m ∈ N and every t > 0, there exists A0 > 0 depending only on X,ω, n and p such
that

ϱ−1

∫
E
θnu =

∫
E
(f/ϱ)ωn ≤ ∥f/ϱ∥Lp

(∫
E
ωn
)1/q

≤ A0A
2n∥f/ϱ∥Lp

capθ,ϕ(E)2

ϱ2
, (3.18)

for every Borel set E ⊂ X, where 1/p+ 1/q = 1. On the other hand, denoting b = (Aνq)−1

and B0 = (C0)
1/q, we have

ϱ−1

∫
X
e−bwθnu ≤ ∥f/ϱ∥Lp

(∫
X
e−bqwdV

)1/q

≤ B0∥f/ϱ∥Lp , (3.19)

for every w ∈ PSH(X, θ) with supX w = 0.
For every h ∈ PSH(X, θ) with ϕ− 1 ≤ h ≤ ϕ, for each 0 ≤ t ≤ 1 and s > 0, we have

tn
∫

{u<ϕ−t−s}

θnh ≤
∫

{u<(1−t)ϕ+th−s}

θn(1−t)ϕ+th ≤
∫

{u<(1−t)ϕ+th−s}

θnu

≤
∫

{u<ϕ−s}

θnu ,

where the third estimate holds due to the comparison principle [16, Lemma 2.3]. Then

tn capϕ(u < ϕ− t− s) ≤
∫

{u<ϕ−s}

θnu , (3.20)

for every 0 ≤ t ≤ 1, s > 0. Therefore, it follows from (3.18) that

tn ϱ−1capϕ(u < ϕ− t− s) ≤ A1 ϱ
−2capϕ(u < ϕ− s)2,
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where A1 = A0A
2n∥f/ϱ∥Lp . Putting g(s) = ϱ−1/ncapϕ(u < ϕ − s)1/n, the above inequality

becomes
tg(t+ s) ≤ A

1/n
1 g(s)2.

Hence, it follows from [32, Lemma 2.4 and Remark 2.5] that if g(s0) < 1/(2A
1/n
1 ) then

g(s) = 0 for all s ≥ s0 + 2. Moreover, by (3.20) and the condition (3.19), we have

g(s+ 1)n ≤ ϱ−1

∫
{u<ϕ−s}

θnu ≤ ϱ−1

∫
X

eb(ϕ−u−s)θnu ≤ B1 e
−bs,

for every s > 0, where B1 = B0∥f/ϱ∥Lp . Then g(s+ 1) < 1/(2A
1/n
1 ) provided that

s >
n log 2 + logA1

b
+

logB1

b
·

Hence g(s) = 0 for every

s ≥ n log 2 + logA1

b
+

logB1

b
+ 4.

Thus

u ≥ ϕ−
(
n log 2 + logA1

b
+

logB1

b
+ 4

)
= ϕ− C1 log ∥f/ϱ∥Lp − C2,

where C1 =
2
b = 2νqA and

C2 = 4 +
n log 2 + logA0 + logB0 + 2n logA

b

= 4 + 2νq(n log 2 + logA0 + logB0 + 2n logA)A.

The proof is finished.

Lemma 3.8. There exists a constant C > 0 depending only on n,X and ω such that for every
u ∈ PSH(X,ω) satisfying supX u = 0 and for every constant 0 < t ≤ 1, one has∫

{u>−t}
ωn ≥ Ct2n. (3.21)

Proof. Let (Uj , φj)mj=1 such that Uj ⊂ X are open, φj : 4B −→ Uj are biholomorphic and
∪mj=1φj(B) = X (where B is the open unit ball in Cn), and there is a smooth psh function
ρj in Uj such that ddcρj = ω for 1 ≤ j ≤ m. Denote

Cρ = sup
1≤j≤m

sup
2B

∥∇(ρj ◦ φj)∥.
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Assume u(z0) = 0. Then there exists 1 ≤ j0 ≤ m such that z0 ∈ φj0(B). Denote
w0 = φ−1

j0
(z0), û(w) = u ◦ φj0(w) and ρ̂(w) = ρj0 ◦ φj0(w)− ρj0 ◦ φj0(w0). By the plurisub-

harmonicity of û+ ρ̂, for every t > 0 and 0 < r < 1, we have

0 = (û+ ρ̂)(w0) ≤
1

volCn(rB)

∫
rB
(û+ ρ̂)dV2n

≤ Cρr +
1

c2nr2n

∫
rB
ûdV2n

≤ Cρr −
t

c2nr2n

∫
rB∩{û≤−t}

dV2n

≤ Cρr − t+
t

c2nr2n

∫
rB∩{û>−t}

dV2n

≤ Cρr − t+
Cωt

r2n
volω({u > −t}),

where c2n = volCn(B) and Cω > 0 is a constant depending only on n,X, ω. It follows that

volω({u > −t}) ≥ r2n

Cω

(
1− Cρr

t

)
.

Hence, for every 0 < t < 1, by choosing r = t
1+Cρ

, we have

volω({u > −t}) ≥ Ct2n,

where C =
1

Cω(1 + Cρ)2n+1
depends only on n,X and ω.

End of the proof of Theorem 3.2. Without loss of generality, we can assume that u1 ≤ u2.
Denote Wt = {u1 > a1 − t} for 0 < t ≤ 1. We have∫

Wt

−χ(u1 − u2)ω
n ≤

∫
Wt

−χ(u1 − a2)ω
n ≤ −btχ(a1 − a2 − t), (3.22)

where bt := vol(Wt).
It follows from Lemma 3.8 that Wt ̸= ∅. Moreover,

bt :=

∫
Wt

ωn ≥ C1

(
t

A

)2n

, (3.23)

where C1 > 0 is a constant depending only on n,X and ω. By [16, Theorem A] (see also
[31, Theorem 3]), there exists a unique φ ∈ E(X, θ, ϕ) with supX(φ− ϕ) = 0 such that

θnφ =
ϱ

bt
1Wtω

n.

It follows from Theorem 3.7 that

ϕ− C2A (− log t+ logA+ 1) ≤ φ ≤ ϕ, (3.24)

32



for some constant C2 ≥ 1 depending only on n,X and ω. Thus, we have

E0
χ̃,θ,ϕ(φ) ≤ −χ̃

(
C2A (− log t+ logA+ 1)

)
≤ −C3

(
log

Ae

t

)M
χ̃(−A),

where C3 > 0 depends only on n,X, ω and M .
Hence, it follows from Theorem 3.1 that∫

X
−χ(u1 − u2)(θ

n
ψ − θnφ) ≤ C4ϱ

(
log

Ae

t

)2M

(B − χ̃(−A))2(1− χ̃(−1))2λ, (3.25)

where λ = Q◦(n)(I0χ(u1, u2)) and C4 > 0 depends only on n,X, ω and M .
Combining (3.22) and (3.25), we get∫
X
−χ(u1 − u2)θ

n
ψ ≤ −ϱχ(a1 − a2 − t) + C4ϱ

(
log

Ae

t

)2M

(B − χ̃(−A))2(1− χ̃(−1))2λ.

Letting t→ λm, we get∫
X
−χ(u1 − u2)θ

n
ψ ≤ −ϱχ(a1 − a2 − λm) + C4ϱ

(
log

Ae

λm

)2M

(B − χ̃(−A))2(1− χ̃(−1))2λ

≤ −ϱχ(a1 − a2 − λm) + C5ϱ
A(1−γ)/m

λ1−γ
(B − χ̃(−A))2(1− χ̃(−1))2λ

≤ −ϱχ(a1 − a2 − λm) + C5ϱA
(1−γ)/mλ1−γ(B − χ̃(−A))2(1− χ̃(−1))2λγ ,

where C5 > 0 depends only on n,X, ω,M,m and γ.
The proof is completed.

3.4 Applications

3.4.1 A quantitative version for the domination principle

Theorem 3.9. Let A ≥ 1 be a constant and let θ ≤ Aω be a closed smooth real (1, 1)-form
and ϕ be a model θ-psh function, and ϱ := vol(θϕ) > 0. Let B ≥ 1 be a constant, χ̃ ∈ W− and
u1, u2 ∈ E(X, θ, ϕ) such that χ̃(−1) = −1 and

E0
χ̃,θ,ϕ(u1) + E0

χ̃,θ,ϕ(u2) ≤ B.

Assume that there exists a constant 0 ≤ c < 1 and a Radon measure µ on X satisfying
θnu1 ≤ cθnu2 + ϱµ on {u1 < u2} and cµ :=

∫
{u1<u2} dµ ≤ 1. Then there exists a constant C > 0

depending only on n,X and ω such that

capω{u1 < u2 − ϵ} ≤ C vol(X)(A+B)2

ϵ(1− c)h◦n(1/cµ)
,

for every 0 < ϵ < 1, where h(s) = (−χ̃(−s))1/2 for every 0 ≤ s ≤ ∞.
In particular, if cµ = 0 then capω{u1 < u2 − ϵ} = 0 for every ϵ > 0, and then u1 ≥ u2 on

whole X.
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The standard domination principle corresponds to the case where c = 0 and µ := 0. A
non-quantitative version of this domination principle in the non-Kähler setting was obtained
in [48]. In order to prove Theorem 3.9, we need the following result which is an immediate
consequence of the Chern-Levine-Nirenberg inequality:

Proposition 3.10. Let θ ≤ Aω be a closed smooth real (1, 1)-form (where A ≥ 1 is a constant)
and ϕ be a model θ-psh function with ϱ :=

∫
X θ

n
ϕ > 0. Let 0 ≤ w ≤ 1 is an ω-psh function and

ψ is the unique solution to the problem
u ∈ E(X, θ, ϕ),
θnu =

ϱ

vol(X)
(ddcw + ω)n,

supX u = 0.

(3.26)

Then there exists a constant C > 0 depending only on X and ω such that∫
X
|ψ|θnψ ≤ C Aϱ.

Proof of Theorem 3.9. Let w be an arbitrary ω-psh function satisfying 0 ≤ w ≤ 1 and ψ is
the unique solution to (3.26). Denote v = max{u1, u2} and χ(t) = max{t,−1} ≥ χ̃(t). By
Theorem 3.1 and Proposition 3.10, there exists a constant C1 > 0 depending only on n,X
an ω such that

I1 :=

∫
X
−χ(u1 − v)(θnψ − θnu1) ≤ C1ϱ(A+B)2Q◦(n)(I0χ(u1, v)), (3.27)

and
I2 :=

∫
X
−χ(u1 − v)(θnu2 − θnu1) ≤ C1ϱ(A+B)2Q◦(n)(I0χ(u1, v)). (3.28)

Moreover, by the fact θnv = θnu2 on {u1 < u2} and by the assumption θnu1 ≤ cθnu2 + ϱµ on
{u1 < u2} , we have

I0χ(u1, v) = ϱ−1

∫
{u1<u2}

−χ(u1 − v)(θnu1 − θnu2) ≤ ϱ−1

∫
{u1<u2}

−χ(u1 − v)(θnu1 − cθnu2) ≤ cµ.

(3.29)
Combining (3.27), (3.28) and (3.29), we get

(1− c)

∫
X
−χ(u1 − v)θnψ =

∫
X
−χ(u1 − v)(θnu1 − cθnu2) + (1− c)I1 + cI2

≤
∫
X
−χ(u1 − v)(θnu1 − cθnu2) + C1ϱ(A+B)2(1− χ̃(−1))2Q◦n(cµ)

≤ ϱcµ + C1ϱ(A+B)2Q◦n(cµ)

≤ Cϱ(A+B)2Q◦n(cµ),

where C = C1 + 1. Hence∫
{u1<u2−ϵ}

θnw =
vol(X)

ϱ

∫
{u1<u2−ϵ}

θnψ ≤ C vol(X)(A+B)2Q◦n(cµ)

(1− c)ϵ
,
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for every 0 < ϵ < 1. Since w is arbitrary, it follows that

capω{u1 < u2 − ϵ} ≤ C vol(X)(A+B)2Q◦n(cµ)

(1− c)ϵ
. (3.30)

Moreover, by the definition of χ and the formula of Q, we have

Q(s) =
1

(−χ̃(−1/s))1/2
=

1

h(1/s)
,

for every 0 < s ≤ 1, and Q(0) = 0. Then

Q◦n(s) =
1

h◦n(1/s)
, (3.31)

for every 0 ≤ s ≤ 1. The proof is completed.

3.4.2 A quantitative version of Dinew’s uniqueness theorem

Theorem 3.11. Let A ≥ 1 be a constant. Let θ ≤ Aω be a closed smooth real (1, 1)-form
and let ϕ be a model θ-psh function such that ϱ := vol(θϕ) > 0. Let B ≥ 1, χ̃ ∈ W− and
u1, u2 ∈ E(X, θ, ϕ) such that χ̃(−1) = −1 and

E0
χ̃,θ,ϕ(u1) + E0

χ̃,θ,ϕ(u2) ≤ B.

Then, for every 0 < γ < 1, there exists C > 0 depending only on n,X, ω and γ such that

dcap(u1, u2)
2 ≤ C (A+ |a1 − a2|)

(
|a1 − a2|+A(A+B)2τγ

)
,

where aj := supX uj , τ =
1

h◦n(ϱ/∥θnu1 − θnu2∥)
and h(s) = (−χ̃(−s))1/2.

Note that if χ(t) = max{t,−1} then I0χ(u1, u2) ≤ ϱ−1∥θnu1 − θnu2∥. Therefore, Theorem
3.11 is a consequence of the following:

Theorem 3.12. Let θ ≤ Aω be a closed smooth real (1, 1)-form (A ≥ 1) and let ϕ be a model
θ-psh function such that vol(θϕ) > 0. Let B ≥ 1, χ̃ ∈ W̃− and u1, u2 ∈ E(X, θ, ϕ) such that
χ̃(−1) = −1 and

E0
χ̃,θ,ϕ(u1) + E0

χ̃,θ,ϕ(u2) ≤ B.

Denote χ(t) = max{t,−1}. Then, for every 0 < γ < 1, there exists C > 0 depending only on
n,X, ω and γ such that

dcap(u1, u2)
2 ≤ C (A+ |a1 − a2|)

(
|a1 − a2|+A(A+B)2λγ

)
, (3.32)

where aj := supX uj , λ =
1

h◦n(1/I0χ(u1, u2))
and h(s) = (−χ̃(−s))1/2.
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Proof. Suppose that w is an arbitrary ω-psh function satisfying 0 ≤ w ≤ 1 and ψ is the
unique solution to the problem

u ∈ E(X, θ, ϕ),
θnu =

ϱ

vol(X)
(ddcw + ω)n,

supX u = 0.

(3.33)

Recall that λ = Q◦n
χ,χ̃(I

0
χ(u1, u2)), and one has −χ̃(−A) ≤ A because χ̃(−1) = −1. It follows

from Theorem 3.2 and Proposition 3.10 that, for every 0 < γ < 1, there exists C1 > 0

depending only on n,X, ω and γ such that

I :=

∫
X
−χ
(
− |u1 − u2|

)
θnψ ≤ −ϱχ (−|a1 − a2| − λ) + C1ϱA(A+B)2λγ . (3.34)

Moreover

ϱ

vol(X)

∫
X
|u1 − u2|1/2(ω + ddcw)n =

∫
X
|u1 − u2|1/2θnψ

=

∫
{|u1−u2|≤1}

|u1 − u2|1/2θnψ +

∫
{|u1−u2|>1}

|u1 − u2|1/2θnψ

which is less than or equal to

≤ I1/2

(∫
{|u1−u2|≤1}

θnψ

)1/2

+

(∫
{|u1−u2|>1}

|u1 − u2|θnψ

)1/2
 ,

where the last estimate holds due to the Cauchy-Schwarz inequality. Moreover, it follows
from Chern-Levine-Nirenberg inequality ([42]) that∫

X
|u1 − a1 − u2 + a2|θnψ =

ϱ

vol(X)

∫
X
|u1 − a1 − u2 + a2|(ddcw + ω)n

≤ C2ϱ(∥u1 − a1∥L1(X) + ∥u2 − a2∥L1(X))

≤ ϱC3A,

where C2, C3 > 0 depend only on X and ω. Here, the last estimate holds due to the
compactness of {u ∈ PSH(X,ω) : supX u = 0} in L1(X).

Hence, we have

ϱ

vol(X)

∫
X
|u1 − u2|1/2(ω + ddcw)n ≤ C4I

1/2ϱ1/2(A+ |a1 − a2|)1/2, (3.35)

where C4 > 0 depends only on X and ω.
Combining (3.34) and (3.35), we get(∫
X
|u1 − u2|1/2(ω + ddcw)n

)2

≤ C5(A+ |a1 − a2|)
(
−χ (−|a1 − a2| − λ) +A(A+B)2λγ

)
≤ C5(A+ |a1 − a2|)

(
|a1 − a2|+ λ+A(A+B)2λγ

)
≤ C6(A+ |a1 − a2|)

(
|a1 − a2|+A(A+B)2λγ

)
,
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where C5, C6 > 0 depend only on n,X, ω and γ. Since w is arbitrary, we obtain desired
inequality. The proof is completed.

Remark 3.13. If B ≥ A then the inequality (3.32) is equivalent to

dcap(u1, u2)
2 ≤ C̃ (A+ |a1 − a2|)

(
|a1 − a2|+AB2λγ

)
,

where C̃ > 0 depends only on n,X, ω and γ.

3.4.3 Relation to Darvas’s metrics on the space of potentials of finite energy

Let χ ∈ W− ∪ W+
M . Let θ be a closed smooth real (1, 1)-form in a big cohomology class.

When θ is Kähler, it was proved in [10, 11, 13] that there is a natural metric dχ on Eχ(X, θ)
which makes the last space to be a complete metric space. When χ(t) = t, such metrics
have a long history and play an important role in the study of complex Monge-Ampère
equations. We refer to these last references and [3, 4] for more details. We now draw the
connection between Iχ(u, v) and the metric on Eχ(X, θ). Let

Ĩχ(u, v) =

∫
{u<v}

−χ(u− v)(θnv + θnu) +

∫
{u>v}

−χ(v − u)(θnu + θnv ) ≥ Iχ(u, v).

By [10, 11, 13], there exists a constant C > 0 such that

C−1Ĩχ(u, v) ≤ dχ(u, v) ≤ CĨχ(u, v)

for every u, v ∈ Eχ(X, θ) and θ is Kähler. It was proved in [36] (and also [10, 14, 20, 60,
67]) that Ĩχ(u, v) satisfies a quasi-triangle inequality, and the convergence in Ĩχ(u, v) im-
plies the convergence in capacity by using the plurisubharmonic envelope. Such a method is
not quantitative. We present below quantitative version of this fact by using our approach.

Theorem 3.14. Let θ ≤ Aω be a closed smooth real (1, 1)-form (A ≥ 1 is a constant) and ϕ
be a model θ-psh function with ϱ := vol(θϕ) > 0. Let B ≥ 1, χ̃ ∈ W− and u1, u2 ∈ E(X, θ, ϕ)
such that | supX u1 − supX u2| ≤ A, χ̃(−1) = −1 and

E0
χ̃,θ,ϕ(u1) + E0

χ̃,θ,ϕ(u2) ≤ B.

Then there exist C > 0 depending only on n,X and ω such that

dcap(u1, u2)
2 ≤ C A (A+B)2

h◦n(ϱ/Ĩχ̃(u1, u2))
,

where h(s) = (−χ̃(−s))1/2 for every 0 ≤ s ≤ ∞.

One sees from the above estimate that if Ĩχ̃(u1, u2) is small, then so is dcap(u1, u2) (uni-
formly in u1, u2 ∈ E(X, θ, ϕ) of χ̃-energy bounded by a fixed constant).
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Proof. Let χ(t) = max{t,−1}. Suppose that w is an arbitrary ω-psh function satisfying
0 ≤ w ≤ 1. By the proof of Theorem 3.12 (see (3.35)), there exists C1 > 0 depending only
on X and ω such that(∫

X
|u1 − u2|1/2(ω + ddcw)n

)2

≤ C1Aϱ
−1

∫
X
−χ
(
− |u1 − u2|

)
θnψ, (3.36)

where ψ is defined by (3.33). Moreover, it follows from Theorem 3.1 and Proposition 3.10
that ∫

X
−χ
(
− |u1 − u2|

)
θnψ ≤ Ĩχ(u1, u2) + C2ϱ(A+B)2Q

◦(n)
χ,χ̃ (I0χ(u1, u2)),

where C2 > 0 depends only on n. Therefore, by the facts Q◦(n)(s) =
1

h◦(n)(1/s)
and

Iχ(u1, u2) ≤ Ĩχ(u1, u2) ≤ Ĩχ̃(u1, u2)), we obtain∫
X
−χ
(
− |u1 − u2|

)
θnψ ≤ C3ϱ(A+B)2

h◦(n)(ϱ/Ĩχ̃(u1, u2))
, (3.37)

where C3 > 0 depends only on n,X and ω. Combining (3.36) and (3.37), we get(∫
X
|u1 − u2|1/2(ω + ddcw)n

)2

≤ C A (A+B)2

h◦(n)(ϱ/Ĩχ̃(u1, u2))
,

where C > 0 depends only on n,X and ω. Since w is arbitrary, we get the desired inequality.
The proof is completed.

When χ̃ ∈ W+
M , our estimate is more explicit.

Theorem 3.15. Let θ ≤ Aω be a closed smooth real (1, 1)-form (A ≥ 1) and ϕ be a model θ-
psh function such that ϱ := vol(θϕ) > 0. Let B ≥ 1, χ̃ ∈ W+

M (M ≥ 1) and u1, u2 ∈ E(X, θ, ϕ)
such that χ̃(−1) = −1 and

E0
χ̃,θ,ϕ(u1) + E0

χ̃,θ,ϕ(u2) ≤ B.

Then there exists C > 0 depending only on n and M such that∫
X
−χ̃(−|u1 − u2|)θnψ ≤ CϱB2

(
Ĩχ̃(u1, u2)/ϱ

)2−n

,

for every ψ ∈ PSH(X, θ) with ϕ − 1 ≤ ψ ≤ ϕ. Moreover, if supX u1 = supX u2 then there
exists C ′ > 0 depending on n,X, ω,A and M such that

Ĩχ̃(u1, u2) ≤ C ′ϱA1/2B2
(
I0χ̃(u1, u2)

)2−n−1

.

Proof. The case I0χ̃(u1, u2) ≥ 1 is trivial. It remains to consider the case I0χ̃(u1, u2) < 1.
Denote v = max{u1, u2}. By Lemma 2.7, we have v ∈ E(X, θ, ϕ) and E0

χ̃,θ,ϕ(v) ≤ C1B,

where C1 > 0 depends only on n and M . Taking χ = χ̃ and using Theorem 3.1, we get∫
X
−χ̃(uj − v)θnψ ≤

∫
X
−χ̃(uj − v)θnuj + C2ϱB

2
(
I0χ̃(uj , v)

)2−n

, (3.38)
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for j = 1, 2, where C2 > 0 depends on n and M . Note that∫
X
−χ̃(u1 − v)θnu1 +

∫
X
−χ̃(u2 − v)θnu2 ≤

∫
X
−χ̃(−|u1 − u2|)(θnu1 + θnu2) = Ĩχ̃(u1, u2),

and
I0χ̃(u1, v) + I0χ̃(u2, v) = I0χ̃(u1, u2) ≤ ϱ−1Ĩχ̃(u1, u2).

Hence, by (3.38), we get∫
X
−χ̃(−|u1 − u2|)θnψ =

∫
X
−χ̃(u1 − v)θnψ +

∫
X
−χ̃(u2 − v)θnψ

≤
∫
X
−χ̃(u1 − v)θnu1 +

∫
X
−χ̃(u2 − v)θnu2

+ C2ϱB
2
((
I0χ̃(u1, v)

)2−n

+
(
I0χ̃(u2, v)

)2−n
)

≤ Ĩχ̃(u1, u2) + 2C2ϱB
2
(
Ĩχ̃(u1, u2)/ϱ

)2−n

≤ C3ϱB
2
(
Ĩχ̃(u1, u2)/ϱ

)2−n

,

whereC3 > 0 depends on n andM . Here, the last estimate holds due to the fact Ĩχ̃(u1, u2) ≤
ϱB.

Now, we consider the case supX u1 = supX u2. By Theorem 3.2 (choose m = 1 and
γ = 1/2), there exists C4 > 0 depending only on n,X, ω and M such that

Ĩχ̃(u1, u2) ≤
∫
X
−χ̃(−|u1 − u2|)(θnu1 + θnu2) (3.39)

≤ −2ϱ χ̃
(
−
(
I0χ̃(u1, u2)

)2−n
)
+ C4ϱA

1/2B2
(
I0χ̃(u1, u2)

)2−n−1

.

Moreover, since χ̃ is concave, we have

χ̃(t)

t
≤ χ̃(−1)

−1
= 1,

for every −1 < t < 0. Hence, by (3.39), we have

Ĩχ̃(u1, u2) ≤ 2ϱ
(
I0χ̃(u1, u2)

)2−n

+ C4ϱA
1/2B2

(
I0χ̃(u1, u2)

)2−n−1

≤ (2 + C4)ϱA
1/2B2

(
I0χ̃(u1, u2)

)2−n−1

.

The proof is completed.

3.4.4 Comparison of capacities

For every Borel subset E in X and for every φ ∈ PSH(X, θ), one denotes

capθ,φ(E) := sup
{∫

E
θnψ : ψ ∈ PSH(X, θ), φ− 1 ≤ ψ ≤ φ

}
.
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In [47], Lu showed that if φj (j = 1, 2) is a θj-psh function with
∫
X(θj + ddcφj)

n > 0 then
there exists a continuous function f : R≤0 → R≥0 with f(0) = 0 such that capθ1,φ1

(E) ≤
f(capθ2,φ2

(E)) for every Borel set E ⊂ X. By using Theorem 3.2, we will reprove Lu’s result
for the case where φj is a model θj-psh function. Moreover, we also provide a specific form
of f .

First, we need the following lemma:

Lemma 3.16. LetA,B > 0 be constants. Let θ be a closed smooth real (1, 1)-form representing
a big cohomology class such that θ ≤ Aω. Assume that u, v are θ-psh functions satisfying
v ≤ u ≤ v +B. Then, ∫

X
(−ψ)θnu ≤

∫
X
(−ψ)θnv + nAnB

∫
X
ωn,

for every negative Aω-psh function ψ.

Proof. Using approximations, we can assume that ψ is smooth. Denote

T =

n−1∑
l=0

θlu ∧ θn−l−1
v .

We have θnu − θnv = ddc(u− v)∧ T . Moreover, using integration by parts (Theorem 2.2), we
get∫

X
(−ψ)ddc(u− v) ∧ T =

∫
X
(u− v)ddc(−ψ) ∧ T ≤ A

∫
X
(u− v)ω ∧ T ≤ nAnB

∫
X
ωn.

Hence ∫
X
(−ψ)θnu ≤

∫
X
(−ψ)θnv + nAnB

∫
X
ωn.

Theorem 3.17. (Comparison of capacities) Assume that θ1, θ2 ≤ Aω are closed smooth real
(1, 1)-forms representing big cohomology classes and, for j = 1, 2, ϕj is a model θj-psh function
satisfying

∫
X(θj + ddcϕj)

n = ϱj > 0. Then, for every 0 < γ < 1, there exists C > 0 depending
only on n,X, ω,A and γ such that

capθ1,ϕ1(E)

ϱ1
≤ C

(
capθ2,ϕ2(E)

ϱ2

)2−nγ

,

for every Borel set E ⊂ X.

Proof. By the inner regularity of capacities (see [15, Lemma 4.2]), we only need consider
the case where E is compact. Since the case capθ2,ϕ2(E) = ϱ2 is trivial, we can also assume
that capθ2,ϕ2(E) < ϱ2. In particular, by [16, Proposition 3.7] and [17, Lemma 2.7], we have

sup
X
h∗E,θ2,ϕ2 = sup

X
(h∗E,θ2,ϕ2 − ϕ2) = 0,
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where
hE,θ2,ϕ2 = sup {w ∈ PSH(X, θ2) : w|E ≤ ϕ2 − 1, w ≤ ϕ2} .

Set χ(t) = χ̃(t) = t. We will use Theorem 3.2 for u1 = (hE,θ2,ϕ2)
∗ and u2 = ϕ2. It is clear

that E0
χ̃,θ2,ϕ2

(u2) = 0 and u1 = u2 − 1 on E \ N , where N is a pluripolar set. Moreover, it
follows from [16, Proposition 3.7] that

I0χ(u1, u2) ≤ E0
χ̃,θ2,ϕ2(u1) = ϱ−1

2 capθ2,ϕ2(E) ≤ 1.

By Theorem 3.2, for every 0 < γ < 1 and B ≥ 1, there exists C > 0 depending only on
X,ω, n,A and γ such that∫

E
θnψ ≤

∫
X
χ(−|u1 − u2|)θnψ ≤ Cϱ2A(A+B)2

(
capθ2,ϕ2(E)/ϱ2

)2−nγ
, (3.40)

for every compact set E and for each ψ ∈ E(X, θ2, ϕ2) with E0
χ̃,θ2,ϕ2

(ψ) ≤ B. Let φ ∈

E(X, θ1, ϕ1) such that ϕ1 − 1 ≤ φ ≤ ϕ1 and
∫
E(θ1 + ddcφ)n ≥ 1

2
capθ1,ϕ1(E). By [16],

there exists a unique function ψ0 ∈ E(X, θ2, ϕ2) such that supX ψ0 = 0 and (θ2 + ddcψ0)
n =

ϱ2
ϱ1

(θ1 + ddcφ)n. When ψ = ψ0, we have∫
E
θnψ ≥ ϱ2

2ϱ1
capθ1,ϕ1(E). (3.41)

Moreover, by using Lemma 3.16 for φ, ϕ1 and using the fact that (θ2 + ddcϕ2)
n ≤ 1{ϕ2=0}θ

n
2

(see [15, Theorem 3.8]), we have

ϱ1E
0
χ̃,θ2,ϕ2(ψ0) =

∫
X
(ϕ2 − ψ0)(θ1 + ddcφ)n ≤

∫
X
(−ψ0)(θ1 + ddcϕ1)

n + nAn
∫
X
ωn ≤ B,

(3.42)
where B ≥ 1 depends only on A,X, ω, n. Combining (3.40), (3.41) and (3.42), we get

capθ1,ϕ1(E) ≤ 2ϱ1
ϱ2

∫
E
θnψ0

≤ 2ϱ1
ϱ2

∫
X
χ(−|u1 − u2|)θnψ0

≤ 2Cϱ1A(A+B)2
(
capθ2,ϕ2(E)/ϱ2

)2−nγ
.

The proof is completed.

4 Stability estimates for varied singularity type and cohomology
class

4.1 Pseudo-metric on the space of singularity types

We first recall some facts about the pseudo-metric on the space of singularity types. Let α
be a big cohomology class and θ a smooth closed (1, 1)-form in α. Let S(θ) be the space of
singularity types of θ-psh functions and

Sδ(θ) := {[u] ∈ S(θ) :
∫
X
θnu ≥ δ}.
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The pseudo-distance dS on S was introduced in [17], and it satisfies

dS(θ)([u], [v]) ≤
n∑
j=0

(
2

∫
X
θjVθ ∧θ

n−j
max{u,v}−

∫
X
θjVθ ∧θ

n−j
u −

∫
X
θjVθ ∧θ

n−j
v

)
≤ CdS(θ)([u], [v]),

(4.1)
where C > 1 depends only on n. Here Vθ is the upper envelope of all non-positive θ-psh
functions:

Vθ := sup{φ ∈ PSH(X, θ) : φ ≤ 0 on X}.

For all θ-psh functions u, v, we put

dθ(u, v) := 2

∫
X
θnmax{u,v} −

∫
X
θnu −

∫
X
θnv .

In particular, if u ≤ v then dθ(u, v) =
∫
X θ

n
v −

∫
X θ

n
u . By (4.1), we have

dθ(u, v) ≤ CdS(θ)([u], [v]),

where C = C(n) > 0. Moreover, if θ = Aω for some A > 0 then, we have

dS(Aω)([u], [v]) ≤ And(A+1)ω(u, v),

for every u, v ∈ PSH(X,Aω). In the sequel, we provide more properties of dθ.

Lemma 4.1. Let u1, u2 be θ-psh functions. Let θ′ be a smooth real closed (1, 1)-form such that
θ′ ≥ θ. Then

dθ(u1, u2) ≤ dθ′(u1, u2).

Proof. By the fact dη(u1, u2) = dη(u1,max{u1, u2}) + dη(u2,max{u1, u2}) for η = θ, θ′, the
problem is reduced to the case u1 ≤ u2. Then we have

dη(u1, u2) =

∫
X
(η + ddcu2)

n −
∫
X
(η + ddcu1)

n,

for η = θ, θ′. Moreover,

(θ′ + ddcuj)
n − (θ + ddcuj)

n = (θ′ − θ) ∧
n−1∑
l=0

(θ′ + ddcuj)
l ∧ (θ + ddcuj)

n−l−1,

for j = 1, 2. Hence

dθ′(u1, u2)− dθ(u1, u2) =

∫
X
(θ′ − θ) ∧ T2 −

∫
X
(θ′ − θ) ∧ T1,

where

Tj =

n−1∑
l=0

(θ′ + ddcuj)
l ∧ (θ + ddcuj)

n−l−1.

Thus, by the monotonicity of non-pluripolar products [15, Theorem 1.1], we obtain

dθ′(u1, u2)− dθ(u1, u2) ≥ 0.

The proof is completed.
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Lemma 4.2. Let δ > 0, A > 0 be constants. Let u, v be θ-psh functions such that u ≤ v and∫
X θ

n
u ≥ δ. Let ψ be an η-psh function, where η is a closed smooth (1, 1)-form. Assume that

θ ≤ Aω, η ≤ Aω. Then there exists a constant C depending only on n, ω such that∣∣∣∣ ∫
X
θmu ∧ ηn−mψ −

∫
X
θmv ∧ ηn−mψ

∣∣∣∣ ≤ CAn
(
dθ(u, v)

δ

)1/n

.

Proof. This is essentially the proof of [17, Proposition 4.8]. Note that by monotonicity we
have

dθ(u, v) =

∫
X
θnv −

∫
X
θnu ,

∫
X
θmv ∧ ηn−mψ ≥

∫
X
θmu ∧ ηn−mψ .

Without loss of generality, we can assume dθ(u, v) ≤ δ/2n+2. If dθ(u, v) = 0, then using
u ≤ v and [15], we get Pθ[u] = Pθ[v]. In this case the left-hand side of the desired inequality
is also zero. Hence from now on we assume dθ(u, v) > 0.

Let b > 2 be a constant such that δ/dθ(u, v) < 2bn < 2δ/dθ(u, v). We have

bn
∫
X
θnu ≥ (bn − 1)

∫
X
θnv .

By this and [17, Lemma 4.3], we obtain wb := Pθ(bu+ (1− b)v) ∈ PSH(X, θ). Observe

b−1wb + (1− b−1)v ≤ b−1(bu+ (1− b)v) + (1− b−1)v = u.

Combining this with monotonicity of non-pluripolar products gives∫
X
θmu ∧ ηn−mψ ≥

∫
X
θmb−1wb+(1−b−1)v ∧ η

n−m
ψ ≥ (1− b−1)m

∫
X
θmv ∧ ηn−mψ .

It follows that∫
X
θmu ∧ ηn−mψ −

∫
X
θmv ∧ ηn−mψ ≥ −mb−1

∫
X
θmv ∧ ηn−mψ ≥ −nb−1An

∫
X
ωn

by monotonicity. Hence∣∣∣∣ ∫
X
θmu ∧ ηn−mψ −

∫
X
θmv ∧ ηn−mψ

∣∣∣∣ ≤ Cb−1 ≤ 21/nC

(
dθ(u, v)

δ

)1/n

,

where C := nAn
∫
X ω

n. This finishes the proof.

By Lemma 4.2, we have

Proposition 4.3. Let α, θ be as above. Then there exists a constant C > 0 such that

C−1δ dS(θ)([u], [v])
n ≤ dθ(u, v) ≤ CdS(θ)([u], [v])

for every [u], [v] ∈ Sδ(α). Moreover if θ′ is a smooth real closed (1, 1)-form and A is a positive
constant such that

θ′ ≤ Aω, θ ≤ Aω,

for some constant A > 0, then there exists a constant C1 > 0 depending only on A,ω such that

δ
(
dθ′(u, v)

)n ≤ C1dθ(u, v),

for every u, v ∈ Sδ(α).
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Proof. The first desired assertion is clear from Lemma 4.2. Also by the same lemma, one
gets

δ
(
dAω(u, v)

)n ≤ C1dθ(u, v),

for every u, v ∈ Sδ(α), and some constant C1 independent of u, v, δ. This coupled with
Lemma 4.1 gives the last desired inequality. The proof is complete.

If θ′ is another closed smooth form in α, then Sδ(θ) and Sδ(θ′) are isometric under the
map u 7→ u+ φ, where φ is a smooth function such that ddcφ = θ′ − θ. Hence in general in
order to study singularity types in α, it is enough to fix a smooth form in α.

4.2 The case of fixed cohomology

In this subsection, we will study the stability question when solutions are in the same
cohomology class. Let θ, η be closed smooth real (1, 1)-forms representing big cohomology
classes. For every χ ∈ W̃− and u ∈ PSH(X, θ), we denote

Ẽχ,η,θ(u) = sup

{∫
X
−χ(ψ)θnu : ψ ∈ PSH−(X, η), sup

X
ψ = 0

}
, (4.2)

where we recall that PSH−(X, η) is the space of negative η-psh functions on X. If χ is
bounded then it is clear that Ẽχ,η,θ(u) < ∞ for every u ∈ PSH(X, θ). Moreover, it follows
from [7, Proposition 3.2] that for every u ∈ PSH(X, θ), there exists χ ∈ W− such that
Ẽχ,η,θ(u) <∞.

For every constant B > 0 and for every χ ∈ W̃−, we define

Ẽχ,η,B(X, θ) = {u ∈ PSH−(X, θ) : Ẽχ,η,θ(u) ≤ B}. (4.3)

For the convenience, in the case η = θ, we denote Ẽχ,θ(u) := Ẽχ,θ,θ(u) and Ẽχ,B(X, θ) =

Ẽχ,θ,B(X, θ).
If u, v ∈ Ẽχ,B(X, θ) then we also denote

Iχ(u, v) =

∫
{u<v}

−χ(u− v)(θnu − θnv ) +

∫
{v<u}

−χ(v − u)(θnv − θnu). (4.4)

In general, Iχ(u, v) may be negative. However, by Lemma 4.7 below (observer that there
always exists χ̃ ∈ W− such that both Ẽχ̃,θ(u), Ẽχ̃,θ(v) are finite), if inf χ = −1 then Iχ(u, v)
is bounded from below by −dθ(u, v).

Lemma 4.4. Let χ ∈ W̃−. Assume that u, ϕ are negative θ-psh functions satisfying u ≤ ϕ.
Denote uk = max{u, ϕ− k} for every k > 0. Then∫

X
−χ(uk − ϕ)θnuk =

∫
X
−χ(u− ϕ)θnu − χ(−k)dθ(u, ϕ),

for every k > 0.
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Proof. Since θnuk = θnu in {u > ϕ− k} and uk = ϕ− k in {u ≤ ϕ− k}, we have∫
X
−χ(uk − ϕ)θnuk =

∫
{u≤ϕ−k}

−χ(−k)θnuk +
∫
{u>ϕ−k}

−χ(u− ϕ)θnu . (4.5)

Since
∫
X θ

n
ϕ =

∫
X θ

n
uk

, we have∫
{u≤ϕ−k}

−χ(−k)θnuk =

∫
X
−χ(−k)θnuk +

∫
{u>ϕ−k}

χ(−k)θnuk (4.6)

=

∫
X
−χ(−k)θnϕ +

∫
{u>ϕ−k}

χ(−k)θnu .

Combining (4.5) and (4.6), we get∫
X
−χ(uk − ϕ)θnuk =

∫
X
−χ(−k)θnϕ +

∫
{u>ϕ−k}

χ(−k)θnu +

∫
{u>ϕ−k}

−χ(u− ϕ)θnu

= −χ(−k)dθ(ϕ, u) +
∫
{u≤ϕ−k}

−χ(−k)θnu +

∫
{u>ϕ−k}

−χ(u− ϕ)θnu

= −χ(−k)dθ(ϕ, u) +
∫
X
−χ(u− ϕ)θnu .

The proof is completed.

Lemma 4.5. Let χ, χ̃ ∈ W̃− such that infR<0 χ = −1. Assume that u1, u2, u3, ϕ are negative
θ-psh functions satisfying u1 ≤ u2 ≤ ϕ and u1 ≤ u3 ≤ ϕ. Denote uj,k = max{uj , ϕ − k} for
every k > 1 and j = 1, 2, 3. Then∫

X
−χ(u1,k − u2,k)θ

n
u3,k

≤
∫
X
−χ(u1 − u2)θ

n
u3 + dθ(u3, ϕ) +

1

χ̃(−k)

∫
X
χ̃(u1 − ϕ)θnu3 ,

for every k > 1. In particular, if supX u1 = 0 and u3 ∈ Ẽχ̃,B(X, θ) for some B > 0 then∫
X
−χ(u1,k − u2,k)θ

n
u3,k

≤
∫
X
−χ(u1 − u2)θ

n
u3 + dθ(u3, ϕ)−

B

χ̃(−k)
,

for every k > 1.

Proof. Denote

Ik :=

∫
X
−χ(u1,k − u2,k)θ

n
u3,k

.

Since θnu3,k = θnu3 in {u1 > ϕ− k} ⊂ {u3 > ϕ− k}, we have

Ik =

∫
{u1>ϕ−k}

−χ(u1 − u2)θ
n
u3 +

∫
{u1≤ϕ−k}

−χ(u1,k − u2,k)θ
n
u3,k

≤
∫
{u1>ϕ−k}

−χ(u1 − u2)θ
n
u3 +

∫
{u1≤ϕ−k}

−χ(−k)θnu3,k

=

∫
{u1>ϕ−k}

−χ(u1 − u2)θ
n
u3 +

∫
{u1≤ϕ−k}

θnu3,k .
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Then, by the fact
∫
X θ

n
ϕ =

∫
X θ

n
u3,k

, we get

Ik ≤
∫
{u1>ϕ−k}

−χ(u1 − u2)θ
n
u3 +

∫
X
θnϕ −

∫
{u1>ϕ−k}

θnu3

=

∫
{u1>ϕ−k}

−χ(u1 − u2)θ
n
u3 + dθ(u3, ϕ) +

∫
{u1≤ϕ−k}

θnu3

≤
∫
X
−χ(u1 − u2)θ

n
u3 + dθ(u3, ϕ) +

1

χ̃(−k)

∫
X
χ̃(u1 − ϕ)θnu3 .

The proof is completed.

Lemma 4.6. Let χ, χ̃ ∈ W̃− such that infR<0 χ = −1. Assume that u1, u2, u3, ϕ are negative
θ-psh functions satisfying u1 ≤ u2 ≤ ϕ and u1 ≤ u3 ≤ ϕ. Denote uj,k = max{uj , ϕ − k} for
every k > 1 and j = 1, 2, 3. Then∫

X
−χ(u1,k − u2,k)θ

n
u3,k

≥
∫
X
−χ(u1 − u2)θ

n
u3 −

1

χ̃(−k)

∫
X
χ̃(u1 − ϕ)θnu3 ,

for every k > 1. In particular, if supX u1 = 0 and u3 ∈ Ẽχ̃,B(X, θ) for some B > 0 then∫
X
−χ(u1,k − u2,k)θ

n
u3,k

≥
∫
X
−χ(u1 − u2)θ

n
u3 +

B

χ̃(−k)
,

for every k > 1.

Proof. Since θnu3,k = θnu3 in {u1 > ϕ− k}, we have∫
X
−χ(u1,k − u2,k)θ

n
u3,k

≥
∫
{u1>ϕ−k}

−χ(u1,k − u2,k)θ
n
u3,k

=

∫
{u1>ϕ−k}

−χ(u1 − u2)θ
n
u3

=

∫
X
−χ(u1 − u2)θ

n
u3 −

∫
{u1≤ϕ−k}

−χ(u1 − u2)θ
n
u3

≥
∫
X
−χ(u1 − u2)θ

n
u3 −

∫
{u1≤ϕ−k}

θnu3

≥
∫
X
−χ(u1 − u2)θ

n
u3 −

1

χ̃(−k)

∫
X
χ̃(u1 − ϕ)θnu3 .

This finishes the proof.

Lemma 4.7. Let θ be a closed smooth real (1, 1)-form representing a big cohomology class.
Let χ, χ̃ ∈ W̃− such that infR<0 χ = −1. Assume that B > 0 and u1, u2 ∈ Ẽχ̃,B(X, θ) with
supX u1 = supX u2 = 0. Denote ϕ = Pθ[max{u1, u2}] and uj,k = max{uj , ϕ − k} for every
k > 1 and j = 1, 2. Then

Eχ̃,θ,ϕ(uj,k) ≤ B − χ̃(−k)dθ(uj , ϕ), (4.7)
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and
4B

χ̃(−k)
≤ Iχ(u1,k, u2,k)− Iχ(u1, u2) ≤ − 4B

χ̃(−k)
+ dθ(u1, u2), (4.8)

for every k > 1.

Proof. The first inequality is obtained directly from Lemma 4.4. It remains to prove (4.8).
For j = 1, 2 and k > 1, we denote

I1,j =

∫
{u1<u2}

−χ(u1,k − u2,k)θ
n
uj,k

+

∫
{u1<u2}

χ(u1 − u2)θ
n
uj ,

and
I2,j =

∫
{u2<u1}

−χ(u2,k − u1,k)θ
n
uj,k

+

∫
{u1<u2}

χ(u2 − u1)θ
n
uj .

We have

Iχ(u1,k, u2,k)− Iχ(u1, u2) = (I1,1 − I1,2) + (I2,2 − I2,1) := I1 + I2. (4.9)

We will estimate I1 and I2. By Lemmas 4.5 and 4.6 (replace u2, u3 and ϕ, respectively, by
max{u1, u2}, u1 and max{u1, u2}), we have

B

χ̃(−k)
≤ I1,1 ≤ dθ(u1,max{u1, u2})−

B

χ̃(−k)
. (4.10)

Using Lemmas 4.5 and 4.6 again (replace u2, u3 and ϕ by max{u1, u2}), we get

B

χ̃(−k)
≤
∫
{u1<u2}

−χ(u1,k − u2,k)θ
n
u2,k

+

∫
{u1<u2}

χ(u1 − u2)θ
n
u2 ≤ − B

χ̃(−k)
. (4.11)

Combining (4.10) and (4.11), we obtain

2B

χ̃(−k)
≤ I1 ≤ − 2B

χ̃(−k)
+ dθ(u1,max{u1, u2}). (4.12)

Similar, we have
2B

χ̃(−k)
≤ I2 ≤ − 2B

χ̃(−k)
+ dθ(u2,max{u1, u2}). (4.13)

Combining (4.9), (4.12) and (4.13), we have

4B

χ̃(−k)
≤ Iχ(u1,k, u2,k)− Iχ(u1, u2) ≤ − 4B

χ̃(−k)
+ dθ(u1, u2).

The proof is completed.

The following theorem is the key step to prove the main results in the case of fixed
cohomology:
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Theorem 4.8. Let θ ≤ Aω be a closed smooth real (1, 1)-form representing a big cohomology
class (A ≥ 1). Let 0 < δ < 1, B ≥ A, χ̃ ∈ W̃− and u1, u2 ∈ Ẽχ̃,Bδ(X, θ) such that
inf χ̃ < χ̃(−1) = −1, supX u1 = supX u2 = 0 and

∫
X θ

n
u1 +

∫
X θ

n
u2 ≥ 2δ. Let ϵ > 0 be a

constant such that
inf χ̃ <

−4Bδ

ϵ+ dθ(u1, u2)
.

Then, for every 0 < γ < 1, there exists C > 0 depending only on n,X, ω and γ such that

dcap(u1, u2)
2 ≤ C(AB)2

(
h◦n

(
δ

|Iχ(u1, u2)|+ ϵ+ dθ(u1, u2)

))−γ
,

where χ(t) = max{t,−1} and h(s) = (−χ̃(−s))1/2.

Proof. Without loss of generality, we can assume that

4Bδ

ϵ+ dθ(u1, u2)
≥ 1.

Denote ϕ = Pθ[max{u1, u2}] and uj,k = max{uj , ϕ − k} for every k > 1 and j = 1, 2. By
Theorem 3.12, Remark 3.13 and Lemma 4.7, we get

dcap(u1,k, u2,k)
2 ≤ C1A

2

(
B − χ̃(−k)dθ(u1, u2)

δ

)2

h◦n
 δ

Iχ(u1, u2)−
4Bδ

χ̃(−k)
+ dθ(u1, u2)




−γ

,

for every k > 1, where C1 > 0 depends only on n,X, ω and γ.

Let k0 > 1 such that χ̃(−k0) =
−4Bδ

ϵ+ dθ(u1, u2)
. We have

dcap(u1,k0 , u2,k0)
2 ≤ 25C1(AB)2

(
h◦(n)

(
δ

Iχ(u1, u2) + ϵ+ 2dθ(u1, u2)

))−γ
. (4.14)

On the other hand, for every φ ∈ PSH(X,ω) with 0 ≤ φ ≤ 1, we have,(∫
X
|uj − uj,k0 |1/2ωnφ

)2

=

(∫
{uj<ϕ−k0}

|uj − uj,k0 |1/2ωnφ

)2

≤ 1

k0

(∫
{uj<ϕ−k0}

|uj |ωnφ

)2

≤ C2A
2

k0
,

for j = 1, 2, where C2 > 0 depends only on X and ω. The last inequality holds due to the
Chern-Levine-Nirenberg inequality.

Hence, by the facts t ≥ −χ̃(−t) for every t ≥ 1 and s ≤ h(s) for every 0 < s < 1, we get

dcap(uj , uj,k0)
2 ≤ C2A

2

k0
≤ C2A

2(ϵ+ dθ(u1, u2))

4Bδ
≤ C2A

2

(
h◦n

(
δ

ϵ+ dθ(u1, u2)

))−1

.

(4.15)
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Combining (4.14) and (4.15), we obtain

dcap(u1, u2)
2 ≤ C3(AB)2

(
h◦n

(
δ

|Iχ(u1, u2)|+ ϵ+ dθ(u1, u2)

))−γ
,

where C3 > 0 depends only on n,X, ω and γ.
The proof is completed.

Now, we prove Theorem 1.3 for the case of fixed cohomology:

Theorem 4.9. Let θ ≤ Aω be a closed smooth real (1, 1)-form representing a big cohomology
class (A ≥ 1). Let u ∈ PSH(X, θ) such that supX u = 0 and

∫
X θ

n
u := δ > 0. Assume

u ∈ Ẽχ̃,Bδ(X, θ), where B ≥ A is a given constant and χ̃ ∈ W− with χ̃(−1) = −1. Then, for
every 0 < γ < 1, there exists C > 0 depending only on n,X, ω and γ such that

dcap(u, v)
2 ≤ C(AB)2

(
h◦n

(
δ

∥θnu − θnv ∥+ dθ(u, v)

))−γ
,

for every v ∈ PSH(X, θ) with supX v = 0, where h(s) = (−χ̃(−s))1/2.

Proof. Put
t0 = ∥θnu − θnv ∥+ dθ(u, v).

Denote

M =
5Bδ

t0
, χ̃M (s) = max{χ̃(s),−M} and hM (s) = (−χ̃M (−s))1/2.

We have v ∈ Ẽχ̃M ,Bδ+Mt0(X, θ) andMt0 = 5Bδ. Since inf χ̃M = −M <
−4Bδ

∥θnu − θnv ∥+ dθ(u, v)
,

it follows from Theorem 4.8 that

dcap(u, v)
2 ≤ C1(AB)2

(
h◦nM

(
δ

|Iχ(u, v)|+ ∥θnu − θnv ∥+ dθ(u, v)

))−γ
,

where χ(s) = max{s,−1} and C1 > 0 depends only on n,X, ω and γ. Since |Iχ(u, v)| ≤
∥θnu − θnv ∥ and B ≥ 1, it follows that

dcap(u, v)
2 ≤ C2(AB)2

(
h◦nM

(
δ

∥θnu − θnv ∥+ dθ(u, v)

))−γ
,

where C2 = 4C1. By the fact hM (t) = h(t) ≤M for every 0 < t ≤M , we obtain

dcap(u, v)
2 ≤ C2(AB)2

(
h◦n

(
δ

∥θnu − θnv ∥+ dθ(u, v)

))−γ
.

The proof is completed.

In order to prove the next main result, we need the following lemma:
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Lemma 4.10. Let u : BR+r := {z ∈ Cn : |z| < R + r} → [−∞, 0] be a measurable function
such that A :=

∫
BR+r

e−udV < ∞, where R > r > 0 and dV denotes the Lebesgue measure
on Cn. Assume that h is a non-negative smooth function on Cn satisfying

∫
Cn hdV = 1 and

Supp(h) ⊂ Bϵ for some ϵ ∈ (0, r). Then, for every 0 < a < 1, there exists C > 0 depending
only on R,n, a and A such that ∣∣∣∣ ∫

BR

(u ∗ h− u)dV

∣∣∣∣ ≤ Cϵa.

Proof. We have∣∣∣∣ ∫
BR

(u ∗ h− u)dV

∣∣∣∣ = ∣∣∣∣ ∫
BR

∫
Bϵ

h(w)(u(z − w)− u(z))dVwdVz

∣∣∣∣
=

∣∣∣∣ ∫
Bϵ

h(w)

∫
BR

(u(z − w)− u(z))dVwdVz

∣∣∣∣
≤
∫
Bϵ

h(w)|û(−w)− û(0)|dVw,

where û(w) =
∫
{|ξ−w|<R}(−u)(ξ)dVξ. Moreover, for every w ∈ Bϵ and k > 0, we have

∣∣∣∣ ∫
BR

max{u(z − w), k}dVz −
∫
BR

max{u(z), k}dVz
∣∣∣∣

=

∣∣∣∣ ∫
BR(−w)

max{u(z), k}dVz −
∫
BR

max{u(z), k}dVz
∣∣∣∣ ≤ CnR

2n−1k|w|,

where Cn > 0 is a constant depending only on n, and∫
BR

|u(z − w)−max{u(z − w),−k}|dVz ≤
∫
{u<−k}

(−u− k)dV ≤
∫
BR+r

e−u−kdV = Ae−k.

Then ∣∣∣∣ ∫
BR

(u ∗ h− u)dV

∣∣∣∣ ≤ ∫
Bϵ

h(w)|û(−w)− û(0)|dVw ≤ CnR
2n−1kϵ+Ae−k.

Choosing k = ϵa−1, we get the desired inequality.

The following result can be considered as a generalization of Theorems 1.4 and 1.5 for
the case of fixed cohomology:

Theorem 4.11. Let θ be a closed smooth real (1, 1)-form such that θ ≤ Aω for a given constant
A ≥ 1. Let 0 < δ < 1, B ≥ A, χ̃ ∈ W− and u1, u2 ∈ Ẽχ̃,Bδ(X, θ) such that χ̃(−1) = −1,
supX u1 = supX u2 = 0 and

∫
X θ

n
u1 +

∫
X θ

n
u2 ≥ 2δ. Assume that there exists a concave

increasing function H : R≥0 → R≥0 such that, for j = 1, 2,∫
X
min{|ψ1 − ψ2|, 1}θnuj ≤ H(∥ψ1 − ψ2∥L1(X)), (4.16)
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for every ψ1, ψ2 ∈ PSH(X,ω) with supX ψ1 = supX ψ2 = 0. Then, for every 0 < γ < 1, there
exists C > 0 depending only on n,X, ω and γ such that

dcap(u1, u2)
2 ≤ C(AB)2

(
h◦n

(
δ

A(x1/2 +H(x1/8)) + dθ(u1, u2)

))−γ
,

where x := dist−1(θ
n
u1 , θ

n
u2) and h(s) = (−χ̃(−s))1/2.

Proof. Denote χ(t) = max{t,−1}. Since inf χ̃ = −∞, it follows from Theorem 4.8 that

dcap(u1, u2)
2 ≤ C0(AB)2

(
h◦n

(
δ

|Iχ(u1, u2)|+ dθ(u1, u2)

))−γ
, (4.17)

where C0 > 0 depends only on n,X, ω and γ. We will estimate |Iχ(u1, u2)|.
For every k > 0 and j = 1, 2, we have

∥uj −max{uj ,−k}∥L1(X) ≤
∫
{uj<−k}

(−uj)dV ≤

(∫
{uj<−k}

u2jdV

)1/2(∫
{uj<−k}

dV

)1/2

.

Then, it follows from the Skoda integrability theorem that

∥uj −max{uj ,−k}∥L1(X) ≤ C1A
3/2k−1/2, (4.18)

where C1 > 0 depends only on X,ω. For every k > 0 and for each 0 < ϵ < 1, by using
the standard convolution and a partition of unit, we can find a smooth function uj,k,ϵ ∈
PSH(X, (A+ 1)ω) such that

∥uj,k,ϵ∥C1(X) ≤
C2k

ϵ
, (4.19)

and
∥uj,k,ϵ −max{uj ,−k}∥L1(X) ≤ C2Aϵ

1/2, (4.20)

where C2 > C1 depends only on X,ω. Here, the last inequality holds due to Lemma 4.10.
Combining (4.18) and (4.20), we have

∥uj − uj,k,ϵ∥L1(X) ≤ C2A(ϵ
1/2 + (A/k)1/2). (4.21)

Recall that

Iχ(u1, u2) =

∫
{u1<u2}

min{|u1 − u2|, 1}(θnu1 − θnu2) +

∫
{u2<u1}

min{|u1 − u2|, 1}(θnu2 − θnu1)

=

∫
X
max{min{u2 − u1, 1},−1}(θnu1 − θnu2).

By the fact that

max{t1, t3} −max{t2, t3} = min{−t2,−t3} −min{−t1,−t3} ≤ max{t1 − t2, 0},

we have

|max{min{u2 − u1, 1},−1} −max{min{u2,k,ϵ − u1,k,ϵ, 1},−1}| ≤ |u2 − u1 − u2,k,ϵ + u1,k,ϵ|,
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for every k > 0 and 0 < ϵ < 1.Since the LHS of the last inequality is bounded by 2, it
follows that

|max{min{u2 − u1, 1},−1} −max{min{u2,k,ϵ − u1,k,ϵ, 1},−1}| ≤ Ψk,ϵ,

where
Ψk,ϵ = min{|u2 − u1 − u2,k,ϵ + u1,k,ϵ|, 2}.

Therefore

|Iχ(u1, u2)| ≤
∣∣∣∣∫
X
Φk,ϵ(θ

n
u1 − θnu2)

∣∣∣∣+ ∫
X
Ψk,ϵ(θ

n
u1 + θnu2), (4.22)

where Φk,ϵ = max{min{u2,k,ϵ − u1,k,ϵ, 1},−1}. By (4.19), we have∣∣∣∣∫
X
Φk,ϵ(θ

n
u1 − θnu2)

∣∣∣∣ ≤ C2k

ϵ
dist−1(θ

n
u1 , θ

n
u2). (4.23)

Moreover, by (4.21) and (4.16), we have∫
X
Ψk,ϵ(θ

n
u1 + θnu2) ≤ 4(A+ 1)H

(
C2A

A+ 1
(ϵ1/2 + (A/k)1/2)

)
. (4.24)

Combining (4.22), (4.23) and (4.24), we have

|Iχ(u1, u2)| ≤
C2k

ϵ
dist−1(θ

n
u1 , θ

n
u2) + 4(A+ 1)H

(
C2A

A+ 1
(ϵ1/2 + (A/k)1/2)

)
.

Denoting x = dist−1(θ
n
u1 , θ

n
u2) and choosing ϵ = A/k = (2C2)

−2x1/4, we obtain

|Iχ(u1, u2)| ≤ C3A(x
1/2 +H(x1/8)), (4.25)

where C3 > 1 depends only on X and ω. Combining (4.17) and (4.25), we obtain the
desired inequality. The proof is completed.

4.3 Application to the space of singularity types

In this part we apply quantitative stability theorems in the previous subsection to deduce
some properties of the pseudometric space of singularity types in a big cohomology class.

Proposition 4.12. Let θ ≤ Aω be a closed smooth real (1, 1)-form representing a big coho-
mology class (A ≥ 1). Assume that u1 and u2 are model θ-psh functions such that

∫
X θ

n
u1 +∫

X θ
n
u2 ≥ 2δ > 0, where δ > 0 is a constant. Then, for every 0 < γ < 1, there exists C > 0

depending only on n,X, ω and γ such that

dcap(u1, u2)
2 ≤ C

A2n+4

δ2

(
dθ(u1, u2)

δ

)2−nγ

.

The above result implies in particular that for model potentials, the convergence in
dS is stronger than that in capacity. The last non-quantitative fact follows also from [17,
Theorem 5.6].
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Proof. By [15, Theorem 3.8], we have

θnuj ≤ 1{uj=0}θ
n ≤ Anωn,

for j = 1, 2. Therefore, there exists C1 > 0 depending only on X and ω such that∫
X
(−ψ)θnuj ≤ C1A

n+1,

for every ψ ∈ PSH(X, θ) ⊂ PSH(X,Aω) with supX ψ = 0. Using Theorem 4.8 for χ̃(t) = t,
we get

dcap(u1, u2)
2 ≤ C2

(
A
C1A

n+1

δ

)2( |Iχ(u1, u2)|+ dθ(u1, u2)

δ

)2−nγ

, (4.26)

where χ(t) = max{t,−1} and C2 > 0 is a constant depending only on n,X, ω and γ. Since
θnuj ≤ 1{uj=0}θ

n, we have∫
{u1<u2}

−χ(u1 − u2)θ
n
u1 =

∫
{u2<u1}

−χ(u2 − u1)θ
n
u2 = 0.

Therefore
Iχ(u1, u2) ≤ 0. (4.27)

Moreover, it follows from Lemma 4.7 that

Iχ(u1, u2) ≥ −dθ(u1, u2). (4.28)

Combining (4.26), (4.27) and (4.28), we obtain

dcap(u1, u2)
2 ≤ C3

A2n+4

δ2

(
dθ(u1, u2)

δ

)2−nγ

,

where C3 > 0 depends only on n,X, ω and γ. The proof is completed.

By using Proposition 4.12, we recover the following result which is obtained in [17]
(with a different proof).

Proposition 4.13. Let δ > 0 be a constant. Let Sδ(θ) be the subset of S(θ) consisting of
[u] ∈ Sθ such that

∫
X θ

n
u ≥ δ. Then (Sδ(θ), dS) is a complete (pseudo)-metric space.

Proof. Let ([uj ])j be a Cauchy sequence in Sδ(θ) (recall [uj ] denotes the singularity type of
a θ-psh function uj with supX uj = 0), i.e, for every constant ϵ > 0, there exists kϵ ∈ N such
that dθ(uj , uk) ≤ ϵ for every j ≥ kϵ, and k ≥ kϵ. We need to prove that there exists a class
[u∞] ∈ Sδ(θ) so that dθ(uj , u∞) → 0 as j → ∞. By using contradiction, it suffices to prove
it for some subsequence of (uj)j . Hence we can assume safely that

dθ(uj , uj+1) ≤ 4−n2
n+1

,

because one can always extract a subsequence of (uj)j with that property.
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Since dθ
(
u, Pθ[u]

)
= 0 for every u ∈ PSH(X, θ), without loss of generality, we can

assume that uj = Pθ[uj ] for every j ∈ N, in other words, uj ’s are model θ-psh functions.
Consequently, by Proposition 4.12 (with γ = 1/2), we get

dcap(uj , uj+1) ≤ 2−nC1,

for every j, where C1 > 0 is a constant depending only on n,X, ω, θ and δ. Therefore, there
exists a θ-psh function u∞ such that uj converges to u∞ in capacity as j → ∞.

Moreover, it follows from [15, Theorem 3.8] that

θnuj ≤ 1{uj=0}θ
n ≤ C2ω

n, (4.29)

for some constant C2 > 0 independent of j. This coupled with Lemma 4.14 below yields
that

θnuj → θnu∞ , (4.30)

as j → ∞. It is clear that
∫
X θ

n
u∞ ≥ δ. It remains to show that dθ(uj , u∞) → 0 as j → ∞.

Since

dθ(uj , uk) = 2

∫
X
θnmax{uj ,uk} −

∫
X
θnuj −

∫
X
θnuk ,

using (4.30) and the fact that max{uj , uk} → max{uj , u∞} in capacity as k → ∞ (for
uk → u∞ in capacity), one gets

lim inf
k→∞

dθ(uj , uk) ≥ 2

∫
X
θnmax{uj ,u∞} −

∫
X
θnuj −

∫
X
θnu∞ = dθ(uj , u∞).

It follows that dθ(uj , u∞) → 0 as j → ∞. In other words, [uj ] → [u∞] in the topology
induced by the pseudo-metric dS (we note that [u∞] might not be unique, but the singularity
type of its envelope Pθ[u∞] is unique).

The following lemma is probably known. We present a proof for readers’ convenience.

Lemma 4.14. Let Ω be an open subset in Cn. Let (uj)j be a sequence of psh functions converg-
ing to a psh function u∞ in capacity in Ω. Assume that the non-pluripolar product (ddcuj)n

is well-defined for 1 ≤ j ≤ ∞, and there exists a non-pluripolar Radon measure µ on Ω such
that (ddcuj)n ≤ µ for every j. Then (ddcuj)

n converges weakly to (ddcu∞)n as j → ∞.

Proof. Let ν be a limit measure of the sequence
(
(ddcuj)

n
)
j

as j → ∞. We need to check
that ν = (ddcu∞)n. Observe that ν ≥ (ddcu∞)n because uj → u∞ in capacity. It remains to
verify the converse inequality.

Let g ≥ 0 be a smooth function with compact support in Ω. Put ujk := max{uj ,−k}
for 1 ≤ j ≤ ∞. We get ujk → u∞k in the capacity as j → ∞. It follows that (ddcujk)n →
(ddcu∞k)

n as j → ∞, and

lim sup
j→∞

∫
Ω
g1{uj≥−k+1}(dd

cujk)
n ≤

∫
Ω
g1{u∞≥−k+1}(dd

cu∞k)
n.
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By this and the equality 1{uj>−k}(dd
cujk)

n = (ddcuj)
n, we get

lim sup
j→∞

∫
Ω
g1{uj>−k+1}(dd

cuj)
n ≤

∫
Ω
g1{u∞>−k}(dd

cu∞k)
n =

∫
Ω
g1{u∞>−k}(dd

cu∞)n

(4.31)

which converges to 0 as k → ∞. On the other hand, by hypothesis, one gets

1{uj<−k}(dd
cuj)

n ≤ 1{uj<−k}µ ≤ 1{u<−k}µ+ 1{uj−u≤1}µ.

Combining this with [33, Lemma 4.5] (we use here the fact that µ is non-pluripolar) gives

lim sup
j→∞

∫
Ω
g1{uj<−k}(dd

cuj)
n ≤

∫
Ω
g1{u<−k}µ

Letting k → ∞, we obtain

lim sup
j→∞

∫
Ω
g1{uj<−k}(dd

cuj)
n → 0

as k → ∞. Combining the last inequality with (4.31) yields

lim sup
j→∞

∫
Ω
g(ddcuj)

n ≤
∫
Ω
g(ddcu∞)n.

Hence (ddcuj)
n → ddcu∞ as j → ∞. This finishes the proof.

4.4 The case of varied cohomology

We first explain how to deduce Theorem 1.2 from Theorem 1.3.

End of the proof of Theorem 1.2. Since θj → θ∞ in C 0-norm, there exists a constant A ≥ 1

so that θj ≤ Aω for every j ∈ N ∪ {∞}. By [7, Proposition 3.2], there exists χ̃ ∈ W− such
that

sup
ψ∈PSH(X,(A+1)ω):supX ψ=0

∫
X
−χ̃(ψ)dµ∞ <∞.

By considering χ̃/|χ̃(−1)| instead of χ̃, we can assume that χ̃(−1) = −1. This allows us to
apply Theorem 1.3 to u := u∞, v := uj , θ := θ∞, and η := θj , and we note that

d(A+1)ω(u, v) = d(A+1)ω(uj , u∞) = d(A+1)ω(ϕj , ϕ∞) → 0

as j → ∞ by the hypothesis. We thus obtain dcap(uj , u∞) → 0 as j → ∞. The desired
convergence hence follows. The proof is finished.

We now continue with the proof of Theorem 1.3.
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End of the proof of Theorem 1.3. Put ϵ = ∥θ − η∥C 0 . Then, there exists C1 ≥ 1 depending
only on X and ω such that

θ ≤ η + C1ϵω ≤ θ + 2C1ϵω. (4.32)

Note that, by Chern-Levine-Nirenberg inequality and by the compactness of {w ∈ PSH(X,ω) :

supX w = 0} in L1(X), there exists Cω > 0 depending only on X and ω such that

dcap(u, v)
2 ≤ CωA.

Therefore, if 0 <
δ

2C1
≤ ϵ then the desired inequality (1.3) holds. Hence, without loss of

generality, we can assume that

ϵ <
δ

2C1
,

and, as a consequence, we have θ̃ := θ + C1ϵω ≤ (A+ 1)ω.
It follows from [16, Theorem 4.7] that there exists a unique ũ ∈ E(X, θ̃, Pθ̃[u]) such that{

θ̃nũ = cθnu ,

supX ũ = 0,
(4.33)

where c =

∫
X θ̃

n
u∫

X θ
n
u

≥ 1. Observe that
∫
X θ̃

n
ũ ≥ cδ and ũ ∈ Ẽχ̃,Bcδ(X, θ̃). It follows from

Theorem 4.9 that

dcap(ũ, u)
2 ≤ C2(A+ 1)2B2

(
h◦n

(
δ

∥θ̃nũ − θ̃nu∥+ dθ̃(ũ, u)

))−γ

, (4.34)

and

dcap(ũ, v)
2 ≤ C2(A+ 1)2B2

(
h◦n

(
δ

∥θ̃nũ − θ̃nv ∥+ dθ̃(ũ, v)

))−γ

, (4.35)

where C2 > 0 depends only on n,X, ω and γ. Since Pθ̃[u] = Pθ̃[ũ], we have

dθ̃(ũ, u) = 0 and dθ̃(ũ, v) = dθ̃(u, v). (4.36)

Combining (4.34), (4.35) and (4.36), we get

dcap(u, v)
2 ≤ C3(AB)2

(
h◦n

(
δ

∥θ̃nũ − θ̃nu∥+ ∥θ̃nũ − θ̃nv ∥+ dθ̃(u, v)

))−γ

, (4.37)

where C3 > 0 depends only on n,X, ω and γ. By (4.32), we have

θnu ≤ θ̃nu ≤ θnu + C4ϵ(θu + ω)n,

and
ηnv ≤ θ̃nv ≤ (ηv + 2C1ϵω)

n ≤ ηnv + C4ϵ(ηv + ω)n,
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where C4 > 0 depends only on X and ω. Therefore

∥θnu − θ̃nu∥+ ∥ηnv − θ̃nv ∥ ≤ C5(A+ 1)n vol(X)ϵ, (4.38)

where C5 > 0 depends only on X and ω. Moreover,

∥θnu − θ̃nũ∥ = (c− 1)

∫
X
θnu =

∫
X
(θ̃nu − θnu) ≤ ∥θnu − θ̃nu∥. (4.39)

Combining (4.38) and (4.39), we get

∥θ̃nũ − θ̃nu∥+ ∥θ̃nũ − θ̃nv ∥ ≤ ∥θnu − θ̃nu∥+ 2∥θnu − θ̃nũ∥+ ∥θnu − ηnv ∥+ ∥ηnv − θ̃nv ∥
≤ 3∥θnu − θ̃nu∥+ ∥ηnv − θ̃nv ∥+ ∥θnu − ηnv ∥
≤ 3C5(A+ 1)n vol(X)ϵ+ ∥θnu − ηnv ∥.

Hence, by (4.37), we obtain

dcap(u, v)
2 ≤ C3(AB)2

(
h◦n

(
δ

3C5(A+ 1)n vol(X)ϵ+ ∥θnu − ηnv ∥+ dθ̃(u, v)

))−γ

≤ C6(AB)2
(
h◦n

(
δ

Anϵ+ ∥θnu − ηnv ∥+ d(A+1)ω(u, v)

))−γ
,

where C6 > 0 depends only on n,X, ω and γ. Here we use the facts dθ̃(u, v) ≤ d(A+1)ω(u, v)

(see Lemma 4.1) and h(t) ≤ h(Mt) ≤ M h(t) for every M ≥ 1 and t > 0. The proof is
completed.

In the sequel, we will proceed to prove Theorems 1.4 and 1.5.

Theorem 4.15. Let θ1, θ2 ≤ Aω be closed smooth real (1, 1)-forms (A ≥ 1). Let 0 < δ < 1,
B ≥ 1, χ̃ ∈ W− and uj ∈ Ẽχ̃,(A+1)ω,Bδ(X, θj) (j = 1, 2) such that χ̃(−1) = −1, supX uj = 0

and
∫
X θ

n
uj ≥ δ. Assume that there exists a concave increasing function H : R≥0 → R≥0 such

that, for j = 1, 2,∫
X
min{|ψ1 − ψ2|, 1}(θj + ddcuj)

n ≤ H(∥ψ1 − ψ2∥L1(X)), (4.40)

for every ψ1, ψ2 ∈ PSH(X,ω) with supX ψ1 = supX ψ2 = 0. Then, for every 0 < γ < 1, there
exists C > 0 depending only on n,X, ω and γ such that

dcap(u1, u2)
2 ≤ C(AB)2

(
h◦n

(
δ

A(τ1/2 +H(τ1/8)) +An∥θ1 − θ2∥C 0 + d(A+1)ω(u1, u2)

))−γ

,

where τ = dist−1((θ1 + ddcu1)
n, (θ2 + ddcu2)

n) and h(s) = (−χ̃(−s))1/2.

Proof. Without loss of generality, we can assume that
∫
X(θ2 + ddcu2)

n ≥
∫
X(θ1 + ddcu1)

n.

Denote µ1 = (θ1 + ddcu1)
n, µ2 = (θ2 + ddcu2)

n and c =
µ1(X)

µ2(X)
≤ 1. It follows from [16,

Theorem 4.7] that there exists a unique u3 ∈ E(X, θ1, Pθ1 [u1]) such that{
(θ1 + ddcu3)

n = cµ2,

supX u3 = 0.
(4.41)
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By Theorem 4.11, we have

dcap(u1, u3)
2 ≤ C1(AB)2

(
h◦n

(
δ

A(x1/2 +H(x1/8)) + dθ1(u1, u3)

))−γ
, (4.42)

where x := dist−1(µ1, cµ2) and C1 > 0 depends only on n,X, ω and γ.
By Theorem 4.15, we have

dcap(u2, u3)
2 ≤ C2(AB)2

(
h◦n

(
δ

(1− c)∥µ2∥+An∥θ1 − θ2∥C 0 + d(A+1)ω(u2, u3)

))−γ

(4.43)
where C2 > 0 depends only on n,X, ω and γ.

Combining (4.42), (4.43) and using the fact dθ1(u1, u3) = d(A+1)ω(u1, u3) = 0, we get

dcap(u1, u2)
2 ≤ C3(AB)2

(
h◦n

(
δ

A(x1/2 +H(x1/8)) + (1− c)∥µ2∥+R

))−γ
, (4.44)

where R = An∥θ1 − θ2∥C 0 + d(A+1)ω(u1, u2) and C2 > 0 is a constant depending only on
n,X, ω and γ.

Note that
(1− c)∥µ2∥ =

∫
X
dµ2 −

∫
X
dµ1 ≤ dist−1(µ1, µ2) = τ. (4.45)

Then

x = dist−1(µ1, cµ2) ≤ dist−1(µ1, µ2) + (1− c)∥µ2∥ ≤ 2 dist−1(µ1, µ2) = 2τ. (4.46)

Combining (4.44), (4.45) and (4.46), we get

dcap(u1, u2)
2 ≤ C3(AB)2

(
h◦n

(
δ

A(τ1/2 +H(τ1/8)) +An∥θ1 − θ2∥C 0 + d(A+1)ω(u1, u2)

))−γ

,

where C3 > 0 depends only on n,X, ω and γ.
This finishes the proof.

End of the proof of Theorem 1.4. By the assumption, we have µj := (θj + ddcuj)
n satisfies

(4.40) for H(t) = Mδtβ and j = 1, 2. Moreover, it follows from [26, Proposition 4.4] that,
for every ψ ∈ PSH(X,ω) with supX ψ = 0,∫

X
−ψµj ≤ Bδ,

where B > 0 depends on X,ω,M and β. Hence, by using Theorem 4.15 (choose γ = 1/2),
we have

dcap(u1, u2)
2 ≤ C

(
τβ/8 + ∥θ1 − θ2∥C 0 + d(A+1)ω(u1, u2)

δ

)2−n−1

,

where τ = dist−1(µ1, µ2) and C > 0 is a constant depending only on n,X, ω,A,M and β.
The proof is completed.
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In order to prove Theorem 1.5, we need the following lemma:

Lemma 4.16. Let µ be a Radon measure on X vanishing on every pluripolar set. Then, there
exists a concave, non-decreasing function H : R≥0 → R≥0 with H(0) = 0 such that∫

X
min{|u− v|, 1}dµ ≤ H

(
∥u− v∥L1(X)

)
,

for every u, v ∈ PSH(X,ω) with supX u = supX v = 0.

Proof. For every t > 0, we denote

h(t) = sup

{∫
X
min{|u− v|, 1}dµ : u, v ∈ PSHsup(X,ω), ∥u− v∥L1(X) ≤ t

}
,

where PSHsup(X,ω) = {w ∈ PSH(X,ω) : supX w = 0}. Then h is non-decreasing. We will
show that

lim
t→0+

h(t) = 0. (4.47)

Indeed, if lim
t→0+

h(t) = 2ϵ > 0 then there exist sequences uj , vj ∈ PSHsup(X,ω) such that

∥uj − vj∥L1(X) → 0 as j → ∞ and∫
X
min{|uj − vj |, 1}dµ ≥ ϵ, (4.48)

for every j. By the compactness of PSHsup(X,ω), we can assume that uj , vj → w ∈
PSHsup(X,ω) as j → ∞. Then, it follows from Lemma 4.17 below that

lim
j→∞

∫
X
min{|uj − w|, 1}dµ = lim

j→∞

∫
X
min{|vj − w|, 1}dµ = 0,

and it follows that
lim
j→∞

∫
X
min{|uj − vj |, 1}dµ = 0.

This contradicts with (4.48). Hence, (4.47) is true.
Now, we put

M = sup{
∫
X
−wωn : w ∈ PSHsup(X,ω)}.

For every m > 1
2M , we also define

km = sup

{
h(s)

s
:
1

m
≤ t ≤ 2M

}
and Hm(t) = kmt+ h(1/m).

Then Hm(t) ≥ h(t) for every t ≥ 0 and limt→0+ Hm = h(1/m). Set H(t) = infmHm(t). We
have H is a concave, non-decreasing function satisfying H(0) = 0 and H ≥ h. In particular,∫

X
min{|u− v|, 1}dµ ≤ H

(
∥u− v∥L1(X)

)
,

for every u, v ∈ PSHsup(X,ω).
The proof is completed.

59



Lemma 4.17. Let µ be a Radon measure on X vanishing on every pluripolar set. Assume that
uj , j ∈ N ∪ {∞}, are negative θ-psh functions satisfying uj → u∞ in L1(X) as j → ∞. Then∫

X
min{|uj − u∞|, 1}dµ→ 0,

as j → ∞.

Proof. Denote B = supj ∥uj∥L1 . By Chern-Levine-Nirenberg inequality, there exists C > 0

such that
cap{uj < −k} ≤ BC

k
,

for every j ∈ N ∪ {∞} and k > 0. Since µ vanishes on pluripolar sets, by [33, Lemma 4.5],
there exists w ∈ PSH(X,ω) ∩ L∞(X) such that µ = fωnw for some nonnegative function
f ∈ L1(ωnw). Let M > 0 be a big enough constant such that∫

{f>M}
dµ < ϵ/6.

We have

µ({uj < −k}) =
∫
{f>M}∩{uj<−k}

dµ+

∫
{f>M}∩{uj<−k}

dµ

≤
∫
{f≤M}∩{uj<−k}

dµ+

∫
{f>M}

dµ

≤M(sup
X
w − inf

X
w)cap{uj < −k}+ ϵ/6.

It follows that for each ϵ > 0, there exists k0 ≥ 1 such that

µ({uj < −k}) ≤ ϵ/3 (4.49)

for every j ∈ N ∪ {∞} and k ≥ k0. Denote uj,k = max{uj ,−k} and vj,k = max{uj,k, u∞,k}.
Then for every k, we have uj,k → u∞,k in L1(X) and vj,k → u∞,k in capacity as j → ∞. It
follows from [35, Lemma 11.5] that∫

X
max{uj,k − u∞,k, 0}dµ =

∫
X
(vj,k − u∞,k)dµ→ 0,

and ∫
X
(uj,k − u∞,k)dµ→ 0,

as j → ∞. Combining the last two convergences gives∫
X
|uj,k − u∞,k|dµ→ 0,

as j → ∞. Choose j0 such that ∫
X
|uj,k0 − u∞,k0 |dµ <

ϵ

3
,
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for every j > j0. Using the last inequality and (4.49), we have∫
X
min{|uj − u∞|, 1}dµ ≤

∫
{uj ,u∞≥−k0}

|uj − u∞|dµ+ µ({uj < −k}) + µ({u∞ < −k})

≤
∫
{uj ,u∞≥−k0}

|uj,k0 − u∞,k0 |dµ+
2ϵ

3
≤ ϵ,

for every j > j0. Thus
∫
X min{|uaj − u∞|, 1}dµ→ 0 as j → ∞.

End of the proof of Theorem 1.5. By Lemma 4.16, there exists a concave, non-decreasing
function H : R≥0 → R≥0 depending only on µ, X and ω such that H(0) = 0 and∫

X
min{|ψ1 − ψ2|, 1}dµ ≤ H

(
∥ψ1 − ψ2∥L1(X)

)
,

for every ψ1, ψ2 ∈ PSH(X,ω) with supX ψ1 = supX ψ2 = 0.
Moreover, it follows from [7, Proposition 3.2] that there exist a constant B > 0 and a

function χ̃ ∈ W− depending on X,ω and µ such that∫
−χ̃(ψ)dµ ≤ B,

for every ψ ∈ PSH(X,ω) with supX ψ = 0. In particular, uj ∈ Ẽχ̃,(A+1)ω,(A+1)B(X, θj) for
j = 1, 2. Hence, by Theorem 4.15, there exists C > 0 depending only on n,X and ω such
that

dcap(u1, u2)
2 ≤ C(A+ 1)2B2

δ2

(
h◦n

(
δ

A(τ1/2 +H(τ1/8)) +An∥θ1 − θ2∥C 0 + d(A+1)ω(u1, u2)

))−1/2

,

where τ = dist−1(µ1, µ2) and h(s) = (−χ̃(−s))1/2. Denote

fµ(t) =
C(A+ 1)2B2

δ2

(
h◦n

(
δ

A(t1/2 +H(t1/8)) +Ant

))−1/2

.

We obtain

dcap(u1, u2)
2 ≤ fµ

(
dist−1(µ1, µ2) + ∥θ1 − θ2∥C 0 + d(A+1)ω(u1, u2)

)
.

The proof is completed.

Remark 4.18. We explain how to prove Proposition 4.13 using either Theorem 1.5 or 1.4 (in
place of Proposition 4.12). This is almost identical to the proof of Proposition 4.13 presented
above: the new arguments are only required to show that there is a subsequence of (uj)j which
is convergent in capacity. To this end, we can assume uj ’s are model as we did in the above
proof of Proposition 4.13. Next we extract a subsequence (ujs)s of (uj)j such that ujs converges
to some u in L1, and θnujs is convergent. Now applying either Theorem 1.5 or 1.4 (thanks to
(4.29)), one sees that the sequence (ujs)s is convergent in capacity. Consequently ujs → u in
capacity (see, e.g., [25, Lemma 2.2]).
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