Detecting communities in large networks using
the extended Walktrap algorithm

DO Duy Hieu
Institute of Mathematics
Vietham Academy of Science and Technology
Ha Noi, Viet Nam
ddhieu@math.ac.vn

Abstract—In this paper, we extended the Walktrap algo-
rithm [16], which improves the algorithm’s performance.
First, we propose an extended lazy random walk (ELRW),
and then we use this walk to define the distance between
vertices on a graph similar to the Walktrap algorithm.
When applying this algorithm, if we choose the coefficient
of a reasonably extended lazy random walk, we will
get better clustering results when using the Walktrap
algorithm. Finally, we also program to demonstrate the
efficiency of this algorithm.

I. INTRODUCTION

In recent decades, network analysis has gained con-
siderable attention thanks to its wide application in
many different domains such as social study (friends
network) [13], biology (protein network) [17], [19] or
computer science (www network, social network) [14].
Mathematically, a network is represented by a graph
that consists of vertices connecting by edges. Although
graphs in most real-life cases are significant and sparse
(they may contain up to a hundred thousand or even
millions of vertices), there exist inside the community
structures. A community can be understood as a group
of similar vertices linked densely but loosely to the outer
ones. Since this structure can be exploited thoroughly
to gather information about the original network, it has
become an intriguing topic for scientists in recent years.

Among numerous studies that have been made to
solve the community detection problem, the spectral
and dynamic approaches caught our special attention.
It is not easy to mathematically define a community
of a graph. In fact, several definitions were proposed
in network studies, but they are weak one way or the
other: too restrictive, cannot be computed efficiently,
and so on. Many recent has exploited random walks to
understand the structural properties of networks. Aditya

PHAN Thi Ha Duong
Institute of Mathematics
Vietham Academy of Science and Technology
Ha Noi, Viet Nam
phanhaduong @math.ac.vn

and Jure [2] proposed a biased random walk procedure
in their machine learning algorithm node2vec. Zhou and
Lipowsky [20] also used a biased random walker, which
usually moves towards the vertices which have maxi-
mum neighbors with the starting node in a hierarchical
algorithm (called Netwalk). Markov Cluster Algorithm
[20] iterates two matrix operations (one corresponding
to random walks), bringing out clusters in the limit state.

Despite that, most recent approaches have reached a
consensus and consider that a partition of vertices in
a graph represents a good community structure if the
Modularity is high. Newman proposed in [7] a greedy
algorithm that starts with n communities corresponding
to the vertices and merges communities to optimize
the modularity function, which measures the quality
of a partition. This algorithm runs in O(n?) and has
recently been improved to a complexity O(mH logn)
[21] where H is the depth of the dendrogram. Other
exciting methods have been proposed; see, for instance,

(31, [51, [6], [18].

A. Latapy and Pons work

In [16], the authors have designed the Walktrap algo-
rithm that generates partitions from the given undirected
and connected graph and evaluates the precision of these
partitions by computing the Modularity. Walktrap algo-
rithm uses agglomerative hierarchical clustering method
[10], [11] together with random walks to detect intrinsic
community structures. This clustering method iteratively
groups the vertices into communities (with preset condi-
tions) based on a measurement of the similarity between
vertices.

More specifically, given a connected and undirected
graph GG, P denotes the transition matrix, and D denotes

the diagonal matrix of vertices degrees. First and fore-
most, the following distance function has to be computed
for all pairs of vertices

§ (P Ph)’

— —1/2 —-1/2

Tij =
k=1
(L1

Then, based on Ward’s method, which aims at minimiz-
ing the mean of squared variances function

= X Y

CePyicC

(1.2)

the algorithm merges the communities one by one. As
this problem is NP-hard, the algorithm will instead
merge two communities C; and C5 into C3 that min-
imize the increment

1 |GilIC|
n‘01‘+|02‘ CiC2r

After the community merging step, the probability ma-
trix and the Ao data are recalculated, and the process
repeats until the whole network is put in a single
community.

To estimate the quality of each partition, the authors
proposed a quantity called n; = AAT(Z: besides the
modularity function) [10]. This function is calculated
every time a new partition is formed to identify the best
partition with the highest n value.

It is worth noticing that the algorithm can handle many
practical big network situations in which the network
could contain up to millions of vertices. This is due to
the use of random walk in estimating the matrix P?.

AU(Ol,OQ) = (13)

B. Our work

Our improvement for the Walktrap algorithm is to
extend the algorithm by defining new random walks,
namely the extended lazy random walk. And then, we
induce a new distance, which is also closely related to
the spectral properties of the transition matrix P. Next,
we use the Walktrap algorithm with our new distance.

C. Preliminaries

Let G = (V, E) denote an undirected and connected
graph where V and E are the sets of vertices and
edges, respectively. Denote |V'| by n, |E| by m and the
adjacency matrix of G by A. Here, A;; = 1 if vertices
i and j are connected (there is an edge between them)
and A;; = 0 otherwise. The degree d(i) = >_; A;; of

vertex ¢ is the number of its neighbors (including itself).
For simplicity, we only consider unweighted graphs in
this paper. It is, however, trivial to extend our results to
weighted graphs (A;; € RT instead of A4;; € {0,1}),
which is another advantage of this approach.

We consider a random walk X = Xo, Xq,...,X;, ...
on this G. (see [9], [17] for a complete presentation of
the topic). At each step ¢, a walker moves to a vertex
chosen randomly and uniformly among its neighbors.
The sequence of visited vertices is thus a Markov chain,
whose states are the graph’s vertices. At each step,
the transition probability from vertex ¢ to vertex j is
P, = %. This defines the transition matrix P of the
random walk process. Clearly, P = D~ 'A where D
is the diagonal matrix of the degrees (D;; = d(i) and
Dij =0 for ¢ #])

Remark 1.1: The t*" power of P contains information
of the probability of moving from vertice ¢ to vertice j
after ¢ steps. This value is exactly Pf]

Another remark at the heart of our proposed models is
as follows.

Remark 1.2: Let G be a connected, undirected graph
with m communities. Then, the coordinates of the first
m — 1 vectors show community structure, while the
others, especially the close-to-zero and negative ones,
are identified as “noises.”

II. THE EXTENDED WALKTRAP ALGORITHM

One of the well-studied random walk models on a
graph is the lazy random walk. This model considers
the chances that the walker stays, which is possible in
realistic situations. At each step, the walker will choose
uniformly between staying at the same spot or visiting
one of its neighbors. In this section, we try to extend
this model by introducing a parameter p that regulates
the behavior of the lazy walk.

Let 4 € R (0 < p < 1). We introduce a modified
version of the original walk, which we call extanded
lazy random walk. In a extanded lazy random walk, at
time ¢:

« the walker moves with probability 1,
o the walker stays at the current vertex with proba-
bility 5 iﬂ.
In case y = 1, the extanded lazy random walk becomes
the lazy random walk, and with u = 0, extanded lazy
random walk becomes simple random walk. We can
show that the above modification breaks the periodicity

of the random walk, thus making the random walk

applicable to the case of bipartite graphs. The transition
probabilities are encoded in the following matrix:

——(uI + P), (IL1)

1 +
where I denotes the identity matrix. In an analogous
manner to the original Walktrap algorithm, we give
the formula for the distance function that measures the
vertices’ similarities

Definition 2.1: Let ¢ and j be two vertices in the graph
and

" (Pl PR]
Ri = || 22 = 172 Pl=D 2R
k=1
(11.2)

Now, we shall inspect the analytic aspect of this
model. First of all, we need the following lemma

Lemma 2.2: ([16, Lemma 1]) The eigenvalues of the
matrix P are real and satisfy:

I=A>X>...> N\, > —1. (IL3)

Moreover, there exists an orthonormal family of vectors
(Sa)1<a<n such that each vector v, = D~'/2s, and
uq = D'/2s, are respectively a right and a left eigen-
vector associated to the eigenvalue \,:

Vo, Pog = Aave and PTu, = Agtia
Vo, V3, ’UZ:U/g = 0ap

From Lemma 2.2 and (II.1), we have the following
lemma.

Lemma 2.3: The eigenvalues of the matrix P are
Yo = AI‘YJ:L", 1 < a < n, and the vectors v, = D™1/2s,,
and u, = D'2s, (defined in Lemma 2.2) are also
respectively a right and a left eigenvector associated to
the eigenvalue ~,, of matrix P.

Proof From (II.1), we have

Pvo = —— (I + P)vg = —— (pwa + Poy,), (IL4)

1+pu 1 + w
From Lemma 2.2, we have Pv, = A,V it is follow
that
B+ Ao

Pu, =
1+ p

1
a*l_‘ru

Similarly, we have

(e + Aava) =

(IL5)

vOé?

PTug = (ul + PT)ug = (i + PTua).

1+
. (IL6)

T+up

From Lemma 2.2, we have PTwu, = \yu,, it is follow
that

PTua: ;U'+)‘Oé
1+

1+ (Mo + Aatia) =

Ua. (IL7)

It is followed that the eigenvalues of the matrix P are
Yoo = ’\1:“ 1 < a < n, and the vectors v, = D™ /2g,

and u, = DY2s, (defined in Lemma 2.2) are also
respectlvely a right and a left eigenvector associated to

the eigenvalue ,,. (]

Theorem 2.4: The distance R is related to the spectral
properties of the matrix P by:

R} = an (A“ r)Qt(va(z‘) —va(4))? (IL8)

= 1+p

where (Aq)i<a<n and (vq)i<a<n are respectively the
eigenvalues and right eigenvectors of the matrix P.
Proof Lemma 2.2 makes it possible to write a spectral
decomposition of the matrix P

P = Z’yavaug, and P! =

i=1

(IL9)

> vavaug,
=1
It follows that
n n
= bvali)ua = D23 Ahva(i)sa. (L10)

We put this formula into the second definition of
Ri; given in Equation (2.1). Then we use the
Pythagorean theorem with the orthonormal family of
vectors (Sq)i<a<n, and we remember that the vector
v1 1s constant to remove the case a = 1 in the sum.
Finally, we have:

= Zn: Vel (v
a=2

From Lemma 2.3, we have v, =
follows that

Ry =3 (2)) - o)

a(i) = va(j))? (IL11)

Aatu
s 1<a<mn,it

(IL12)

]

III. OBSERVATIONS

We present some crucial observations that must be
considered in using random walks to detect community
structure. In addition, we give theoretical comparisons
between the simple random walk and the extanded lazy
random walk.

Remark 3.1: The transition matrix P has real eigen-
values satisfying:

I=XM>X>...2)\, > —1.

Remark 3.2: In [4], let G be a network with apparent
community structure. Then, P also has m—1 eigenvalues
that are approximately 1, where m is the number of well-
defined communities.

Remark 3.3: In [4], the eigenvectors associated to
these first m — 1 nontrivial eigenvalues also have a com-
munity characteristic, i.e., the elements that correspond
to vertices within the same community are roughly the
same.

We restate the result of M. Latapy and P. Pons in [16].

Theorem 3.4: ([16, Theorem 1]) The distance r is
related to the spectral properties of the matrix P by:

n
= M) —va(§))? (LD
a=2

where (Aq)1<a<n and (vq)i<a<n are respectively the
eigenvalues and right eigenvectors of the matrix P.
The following table summarizes the results we have
obtained in Theorems 2.4 and 3.4 (Note: SW is simple
walk).

The distances f;(Aa)
W | 5 0@ —we@)? | i) = ()
BLRW | 35 fa(0)(wa() —va(0)? | 200) = (322) "

It can be seen that all of the above distances have
(va (i) — v4(j))? as their common factor, only differing
in terms of f1(A) and fo(A.). This fact, together with
Remark 3.1, Remark 3.2 and Remark 3.3 show that
one needs to weaken (ideally, eliminate) the “noisy”
eigenvalues, i.e., the close-to-zero or negative ones to
yield a good graph partition.

In most cases, since trace(P) = 0 and P has some
close-to-one eigenvalues, there will be eigenvalues that
are close to —1. One example of this fact is the case of

the bipartite graph, where the spectrum P is symmetric
at about 0. We note that:

Remark 3.5: With the simple random walk, the eigen-
values with absolute values close to one change much
”slower” than those closer to zero when we take power
t of P. Therefore, taking P* (3 < ¢ < 8) will emphasize
the more significant eigenvalues by wiping out the small
ones.

Remark 3.6: With the extended lazy random walk,
1 can be chosen appropriately so that the significant
eigenvalues stay almost unchanged, while other “noises”
are depleted (going to zero) quickly through f5. For ex-
ample, o € (0.4,0.5) for small graph, and p € (0.1,0.2)
for large graph.

Remark 3.7: For bipartite graphs, a simple random
walk is due to the fact that the corresponding Markov
process is periodic.

Example 3.8: Let the graph G as shown in the Figure
1, with ¢ = 1, 4 = 0.5, we have graph of a function f;
and f> as shown in the Figure 2. we see that the small
and negative eigenvalues almost disappear or weaken in
the first and second diagrams.

Fig. 1. An undirected, connected graph G

Fig. 2. The graph showing f1(\) and f2(\)

IV. EXAMPLES

To evaluate the algorithm’s efficiency, we use New-
man’s Modularity Q [15]. The expected number of edges
falling between two vertices i and j in the configuration
model is equal to d;d;/2m, where d; is the degree of
vertex ¢ and m is the total number of edges in the
observed network. The actual number of edges observed
to fall between the same two vertices is equal to the
element A;; of the adjacency matrix A, so that the
actual-minus-expected edge count for the vertex pair is
A;;—d;d;/2m. Giving integer labels to the groups in the
proposed network division and denoting by g; the label
of the group to which vertex 7 belongs, the modularity
@ is then equal to

1 d;d;
Qu=-— [Aij - ’I”I’LJ:| 59119]‘

= om 2 5 av.n)
ij
where 0;; is the Kronecker delta. We note that, in
the clustering results, the one that gives us the more
significant Modularity @), the better the clustering result.
Example 4.1: We consider an undirected network with
198 vertices. Then apply the Walktrap algorithm and our
extended Walktrap algorithm with ¢ = 0.1. Then we get
the results as below.
We apply both algorithms with ¢ = 2 and 4. For
our algorithm, we take © = 1, and we obtain the
corresponding Modularity values in table I. Figure 3,
illustrates the clustering results of both algorithms with
t=4.

TABLE I
MODULARITY VALUE COMPARISON TABLE

Simple Random Walk

Lazy Random Walk

Fig. 3. Clustering the graph of 198 vertices with number steps is 4

TABLE I
MODULARITY VALUE COMPARISON TABLE

Number of Steps | Simple Random Walk | Lazy Random Walk
t=2 Q= 0.361241 Q= 0.414941
t=3 Q= 0.357930 Q= 0.420204
t=4 Q= 0.426511 Q= 0.442939

Number of Steps

Simple Random Walk

Lazy Random Walk

=2 Q= 0.230428 Q= 0.235216
t=3 Q= 0.223314 Q= 0.227334
t=4 Q= 0.235517 Q= 0.254840

Example 4.2: We consider an undirected network with

643 vertices. Then apply the Walktrap algorithm and our
extended Walktrap algorithm with ;o = 0.1. Then we get
the results as below.
We apply both algorithms with ¢ = 2 and 4. For our
algorithm, we take ¢+ = 1 and obtain the corresponding
Modularity values in table II. Figure 4, illustrates the
clustering results of both algorithms with ¢ = 4.

Remark 4.3: In both of the above examples, we see
that for the same number of steps ¢, the clustering result

Extended Lazy Random Walk

Simple Random Walk

Fig. 4. Clustering the graph of 643 vertices with number steps is 4

will be better when taking ¢ = 0.1 than using p = 0
(Walktrap algorithm)

V. CONCLUSION AND FURTHER WORK

In this paper, we proposed an extended lazy random
walk and used it to construct the distance between
vertices on the graph. Since then, we have extended
the Walktrap algorithm. We were also programmed to
demonstrate the efficiency of our algorithm. In the future,
we will study to extend this algorithm for directed
graphs and, at the same time, research to improve the
computational complexity of this algorithm.

ACKNOWLEDGMENTS

This research was supported by the Institute of Math-
ematics, Vietnam Academy of Science and Technology,
Project code: NVCCO01.14/22-22.

[1]

[2]

[4]

[5]
[6]
[7]

[8]

[10]
[11]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

REFERENCES

D. Aldous and J. A. Fill. Reversible Markov Chains and
Random Walks on Graphs, chapter 2. Forthcoming book,
http://www.stat.berkeley.edu/users/aldous/RWG/book.html.

M. S. Aldenderfer and R. K. Blashfleld. Cluster Analysis. Num-
ber 07-044 in Sage University Paper Series on Quantitative
Applications in the Social Sciences. Sage, Beverly Hills, 1984.
J. Bagrow, E. Bollt. A local method for detecting communities.
Physical Review E 72(4 Pt 2). 2005: 046108.

A. Capoccia, V.D.P. Servedioa, G. Caldarella, F. Colaiori, De-
tecting communities in large networks, July 2005 Physica A:
Statistical Mechanics and its Applications 352(2-4):669-676.

L. da F. Costa. Hub-based community finding, arXiv:cond-
mat/0405022, 2004.

A. Clauset. Finding local community structure in networks.
Physical Review E, 72:026132, 2005.

A. Clauset, M. E. J. Newman, and C. Moore. Finding community
structure in very large networks. Physical Review E, 70(6):
066111, 2004

S. v. Dongen. Graph Clustering by Flow Simulation. Ph.D. thesis,
University of Utrecht, May 2000.

L. Lovdsz. Random walks on graphs: a survey. In Combinatorics,
Paul Erdés is eighty, Vol. 2 (Keszthely, 1993), volume 2 of Bolyai
Soc. Math. Stud., pages 353- 397. Janos Bolyai Math. Soc.,
Budapest, 1996.

M. E. J. Newman. Fast algorithm for detecting community
structure in networks. Physical Review E, 69(6):066133, 2004.
B. S. Everitt, S. Landau, and M. Leese. Cluster Analysis. Hodder
Arnold, London, 4th edition, 2001.

A. Grover, J. Leskovec. node2vec: Scalable Feature Learning
for Networks. KDD : Proceedings. International Conference on
Knowledge Discovery Data Mining: 855-864, 2016.

MC. Gonzalez, HJ. Herrmann, J. Kertesz, T. Vicsek. Community
structure and ethnic preferences in school friendship networks.
Physical A 379: 307-316, 2007.

C. Moore. The Computer Science and Physics of Community
Detection: Landscapes, Phase Transitions, and Hardness. Bull.
EATCS 121, 2017.

M. E. J. Newman. Fast algorithm for detecting community
structure in networks. Physical Review E, 69(6):066133, 2004.
P. Pons and M. Latapy. Computing communities in large net-
works using random walks, Journal of Graph Algorithms and
Applications, volume 10, no. 2, 2006, Pages 191-218, 2006.
J-F. Rural, K. Venkatesan, T. Hao, T. Hirozane-Kishikawa, A.
Dricot, et al. Towards a proteome-scale map of the human
protein-protein interaction network. Nature 437: 1173. 2005.

J. Reichardt, S. Bornholdt. Detecting fuzzy community structures
in complex networks with a potts model. Physical Review Letters,
93:218701, 2004.

U. Stelzl, U. Worm,M. Lalowski,C. Haenig, F. Brembeck F, et
al. A Human Protein-Protein Interaction Network: A Resource
for Annotating the Proteome. Cell 122: 957-968, 2005.

H. Zhou and R. Lipowsky. Network Brownian Motion: A New
Method to Measure Vertex-Vertex Proximity and to Identify
Communities and Subcommunities. International Conference on
Computational Science. 2004, 1062-1069.

[21] F. Wu, B. A. Huberman. Finding communities in linear time: A

physics approach. The European Physical Journal B, 38:331 338,
2004.

