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Abstract. In this article, we prove that every ultragraph Leavitt path alge-

bra is a direct limit of Leavitt path algebras of finite graphs and determine

the Gelfand-Kirillov dimension of an ultragraph Leavitt path algebra. We

also characterize ultragraph Leavitt path algebras whose simple modules are

finitely presented, and show that these algebras have finite Gelfand-Kirillov

dimension. Moreover, we construct new classes of simple modules over ul-

tragraph Leavitt path algebras associated with minimal infinite emitters and

minimal sinks, which have not yet appeared in the context of Leavitt path

algebras of graphs.
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1. Introduction

The study of algebras associated with combinatorial objects is a thriving topic

in classical ring theory. One of the key goals of the subject is to establish re-

lationships between combinatorial properties of the initial object and algebraic

properties of the associated algebra. Another important direction is the study of

the connections with other branches of mathematics, as C∗-algebras and symbolic

dynamics. Among interesting examples of algebras associated with combinatorial

objects we mention, for example, the following ones: graph C∗-algebras, Leavitt

path algebras, higher rank graph algebras, Kumjian-Pask algebras, and ultra-

graph C∗-algebras (we refer the reader to [1] and [2] for a more comprehensive

list).

There is no doubt that, among the non-analytical algebras mentioned above,

the Leavitt path algebra associated with a graph figures as the most studied one.

For these algebras their structure, and connections with C∗-algebra theory and

symbolic dynamics, have been (and still is) studied in detail.

Ultragraphs and ultragraph C∗-algebras were defined by Mark Tomforde in

[25] as a unifying approach to C∗-algebras associated with infinite matrices (also
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known as Exel-Laca algebras) and graph C∗-algebras. They have proved to be

a key ingredient in the study of Morita equivalence of Exel-Laca and graph C∗-

algebras [17]. Recently, Castro, Gonçalves, Royer, Tasca, Wyk, among others,

have established nice connections between ultragraph C∗-algebras and the sym-

bolic dynamics of shift spaces over infinite alphabets (see [9], [11], [13] and [24]).

The Leavitt path algebra associated with an ultragraph was defined by Iman-

far, Pourabbas and Larki in [16], and by Gonçalves and Royer in [12] in terms of

two different definitions. In [8] de Castro, Gonçalves and van Wyk showed that

the resulting algebras are isomorphic. As in the C∗-algebraic setting, the ultra-

graph Leavitt path algebras unify the study of Leavitt path algebras associated

with graphs and the algebras associated with infinite matrices. Further to being

a convenient way to express both types of algebras mentioned, it was shown in

[16, 10] that the class of ultragraph Leavitt path algebras is strictly larger than

the class of Leavitt path algebras of graphs.

Since ultragraph Leavitt path algebras form a strictly larger class than Leavitt

path algebras of graphs, their study encompasses an extra layer of complexity.

Nevertheless, recently several results regarding whether the C∗-algebraic theory

of ultragraphs has analogues in the algebraic setting, and whether results about

Leavitt path algebras of graphs can be generalized to ultragraph Leavitt path

algebras, have been obtained. We mention the following. Gonçalves and Royer

[12] realized ultragraph Leavitt path algebras as partial skew group rings. Using

this realization they characterized Artinian ultragraph Leavitt path algebras and

gave simplicity criteria for these algebras; Gonçalves and Royer [14] extended

Chen’s construction (see [7]) of simple modules of graph Leavitt path algebras to

ultragraph Leavitt path algebras. More namely, they constructed two classes of

simple modules of ultragraph Leavitt path algebras associated with sinks v and

infinite paths p; de Castro, Gonçalves and van Wyk [8] realized ultragraph Leavitt

path algebras as Steinberg algebras. Using this result, Hazrat and the second

author [15] constructed additional classes of non-isomorphic simple modules of

ultragraph Leavitt path algebras associated with both infinite emitters and pairs

(c, f) consisting of closed paths c together with irreducible polynomials f ∈ K[x];

Nam and Nam [22] characterized purely infinite simple ultragraph Leavitt path

algebras, and established the Trichotomy Principle for graded simple ultragraph

Leavitt path algebras; and Duyen, Gonçalves and the first author [10] proved

Exel’s Effros-Hahn conjecture on primitive ideals in the ultragraph Leavitt path

algebra setting.

The current article is a continuation of this direction. In [3, 4] Alahmedi, Alsu-

lami, Jain and Zelmanov obtained a complete characterization of and a structure

theorem for the Leavitt path algebra LK(E) of a finite graph E having finite

Gelfand-Kirillov dimension. Interestingly, it was shown in [5] that this same

condition for a finite graph E is equivalent to the Leavitt path algebra LK(E)

whose simple modules are finitely presented. In [23] Rangaswamy gave a complete
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characterization of Leavitt path algebras of arbitrary graphs with finite Gelfand-

Kirillov dimension and those whose simple modules are finitely presented. In [21]

Moremo-Fernández and Siles Molina determined the Gelfand-Kirillov dimension

of the Leavitt path algebra of an arbitrary graph. Motivated by these interesting

results, the main goal of this article is to provide a characterization of ultragraph

Leavitt path algebras with finite Gelfand-Kirillov dimension and those whose sim-

ple modules are finitely presented, as well as to construct new classes of simple

modules of ultragraph Leavitt path algebras which are not isomorphic to these

simple modules cited above (even they have not yet appeared in the context of

Leavitt path algebras of graphs).

The article is organized as follows. In Section 2, for the reader’s convenience,

we provide subsequently necessary notions and facts on ultragraphs and ultra-

graph Leavitt path algebras. We also prove that every ultragraph Leavitt path

algebra is a direct limit of Leavitt path algebras of finite graphs (Theorem 2.8). In

Section 3, by using Theorem 2.8 and Moremo-Fernández and Siles Molina’s result

that the Gelfand-Kirillov dimension of algebras commutes with direct limits (see

Theorem 3.1 below), we determine the Gelfand-Kirillov dimension of an ultra-

graph Leavitt path algebra LK(G) (Theorem 3.4) and show that it is exactly the

Gelfand-Kirillov dimension of the Leavitt path algebra of the associated graph of

G (Theorem 3.8). In Section 4, we give new classes of simple modules over ultra-

graph Leavitt path algebras associated with minimal infinite emitters (Theorem

4.2 and Remark 4.3) and minimal sinks (Theorem 4.5 and Example 4.6), and

investigate the finite representation of these simple modules (Proposition 4.4 and

Theorem 4.5 (5)) and the simple modules associated with infinite paths (Corollary

4.10). Then, we describe ultragraph Leavitt path algebras whose simple modules

are finitely presented, and obtain that these algebras have finite Gelfand-Kirillov

dimension (Theorem 4.11).

2. PRELIMINARIES AND SOME USEFUL FACTS

In this section, we recall the definition of an ultragraph Leavitt path algebra

and set notation. Also, we prove that every ultragraph Leavitt path algebra is a

direct limit of Leavitt path algebras of finite graphs (Theorem 2.8). Consequently,

we characterize the von Neumann regularity of an ultragraph Leavitt path algebra

which extends [22, Theorem 2.9] to ultragraphs of arbitrary size (Corollary 2.9).

We begin this section by recalling some notions and notes of ultragraph theory

introduced by Tomforde in [25] and [26].

Definition 2.1 ([25, Definition 2.1]). An ultragraph G = (G0,G1, r, s) consists

of a set of vertices G0, a set of edges G1, and functions s : G1 −→ G0 and

r : G1 −→ P(G0) \ {∅}, where P(G0) denotes the set of all subsets of G0.

In order to define an ultragraph Leavitt path algebra, we need a notion of

“generalized vertices”.
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Definition 2.2 ([25]). Let G = (G0,G1, r, s) be an ultragraph. Define G0 to be

the smallest subset of P(G0) that contains {v} for all v ∈ G0, contains r(e) for

all e ∈ G1, and is closed under finite unions and finite intersections. Elements of

G0 are called generalized vertices.

A vertex v ∈ G0 is called a sink if s−1(v) = ∅, and we denote the set of sinks

in G0 by G0
s. A vertex v ∈ G0 is called an infinite emitter if s−1(v) is infinite.

A singular vertex is a vertex that is either a sink or an infinite emitter. The set

of all singular vertices is denoted by Sing(G). A vertex v ∈ G0 is called a regular

vertex if s−1(v) is finite and non-empty. An ultragraph is called row-finite if it

has no infinite emitters. An ultragraph G is called countable if G0 and G1 are

countable sets.

A finite path in an ultragraph G is either an element of G0 or a sequence

α1α2 · · ·αn of edges with s(αi+1) ∈ r(αi) for all 1 ≤ i ≤ n − 1 and we say that

the path α has length |α| := n. We consider the elements of G0 to be paths of

length 0. We denote by G∗ the set of all finite paths in G. The maps r and s

extend naturally to G∗. Note that when A ∈ G0 we define s(A) = r(A) = A.

If G is an ultragraph, then a closed path in G is a path α = α1α2 · · ·α|α| ∈ G∗
with |α| ≥ 1 and s(α) ∈ r(α). We also say that the closed path α is based at

v = s(α). A closed path α is called simple if α 6= βn for any closed path β and

integer n ≥ 2. A cycle (based at v) is a closed path α = α1α2 · · ·α|α| (based at

v) such that s(αi) 6= s(αj) for every 1 ≤ i 6= j ≤ |α|. The ultragraph G is called

acyclic if G has no cycles. An exit for a cycle α is one of the following:

(1) an edge e ∈ G1 such that there exists an i for which s(e) ∈ r(αi) but

e 6= αi+1.

(2) a sink w such that w ∈ r(αi) for some i.

In [12] Gonçalves and Royer introduced the Leavitt path algebra of an ultra-

graph which is an algebraic version of ultragraph C∗-algebras introduced by Mark

Tomforde in [25] as an unifying approach to Exel-Laca and graph C∗-algebras.

Definition 2.3 ([12, Definition 2.3]). Let G be an ultragraph and K a field. The

Leavitt path algebra LK(G) of G with coefficients in K is the K-algebra generated

by the set {se, s∗e | e ∈ G1} ∪
{
pA | A ∈ G0

}
, satisfying the following relations for

all A,B ∈ G0 and e, f ∈ G1:

(1) p∅ = 0, pApB = pA∩B and pA∪B = pA + pB − pA∩B ;

(2) ps(e)se = se = sepr(e) and pr(e)s
∗
e = s∗e = s∗eps(e);

(3) s∗esf = δe,fpr(e);

(4) pv =
∑

s(e)=v ses
∗
e for any regular vertex v;

where pv denotes p{v} and δ is the Kronecker delta.

It is worth mentioning the following note.
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Remark 2.4. (1) There have been different definitions of Leavitt path algebras

of ultragraphs, and the difference of these definitions lies in how the set of gen-

eralized vertices are defined. Given an ultragraph G, let B denote the smallest

subset of P(G0) that contains {v} for all v ∈ G0, contains r(e) for all e ∈ G1,
and is closed under relative complements, finite unions and finite intersections.

We denote by LK(Gr) the Leavitt path algebra associated with G by allowing

A,B ∈ B in item (1) of Definition 2.3, that means, LK(Gr) is the algebra as de-

fined in [16, Definition 2.1]. However, in [8, Proposition 5.2] the authors showed

that LK(Gr) and LK(G) are isomorphic to each other.

(2) Every (directed) graph E = (E0, E1, rE , sE) may be considered as an ultra-

graph GE = (G0
E ,G1E , rGE , sGE ), where G0

E = E0, G1E = E1, and rGE (e) = {rE(e)}
and sGE (e) = sE(e) for all e ∈ E1. In this case, we have that G0E is the set of all

finite subsets of E0, and the Leavitt path algebra LK(E) is naturally isomorphic

to LK(GE). We refer the reader to [1] and [2] for more details about Leavitt path

algebras of graphs.

We usually denote sA := pA for A ∈ G0 and sα := se1 · · · sen for α = e1 · · · en ∈
G∗. It is easy to see that the mappings given by pA 7−→ pA for A ∈ G0, and

se 7−→ s∗e, s
∗
e 7−→ se for e ∈ G1, produce an involution on the algebra LK(G),

and for any path α = α1 · · ·αn there exists s∗α := s∗en · · · s
∗
e1 . Also, LK(G) has

the following universal property : if A is a K-algebra generated by a family of

elements {bA, ce, c∗e | A ∈ G0, e ∈ G1} satisfying the relations analogous to (1) -

(4) in Definition 2.3, then there always exists a K-algebra homomorphism ϕ :

LK(G) −→ A given by ϕ(pA) = bA, ϕ(se) = ce and ϕ(s∗e) = c∗e. Furthermore, we

denote another useful properties as follows.

Lemma 2.5 ([12, Theorem 3.10]). For an ultragraph G and a field K, then the

Leavitt path algebra LK(G) has the following properties:

(1) All elements of the set {pA, se, s∗e | A ∈ G0 \ {∅}, e ∈ G1} are nonzero.

(2) LK(G) is of the form

SpanK{sαpAs∗β | α, β ∈ G∗, A ∈ G0 and r(α) ∩A ∩ r(β) 6= ∅}.
Furthermore, LK(G) is a Z-graded K-algebra by the grading

LK(G)n = SpanK{sαpAs∗β | α, β ∈ G∗, A ∈ G0 and |α| − |β| = n} (n ∈ Z).

Proof. Item (1) follows from [12, Theorem 3.10], and item (2) follows from the

last paragraph of the proof of [12, Theorem 3.10]. We should mention that [12,

Theorem 3.10] was proved for the case of countable ultragraphs G. However, the

assumption on the cardinalilty of the ultragraph was not used in this proof, and

so the theorem is valid for ultragraphs of arbitrary size. �

The following lemma is useful to prove the main result of this section.

Lemma 2.6 (cf. [22, Lemma 2.6]). Let G be an ultragraph and K a field. Then

the algebra LK(G) is generated by
{
se, s

∗
e | e ∈ G1

}
∪ {pv | v ∈ Sing(G)}.
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Proof. The lemma was proved in [22, Lemma 2.6] for the case of countable ul-

tragraphs G. However, the assumption on the cardinalilty of the ultragraph was

not used in this proof, and so the statement is valid for ultragraphs of arbitrary

size. �

Let G = (G0,G1, r, s) be an ultragraph and let F be a finite subset of G1 ∪
Sing(G). Write F 0 := F ∩ Sing(G) and F 1 := F ∩G1 = {e1, e2, . . . , en}. Following

[16], we construct a finite graph GF as follows. For each ω = (ω1, . . . , ωn) ∈
{0, 1}n \ {(0, 0, . . . , 0)}, we define

r(ω) :=
⋂
ωi=1 r(ei) \

⋃
ωj=0 r(ej) and R(ω) := r(ω) \ F 0.

Notice that r(ω) ∩ r(ν) = ∅ for distinct ω, ν ∈ {0, 1}n \ {(0, 0, . . . , 0)}. Let

Γ0 := {ω ∈ {0, 1}n \ {(0, 0, . . . , 0)} | there are vertices v1, . . . , vm such that

R(ω) = {v1, . . . , vm} and ∅ 6= s−1(vi) ⊆ F 1 for 1 ≤ i ≤ m}
and

ΓF := {ω ∈ {0, 1}n \ {(0, 0, . . . , 0)} | R(ω) 6= ∅ and ω /∈ Γ0}.
Now we define the finite graph GF = (G0

F , G
1
F , rF , sF ) as follows:

G0
F := F 0 ∪ F 1 ∪ ΓF , and

G1
F := {(e, f) ∈ F 1 × F 1 | s(f) ∈ r(e)}

∪ {(e, v) ∈ F 1 × F 0 | v ∈ r(e)}
∪ {(e, ω) ∈ F 1 × ΓF | ωi = 1 when e = ei}

with

sGF
((e, f)) = e sGF

((e, v)) = e sGF
((e, ω)) = e

rGF
((e, f)) = f rGF

((e, v)) = v rGF
((e, ω)) = ω.

The following lemma gives us criteria for ultragraphs containing cycles and

cycles with exits.

Lemma 2.7. For an ultragraph G, the following statements hold:

(1) G is acyclic if and only if GF is acyclic for every non-empty finite subset

F of G1 ∪ Sing(G);

(2) G contains a cycle with an exit if and only if there exists a non-empty finite

subset F of G1 ∪ Sing(G) such that GF contains a cycle with an exit.

Proof. (1) It was proved in [22, Lemma 2.8] under the assumption that G is

countable. However, the assumption on the cardinalilty of the ultragraph was

not used in this proof, and so the statement is valid for ultragraphs of arbitrary

size.

(2) (=⇒). Assume that G contains a cycle α = e1e2 · · · en with an exit. We

then have the following cases:

Case 1: there exist an edge e ∈ G1 and a number 1 ≤ i ≤ n such that

s(e) ∈ r(ei) but e 6= ei+1, where en+1 := e1. Let

F := {e, ei | 1 ≤ i ≤ n} ⊆ G1.
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We obtain that the graph GF contains a cycle c = (e1, e2) · · · (en−1, en)(en, e1)

with an exit f = (ei, e).

Case 2: there exists a sink w ∈ G0 such that w ∈ r(αi) for some 1 ≤ i ≤ n.

Let F := {w, ei | 1 ≤ i ≤ n} ⊆ G1 ∪ Sing(G). We then have that the graph GF
contains a cycle c = (e1, e2) · · · (en−1, en)(en, e1) with an exit f = (ei, w).

Therefore, in any case, we arrive at the statement.

(⇐=). Suppose there exists a non-empty finite subset F of G1 ∪ Sing(G) such

that GF contains a cycle c with an exit γ. By renumbering edges in F 1, without

loss of generality, we may assume that F 1 = {e1, e2, . . . , en} and

c = (e1, e2) · · · (em−1, em)(em, e1),

where m < n and ei’s are in F such that sG(ei+1) ∈ rG(ei) for all 1 ≤ i ≤ m− 1,

and sG(e1) ∈ rG(em). Consider the closed path α := e1e2 · · · em in G. If sG(ei) 6=
sG(ej) for all 1 ≤ i 6= j ≤ m, then we have that α is a cycle in G. Since γ is an exit

for c, there exists an number 1 ≤ i ≤ m such that sGF
(γ) = ei and γ 6= (ei, ei+1),

where em+1 := e1. Consider the following cases:

Case 1: γ = (e, f) ∈ F 1×F 1 with sG(f) ∈ rG(e). We receive that e = sGF
(γ) =

ei and f 6= ei+1, and so f is an exit for α.

Case 2: γ = (e, v) ∈ F 1×F 0 with v ∈ rG(e). We have e = sGF
(γ) = ei. If v is

a sink in G, then v is an exit for α.

Case 3: γ = (e, ω) ∈ F 1 × ΓF with ωj = 1 when e = ej (1 ≤ j ≤ n). We

obtain that e = sGF
(γ) = ei. Since ω ∈ ΓF , we must have R(ω) := r(ω) \ F 0 6=

∅ and ω /∈ Γ0. This implies that R(ω) ⊆ r(ω) = ∩ωj=1rG(ej) \ ∪ωk=0rG(ek) ⊆
rG(ei), and we also have the following two subcases:

Case 3.1: R(ω) is infinite. This shows that rG(ei) is infinite, and so there exists

a vertex v ∈ rG(ei) such that v 6= sG(ei+1). If v is a sink, then v is an exit for

α. If v is not sink, then there exists an edge f ∈ G1 such that sG(f) = v and

f 6= ei+1. Therefore, f is an exit for α.

Case 3.2: R(ω) = {v1, v2, . . . , vt} ⊆ G0 with either vl is a sink for some 1 ≤
l ≤ t, or there exists an edge f ∈ s−1G (vk) \F for some 1 ≤ k ≤ t. If the first case

happens, then vl ∈ rG(ei), and so vl is an exit for α. If the second case happens,

then f 6= ei+1 and sG(f) = vk. Since R(ω) ⊆ rG(ei), vk ∈ rG(ei). This implies

that f is an exit for α.

Consider the case when sG(ei) = sG(ej) for some 1 ≤ i < j ≤ m. Then,

there exist two integers k and l such that i ≤ k < l ≤ j, sG(ek) = sG(el) and

sG(ek′) 6= sG(el′) for all k ≤ k′ 6= l′ ≤ l with (k′, l′) 6= (k, l). This implies that

β := ekek+1 · · · el is a cycle in G with an exit el+1, where em+1 := e1.

Therefore, in any case the ultragraph G always contains a cycle with exits, thus

finishing the proof. �

Let G be an arbitrary ultragraph. We denote by F(G) the set of all finite

subsets of G1∪Sing(G). It is obvious that F(G) is directed since the union of two

elements is their join. Now we are able to present the main result of this section,
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which plays an important role in the proof of the main result (Theorem 3.4) of

the next section.

Theorem 2.8. Let K be a field, G an ultragraph, F an element of F(G), and

B(F ) the subalgebra of LK(G) generated by the set {pv, se, s∗e | e, v ∈ F}. Then

the following statements hold:

(1) B(F ) ∼= LK(GF );

(2) LK(G) =
⋃
F∈F(G)B(F ) = lim−→F∈F(G)B(F );

(3) LK(G) ∼= lim−→F∈F(G) LK(GF ).

Proof. (1) We define the elements {Px | x ∈ G0
F } and {Sy, S∗y | y ∈ G1

F } of LK(G)

by setting

Px =


ses
∗
e if x = e,

pv(1−
∑

f∈F 1 sfs
∗
f ) if x = v,

p⋂
wi=1 r(ei)

(1− p⋃
wj=0 r(ej)

)(1− pF 0)(1−
∑

f∈F 1 sfs
∗
f ) if x = ω,

Sy =


Pfs

∗
e if y = (e, f),

sePv if y = (e, v),

sePω if y = (e, ω)

and S∗y =


sePf if y = (e, f),

Pvs
∗
e if y = (e, v),

Pωs
∗
e if y = (e, ω).

By repeating verbatim the argument in the proof of [20, Proposition 4.2], we

have PxPx′ = δx,x′Px for all x ∈ G0
F , Ps(y)Sy = Sy = SyPr(y), S

∗
yPs(y) = S∗y =

Pr(y)S
∗
y and S∗ySy′ = δy,y′Pr(y) for all y ∈ G1

F , and Px =
∑
{y∈G1

F |x=s(y)}
SyS

∗
y

for all regular vertex x ∈ G0
F , where δ is the Kronecker delta. Then, by the

universal property of Leavitt path algebras of graphs, there exists a K-algebra

homomorphism π : LK(GF ) −→ LK(G) such that π(x) = Px, π(y) = Sy and

π(y∗) = S∗y for all x ∈ G0
F and y ∈ G1

F . Clearly, π is a Z-graded homomorphism.

By repeating approach described in the proof of [16, Lemma 2.13 (ii)], we have

Px 6= 0 for all x ∈ G0
F . Then, by [27, Theorem 4.8], π is injective. Moreover, by

repeating verbatim the argument in the proof of [20, Proposition 4.2], we obtain

that the family {Qx, Sy, S∗y | x ∈ G0
F , y ∈ G1

y} generates B(F ), that means,

π(LK(GF )) = B(F ). Therefore, LK(GF ) is isomorphic to B(F ).

(2) It immediately follows from Lemma 2.6.

(3) It follows from items (1) and (2), thus finishing the proof. �

A (not necessarily unital) ring R is called von Neumann regular in case for

every r ∈ R there exists s ∈ R such that r = rsr. A matricial K-algebra is

a finite direct sum of full finite dimensional matrix algebras over the field K.

A locally matricial K-algebra is a direct limit of matricial K-algebras (with not

necessarily-unital transition homomorphisms). In [22, Theorem 2.9] the authors

showed that the ultragraph Leavitt path algebras arising from acyclic countable

ultragraphs are precisely the von Neumann regular Leavitt path algebras, and in
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this case they are exactly locally matricial algebras. We close this section with the

following corollary, extending this result to Leavitt path algebras of ultragraphs

of arbitrary size.

Corollary 2.9. Let G be an ultragraph and K a field. Then the following condi-

tions are equivalent:

(1) LK(G) is von Neumann regular;

(2) G is acyclic;

(3) LK(G) is a locally matricial K-algebra.

Proof. (1)=⇒(2). It was proved in the direction (1)=⇒(2) of [22, Theorem 2.9]

under the assumption that G is countable. However, the assumption on the

cardinalilty of the ultragraph was not used in this proof, and so the statement is

valid for ultragraphs of arbitrary size.

(2)=⇒(3). By using Lemma 2.7 (1) and Theorem 2.8 (3), and repeating ver-

batim the argument in the proof of the direction (2)=⇒(3) of [22, Theorem 2.9]

we immediately obtain the statement.

(3)=⇒(1). It is well known that every matricial K-algebra is von Neumann

regular, and so is a direct limit of such algebras, thus finishing our proof. �

3. The Gelfand-Kirillov dimension of an ultragraph Leavitt path

algebra

In this section, based on Theorem 2.8, we determine the Gelfand-Kirillov di-

mension of an ultragraph Leavitt path algebra LK(G) (Theorem 3.4) and show

that it is exactly the Gelfand-Kirillov dimension of the Leavitt path algebra of

the associated graph of G (Theorem 3.8).

We begin this section by recalling some general notions and facts on the

Gelfand-Kirillov dimension of algebras. Given a field K and a finitely gener-

ated K-algebra A. The Gelfand-Kirillov dimension of A (GKdim(A) for short)

is defined to be

GKdim(A) := lim sup
n→∞

logn(dim(V n)),

where V is a finite dimensional subspace of A that generates A as an algebra over

K. This definition is independent of the choice of V . If A does not happen to be

finitely generated over K, the Gelfand-Kirillov dimension of A is defined to be

GKdim(A) = sup{GKdim(B) | B is a finitely generated subalgebra of A}.

It is well known (e.g., [18, Lemma 3.1]) that the inequality GKdim(B) ≤ GKdim(A)

holds whenever B is a subalgebra of A, or if B is a factor algebra of A. See [18]

for a general treatment of the Gelfand-Kirillov dimension. The following result of

Moremo-Fernández and Siles Molina will play an important role in our analysis.

Theorem 3.1 ([21, Theorem 3.1]). The Gelfand-Kirillov dimension of algebras

commutes with direct limits.
9



A cycle α = α1α2 · · ·αn is called an exclusive cycle if there does not exist a

cycle β = β1β2 · · ·βm which is different from a cyclic permutation of α and such

that s(αi), s(βj) ∈ r(αi−1) ∩ r(βj−1) for some 1 ≤ i ≤ n and 1 ≤ j ≤ m, where

r(α0) := r(αn) and r(β0) := r(βm). Equivalently, a cycle α = α1α2 · · ·αn is

called an exclusive cycle if there does not exist a cycle β = β1β2 · · ·βm such that

s(αi), s(βj) ∈ r(αi−1) ∩ r(βj−1) and (αi−1, αi) 6= (βj−1, βj) for some 1 ≤ i ≤ n

and 1 ≤ j ≤ m. In other case, we say that α is a non-exclusive cycle. We say

that ultragraph G satisfies Condition (EXC) if every cycle of G is exclusive. The

following lemma provides us criteria for ultragraphs having Condition (EXC).

Lemma 3.2. An ultragraph G satisfies Condition (EXC) if and only ifGF satisfies

Condition (EXC) for every non-empty finite subset F of G1 ∪ Sing(G).

Proof. (=⇒). Assume that there exists a non-empty finite subset F of G1 ∪
Sing(G) such that GF does not satisfy Condition (EXC). We then obtain that

GF has two cycles c and d having a common vertex such that c is different from

a cyclic permutation of d. Write c = c1c2 · · · cn and d = d1d2 · · · dm, where

ci = (ei, ei+1) ∈ F 1 × F 1 with s(ei+1) ∈ r(ei) for all 1 ≤ i ≤ n− 1, cn = (en, e1)

with s(e1) ∈ r(en), and dj = (fj , fj+1) ∈ F 1 × F 1 with s(fj+1) ∈ r(fj) for all

1 ≤ j ≤ m− 1, dm = (fm, f1) with s(f1) ∈ r(fm). Since c and d have a common

vertex, without loss of generality, we may assume that e1 = sGF
(c) = sGF

(d) =

f1. Consider the cycles α = e1e2 · · · en and β = f1f2 · · · fm in G. We then have

s(e1) = s(f1) ∈ r(en)∩r(fm), and so α is a non-exclusive cycle in G. This implies

that G does not satisfy Condition (EXC).

(⇐=). Assume that G does not satisfy Condition (EXC). Then, there exist

two cycles α = α1α2 · · ·αn and β = β1β2 · · ·βm such that s(αi), s(βj) ∈ r(αi−1)∩
r(βj−1) and (αi−1, αi) 6= (βj−1, βj) for some 1 ≤ i ≤ n and 1 ≤ j ≤ m, where

r(α0) := r(αn) and r(β0) := r(βm). Let F := {α1, α2, . . . , αn, β1, β2, . . . , βm} ⊆
G1. We then have that α′ = (αi, αi+1) · · · (αn−1, αn)(αn, α1)(α1, α2) · · · (αi−1, αi)
and β′ = (αi, αi+1) · · · (αn−1, αn)(αn, α1)(α1, α2) · · · (αi−2, αi−1)(αi−1, βj)(βj , βj+1)

· · · (βm−1, βm)(βm, α1)(β1, β2) · · · (βj−2, βj−1)(βj−1, αi) are two closed paths in

GF with sGF
(α′) = αi = sGF

(β′), and so GF does not satisfy Condition (EXC),

thus finishing our proof. �

For two exclusive cycles α = α1α2 · · ·αn and β = β1β2 · · ·βm, we write α⇒ β

if there exists a path p such that s(p) ∈ r(αi) and s(βj) ∈ r(p) for some 1 ≤ i ≤ n
and 1 ≤ j ≤ m. A sequence of exclusive cycles α1, α2, . . . , αk is a chain of cycles

of length k if α1 ⇒ α2 ⇒ · · · ⇒ αk. We say that such a chain has an exit if the

cycle αk has an exit. The following lemma provides us criteria for ultragraphs

having chains of cycles of finite length and chains of cycles of finite length with

exits.

Lemma 3.3. Let G be an ultragraph having Condition (EXC). Then the following

statements hold:
10



(1) G has a chain of cycles of length t if only if there exists a non-empty finite

subset F of G1 ∪ Sing(G) such that GF has a chain of cycles of length t.

(2) G has a chain of cycles of length t′ with an exit if only if there exists a

non-empty finite subset F of G1 ∪ Sing(G) such that GF has a chain of cycles of

length t′ with an exit.

(3) If the maximal length of chains of cycles in G is equal to t and the maximal

length of chains of cycles in G with an exit is equal to t′, then there exists a

non-empty finite subset F of G1∪Sing(G) such that the maximal length of chains

of cycles in GF is equal to t and the maximal length of chains of cycles in GF
with an exit is equal to t′.

Proof. (1) (=⇒). Assume that α1 ⇒ α2 ⇒ · · · ⇒ αt is a chain of exclusive cycles

of length t in G. Write αi = e
(i)
1 e

(i)
2 . . . e

(i)
ni , where e

(i)
j ∈ G1 for all 1 ≤ i ≤ t and

1 ≤ j ≤ ni. Then, for each 1 ≤ i ≤ t − 1, there exists a path pi in G such that

s(pi) ∈ r(e
(i)
ki

) and s(e
(i+1)
k′i

) ∈ r(pi) for some 1 ≤ ki ≤ ni and 1 ≤ k′i ≤ ni+1.

Write pi = f
(i)
1 f

(i)
2 · · · f

(i)
mi with f

(i)
j ∈ G1 for all 1 ≤ i ≤ t− 1 and 1 ≤ j ≤ mi. Let

F := {e(i)j , f
(l)
k | 1 ≤ i ≤ t, 1 ≤ l ≤ t− 1, 1 ≤ j ≤ ni, 1 ≤ k ≤ mi} ⊆ G1.

We then have that βi = (e
(i)
1 , e

(i)
2 )(e

(i)
2 , e

(i)
3 ) . . . (e

(i)
ni−1, e

(i)
ni )(e

(i)
ni , e

(i)
1 ) are exclusive

cycles in GF for all 1 ≤ i ≤ t, by Lemma 3.2. Let

qi := (e
(i)
ki
, f

(i)
1 )(f

(i)
1 , f

(i)
2 ) · · · (f (i)mi−1, f

(i)
mi

)(f (i)mi
, e

(i+1)
k′i

)

for 1 ≤ i ≤ t − 1. We then have sGF
(qi) = e

(i)
ki

and rGF
(qi) = e

(i+1)
k′i

for all

1 ≤ i ≤ t− 1. This implies that βi ⇒ βi+1 for all 1 ≤ i ≤ t− 1, and so we obtain

that β1 ⇒ β2 ⇒ · · · ⇒ βt is a chain of cycles of lenght t in GF .

(⇐=). Assume that there exists a non-empty finite subset F of G1 ∪ Sing(G)

such that GF has a chain of exclusive cycles of length t, say c1 ⇒ c2 ⇒ · · · ⇒ ct.

Write

ci = (e
(i)
1 , e

(i)
2 )(e

(i)
2 , e

(i)
3 ) . . . (e

(i)
ni−1, e

(i)
ni

)(e(i)ni
, e

(i)
1 ),

where e
(i)
j ∈ F and sG(e

(i)
j+1) ∈ rG(e

(i)
j ) for all 1 ≤ i ≤ t and 1 ≤ j ≤ ni (with

e
(i)
ni+1 := e

(i)
1 ). For each 1 ≤ i ≤ t − 1, we have ci ⇒ ci+1, and so there exists a

path pi in GF such that sGF
(pi) = e

(i)
ki

and rGF
(pi) = e

(i+1)
k′i

for some 1 ≤ ki ≤ ni
and 1 ≤ k′i ≤ ni+1. Write

pi = (f
(i)
1 , f

(i)
2 )(f

(i)
2 , f

(i)
3 ) · · · (f (i)mi−1, f

(i)
mi

),

where f
(i)
j ∈ F , f

(i)
1 = sGF

(pi) = e
(i)
ki

, f
(i)
mi = rGF

(pi) = e
(i+1)
k′i

and sG(f
(i)
j+1) ∈

rG(f
(i)
j ) for all 1 ≤ i ≤ t − 1 and 1 ≤ j ≤ mi. Let αi = e

(i)
1 e

(i)
2 · · · e

(i)
ni and

βj := f
(i)
1 f

(i)
2 · · · f

(i)
mi for all 1 ≤ i ≤ t and 1 ≤ j ≤ t − 1. We then have that αi’s

are exclusive cycles in G such that sG(βi) ∈ rG(e
(i)
ki

) and sG(e
(i+1)
k′i

) ∈ rG(βi) for all

11



1 ≤ i ≤ t−1. Therefore, we have a chain of exclusive cycles α1 ⇒ α2 ⇒ · · · ⇒ αt
in G of length t.

(2) It follows from item (1) and Lemma 2.7.

(3) It follows from items (1) and (2), thus finishing the proof. �

Now we are able to present the first main result of this section which deter-

mines the Gelfand-Kirillov dimension of an ultragraph Levitt path algebra and

extends Moremo-Fernández and Siles Molina’s result (see [21, Theorem 3.21]) to

the ultragraph case.

Theorem 3.4. Let G be an ultragraph and K a field. Then the following state-

ments hold:

(1) GKdim(LK(G)) < ∞ if and only if G satisfies Condition (EXC) and the

maximal length of chains of cycles in G is finite.

(2) Assume that G satisfies Condition (EXC) and the maximal length of chains

of cycles in G is finite, say t, and the maximal length of chains of cycles in G with

an exit is finite, say t′. Then

GKdim(LK(G)) = max{2t− 1, 2t′}.

Proof. (1) (=⇒). Assume that GKdim(LK(G)) <∞. Then, by Theorem 2.8 (1)

and [18, Lemma 3.1], GKdim(LK(GF )) ≤ GKdim(LK(G)) <∞ for all F ∈ F(G),

where F(G) is the set of all finite subsets of G1 ∪ Sing(G). By [21, Theorem 3.21

(i)], we obtain that GF satisfies Condition (EXC) and the maximal length of

chains of cycles in GF is less than or equal to GKdim(LK(G)) for all F ∈ F(G).

This shows that G satisfies Condition (EXC) and the maximal length of chains

of cycles in G is less than or equal to GKdim(LK(G)), by Lemmas 3.2 and 3.3

respectively.

(⇐=). Assume that G satisfies Condition (EXC) and the maximal length of

chains of cycles in G is finite, say t. Then, by Lemmas 3.2 and 3.3 respectively,

GF satisfies Condition (EXC) and the maximal length of chains of cycles in GF is

less than or equal to t for all F ∈ F(G). From this observation and [21, Theorem

3.21 (ii)], we receive that GKdim(LK(GF )) ≤ 2t for all F ∈ F(G). By Theorems

2.8 (3) and 3.1, we have

GKdim(LK(G)) = lim−→
F∈F(G)

GKdim(LK(GF )) ≤ 2t,

as desired.

(2) Since G satisfies Condition (EXC), GF satisfies Condition (EXC) for all

F ∈ F(G). Since the maximal length of chains of cycles in G is equal to t and

by Lemma 3.3 (1), the maximal length of chains of cycles in GF is less than or

equal to t for all F ∈ F(G), and there exists an element F1 ∈ F(G) such that

the maximal length of chains of cycles in GF1 is equal to t. Moreover, since the

maximal length of chains of cycles in G with an exit is equal to t′ and by Lemma

3.3 (2), the maximal length of chains of cycles in GF with an exit is less than or
12



equal to t′ for all F ∈ F(G), and there exists an element F2 ∈ F(G) such that the

maximal length of chains of cycles in GF2 with an exit is equal to t′. Then, by

[21, Theorem 3.21 (ii)], GKdim(LK(GF )) ≤ max{2t − 1, 2t′} for all F ∈ F(G),

and so

GKdim(LK(G)) = lim−→F∈F(G) GKdim(LK(GF )) ≤ max{2t− 1, 2t′},

by Theorem 2.8 (3). On the other hand, by Lemma 3.3 (3), there exists an element

F ′ ∈ F(G) such that the maximal length of chains of cycles in GF ′ is equal to

t and the maximal length of chains of cycles in GF ′ with an exit is equal to t′.

Then, by [21, Theorem 3.21 (ii)], we have GKdim(LK(GF ′)) = max{2t− 1, 2t′}.
By Theorem 2.8 (1) and [18, Lemma 3.1], we obtain that

max{2t− 1, 2t′} = GKdim(LK(GF ′)) ≤ GKdim(LK(G)),

so GKdim(LK(G)) = max{2t− 1, 2t′}, thus finishing the proof. �

The rest of this section is to show that the Gelfand-Kirillov dimension of the

Levitt path algebra of an ultragraph G is equal to the Gelfand-Kirillov dimension

of the Levitt path algebra of the associated graph of G.

Definition 3.5. Let G = (G0,G1, r, s) be an ultragraph. The associated graph

EG = (E0
G , E

1
G , rEG , sEG ) of G is defined by:

E0
G = G0, E1

G = {(e, v) | e ∈ G1, v ∈ r(e)}

sEG ((e, v)) = s(e), rEG ((e, v)) = v.

The following lemma provides us criteria for ultragraphs having Condition

(EXC) and cycles with exits in terms of their associated graphs.

Lemma 3.6. For an ultragraph G, the following statements hold:

(1) G satisfies Condition (EXC) if and only if EG satisfies Condition (EXC).

(2) G has a cycle with an exit if and only if EG has a cycle with an exit.

Proof. (1) (=⇒). Assume that EG does not satisfy Condition (EXC). We then

have that EG has a non-exclusive cycle c = c1c2 . . . cn, that means, there exists

a cycle d = d1d2 . . . dm in EG which is different from a cyclic permutation of c

such that sEG (ci) = sEG (dj) and ci 6= dj for some 1 ≤ i ≤ n and 1 ≤ j ≤ m.

By renumbering edges of c and d, without loss of generality, we may assume

that i = j = 1. Write ci = (ei, vi) ∈ E1
G with sG(ei+1) = vi, sG(e1) = vn,

and dj = (fj , wj) ∈ E1
G with sG(fj+1) = wj , sG(f1) = wm. We have vn =

sG(e1) = sG(f1) = wm. Let α := e1e2 · · · en and β := f1f2 · · · fm. We then

receive that α and β are two cycles in G with sG(α) = vn = wm = sG(β). Since

c1 = (e1, v1) 6= (f1, w1) = d1, we have either e1 6= f1 or v1 6= w1. If e1 6= f1, then

since vn = sG(e1) = sG(f1) = wm ∈ rG(en) ∩ rG(fm), α and β are non-exclusive

cycles. If e1 = f1, then we must have v1 6= w1, and so e2 6= f2. Since sG(e2) = v1
and sG(f2) = w1 ∈ rG(e1) = rG(f1), α and β are non-exclusive cycles. Therefore,

13



in any case, G always contains a non-exclusive cycle, and so G does not satisfy

Condition (EXC).

(⇐=). Assume that G does not satisfy Condition (EXC). We then have that

G contains cycles α = α1α2 · · ·αn and β = β1β2 · · ·βm such that s(αi), s(βj) ∈
r(αi−1) ∩ r(βj−1) and (αi−1, αi) 6= (βj−1, βj) for some 1 ≤ i ≤ n, 1 ≤ j ≤ m,

where r(α0) := r(αn) and r(β0) := r(βm). By renumbering edges of α and β,

without loss of generality, we may assume that i = j = 1. Consider the following

two cases:

Case 1: s(α1) = s(β1). Let c = (α1, s(α2))(α2, s(α3)) · · · (αn, s(α1)) and d =

(β1, s(β2))(β2, s(β3)) · · · (βm, s(β1)). We then have that c and d are two cycles in

EG such that sEG (c) = sEG (d) and c is different from a cyclic permutation of d

(since (αi−1, αi) 6= (βj−1, βj)), and so EG does not satisfy Condition (EXC).

Case 2: s(α1) 6= s(β1). Let c = (αn, s(α1))(α1, s(α2)) · · · (αn−1, s(αn)) and d =

(αn, s(β1))(β1, s(β2)) · · · (βm, s(α1))(α1, s(α2))(α2, s(α3)) · · · (αn−1, s(αn)). We ob-

tain that c and d are two cycles in EG such that sEG (c) = sEG (d) and c is different

from a cyclic permutation of d. This implies that EG does not satisfy Condition

(EXC).

Thus, in any case we arrive at that EG does not satisfy Condition (EXC).

(2) (=⇒). Assume that G has a cycle α = e1e2 · · · en with an exit. Then,

there is either an edge f ∈ G1 such that there exists an 1 ≤ i ≤ n for which

s(f) ∈ r(ei) but f 6= ei+1 (where en+1 := e1), or a sink w such that w ∈ r(ei)
for some 1 ≤ i ≤ n. If the first case happens, then EG contains a cycle c =

(α1, s(α2))(α2, s(α3)) · · · (αn, s(α1)) with an exit (ei, s(f)) when s(ei+1) 6= s(f)

and with an exit (f, s(f)) when s(ei+1) = s(f). If the second case happens, then

EG contains a cycle c = (α1, s(α2))(α2, s(α3)) · · · (αn, s(α1)) with an exit (ei, w).

(⇐=). Assume that EG has a cycle c = (α1, s(α2))(α2, s(α3)) · · · (αn, s(α1))

with an exit (f, w). Then, there exits an 1 ≤ i ≤ n such that sG(f) = sG(αi+1)

and (f, w) 6= (αi+1, sG(αi+2)). If f 6= αi+1, then G has a cycle α := e1e2 · · · en
with an exit f . If f = αi+1, then we must have w 6= sG(αi+2). If w is a sink,

then w is an exit for α. If w is not a sink, then every edge g ∈ s−1G (w) is an exit

for α. Thus, in any case α always has an exit, finishing our proof. �

The following lemma provides us criteria for ultragraphs having chains of cycles

of finite length and chains of cycles of finite length with exits in terms of their

associated graphs.

Lemma 3.7. For an ultragraph G having Condition (EXC), the following state-

ments hold:

(1) G has a chain of cycles of length t if and only if EG has a chain of cycles of

length t. Consequently, the maximal length of chains of cycles in G is equal to t

if and only if the maximal length of chains of cycles in EG is equal to t.

(2) G has a chain of cycles of length t′ with an exit if and only if EG has a chain

of cycles of length t′ with an exit. Consequently, the maximal length of chains of
14



cycles in G with an exit is equal to t′ if and only if the maximal length of chains

of cycles in EG with an exit is equal to t.

Proof. (1) (=⇒). Assume that α1 ⇒ α2 ⇒ · · · ⇒ αt is a chain of cycles of length

t in G. Write αi = e
(i)
1 e

(i)
2 · · · e

(i)
ni with e

(i)
j ∈ G1 for all 1 ≤ i ≤ t, 1 ≤ j ≤ ni.

Then, for each 1 ≤ i ≤ t − 1, there exists a path pi such that s(pi) ∈ r(e
(i)
ki

)

and s(e
(i+1)
k′i

) ∈ r(pi) for some 1 ≤ ki ≤ ni and 1 ≤ k′i ≤ ni+1. Write pi =

f
(i)
1 f

(i)
2 . . . f

(i)
mi with f

(i)
j ∈ G1 for all 1 ≤ i ≤ t− 1 and 1 ≤ j ≤ mi. Let

βi = (e
(i)
1 , s(e

(i)
2 ))(e

(i)
2 , s(e

(i)
3 )) · · · (e(i)ni−1, s(e

(i)
ni

))(e(i)ni
, s(e

(i)
1 ))

for 1 ≤ i ≤ t, and

qi = (e
(i)
ki
, s(f

(i)
1 ))(f

(i)
1 , s(f

(i)
2 )) · · · (f (i)mi−1, s(f

(i)
mi

))(f (i)mi
, s(e

(i+1)
k′i

))

for 1 ≤ i ≤ t− 1. We then have βi’s are cycles in EG with sEG (qi) = sG(e
(i)
j ) and

rEG (qi) = sG(e
(i+1)
k′i

) for all 1 ≤ i ≤ t− 1, and so βi ⇒ βi+1 for all 1 ≤ i ≤ t− 1.

This implies that β1 ⇒ β2 ⇒ · · · ⇒ βt is a chain of cycles of lenght t in EG .

(⇐=). Assume that EG has c1 ⇒ c2 ⇒ · · · ⇒ ct is a chain of cycles of length t.

Then, by renumbering edges of ci’s, without loss of generality, we may assume that

for each 1 ≤ i ≤ t− 1, there exists a paths pi in EG such that sEG (pi) = sEG (ci)

and rEG (pi) = sEG (ci+1). Write

ci = (e
(i)
1 , v

(i)
1 )(e

(i)
2 , v

(i)
2 ) · · · (e(i)ni

, v(i)ni
)

with v
(i)
j ∈ rG(e

(i)
j ) and v

(i)
j = sG(e

(i)
j+1) for all 1 ≤ i ≤ t and 1 ≤ j ≤ ni, where

e
(i)
ni+1 := e

(i)
1 , and write

pi = (f
(i)
1 , w

(i)
1 )(f

(i)
2 , w

(i)
2 ) · · · (f (i)mi

, w(i)
mi

)

with w
(i)
j ∈ rG(f

(i)
j ), v

(i)
ni = sG(f

(i)
1 ), w

(i)
j = sG(f

(i)
j+1) and w

(i)
mi = sG(e

(i+1)
1 ) for all

1 ≤ i ≤ t− 1 and 1 ≤ j ≤ mi, where f
(i)
mi+1 := f

(i)
1 . Let

αi = e
(i)
1 e

(i)
2 · · · e

(i)
ni

for all 1 ≤ i ≤ t, and let

βi = f
(i)
1 f

(i)
2 · · · f

(i)
mi

for all 1 ≤ i ≤ t−1. We then have that αi’s are cycles in G and sG(βi) = sG(f
(i)
1 ) =

v
(i)
ni ∈ rG(e

(i)
ni ) = rG(αi), and sG(αi+1) = sG(e

(i+1)
1 ) = w

(i)
mi ∈ rG(f

(i)
mi) = rG(βi) for

all 1 ≤ i ≤ t− 1. This shows that αi ⇒ αi+1 for all 1 ≤ i ≤ t− 1. Therefore, we

have a chain of cycles α1 ⇒ α2 ⇒ · · · ⇒ αt in G of length t.

(2) It follows from item (1) and Lemma 3.6, thus finishing our proof. �

Now we are able to present the second main result of this section, showing that

ultragraph Levitt path algebras LK(G) and Levitt path algebras LK(EG) of the

associated graphs EG have the same Gelfand-Kirillov dimension.
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Theorem 3.8. Let G be an ultragraph and K a field. Then GKdim(LK(G) =

GKdim(LK(EG).

Proof. It follows from Theorem 3.4, Lemmas 3.6 and 3.7, and [21, Theorem 3.21].

�

4. On ultragraph Leavitt path algebras whose simple modules are

finitely presented

In this section we describe ultragraph Leavitt path algebras whose simple mod-

ules are finitely presented, and show that these algebras have finite Gelfand-

Kirillov dimension (Theorem 4.11). Moreover, we provide new classes of simple

modules over ultragraph Leavitt path algebras associated with minimal infinite

emitters (Theorem 4.2 and Remark 4.3) and minimal sinks (Theorem 4.5) which

have not yet appeared in the context of Leavitt path algebras of graphs, and in-

vestigate the finite representation of these modules (Proposition 4.4 and Theorem

4.5 (5)) and the simple modules associated with infinite paths (Corollary 4.10).

We start this section with the notion of minimal infinite emitters, introduced

in [24, Definition 3.2]. Let G be an ultragraph and V ∈ G0. We say that V is

an infinite emitter if the set {e ∈ G1 | s(e) ∈ V } is infinite. Otherwise we say

that V is a finite emitter. The set V is called a minimal infinite emitter if V is

an infinite emitter, contains no proper subsets in G0 that are infinite emitters,

and contains no proper subsets in G0 which are finite emitters and have infinite

cardinality.

We will construct a new class of simple modules over ultragraph Leavitt path

algebras associated with minimal infinite emitters. Let K be a field, G an ultra-

graph and V a minimal infinite emitter in G0. We denote by SV∞ the K-vector

space having

[V ] := {α ∈ G∗ | |α| ≥ 1, V ⊆ r(α)} ∪ {V }

as a basis. For each A ∈ G0 we define a linear map qA : SV∞ −→ SV∞ such that

qA(α) =


α if |α| ≥ 1 and s(α) ∈ A,
α if α = V and V ⊆ A,
0 otherwise,

for all α ∈ [V ]. For each e ∈ G1 we define linear maps te and t∗e : SV∞ −→ SV∞
such that, for all α ∈ [V ]

te(α) =


eα if |α| ≥ 1 and s(α) ∈ r(e),
e if α = V and V ⊆ r(e),
0 otherwise,
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and

t∗e(α) =


β if α = eβ and |β| ≥ 1,

V if α = e and V ⊆ r(e),
0 otherwise.

The above endomorphisms induce a representation of LK(G) as described below.

Proposition 4.1. Let K be a field, G an ultragraph and V a minimal infinite

emitter in G0. Then, there exists a K-algebra homomorphism πV : LK(G) −→
EndK(SV∞) such that πV (A) = qA for all A ∈ G0, πV (se) = te and πV (s∗e) = t∗e
for all e ∈ G1.

Proof. We show that the endomorphisms {qA, te, t∗e | A ∈ G0, e ∈ G1} satisfy the

relations analogous to (1) - (4) in Definition 2.3. For (1), it is straightforward

to see that qAqB = qA∩B for all A and B ∈ G0. Let A, B and C be elements in

G0. We claim that pA∪B = pA + pB − pA∩B. Indeed, for all α ∈ [V ] \ {V }, one

considers the following three cases:

Case 1: s(α) ∈ (A \ B) ∪ (B \ A). We then have qA∪B(α) = α = qA(α) +

qB(α)− qA∩B(α) = (qA + qB − qA∩B)(α).

Case 2: s(α) ∈ A ∩B. We then have qA(α) = α, qB(α) = α, qA∩B(α) = α and

qA∪B(α) = α. Therefore, qA∪B(α) = α = (qA + qB − qA∩B)(α).

Case 3: s(α) /∈ A ∪B. We then have qA∪B(α) = 0 = (qA + qB − qA∩B)(α).

Next we prove that qA∪B(V ) = (qA + qB − qA∩B)(V ). Consider the following

two cases:

Case 1: V * A ∪ B. We then have qA(V ) = 0, qB(v) = 0, qA∩B(v) = 0 and

qA∪B(V ) = 0, and so qA∪B(V ) = 0 = (qA + qB − qA∩B)(V ).

Case 2: V ⊆ A ∪ B. If V contains an infinite emitter v in G0, then V = {v}
(since V is a minimal infinite emitter in G0). Then it is straightforward to see

that qA∪B(V ) = (qA + qB − qA∩B)(V ). If V does not contain infinite emitters in

G0, then V is an infinite set. Since V is a minimal infinite emitter in G0, we have

either V ∩D = V or V ∩D is finite for all D ∈ G0. If V ∩A and V ∩B are finite,

then V = V ∩ (A ∪B) = (V ∩A) ∪ (V ∩B) is finite, a contradiction. Hence, we

consider the following three possible subcases.

Case 2.1: V ⊆ A and V * B. We have qA∪B(V ) = V = V + 0 − 0 =

(qA + qB − qA∩B)(V ).

Case 2.2: V ⊆ B and V * A. We have qA∪B(V ) = V = 0 + V − 0 =

(qA + qB − qA∩B)(V ).

Case 2.3: V ⊆ A ∩ B. We have qA∪B(V ) = V = V + V − V = (qA + qB −
qA∩B)(V ).

In any case we arrive at that qA∪B(α) = (qA + qB − qA∩B)(α) for all α ∈ [V ],

that means, qA∪B = (qA + qB − qA∩B), as desired.

For (2), for each e ∈ G1 we have
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qs(e)te(α) =


qs(e)(eα) if |α| ≥ 1 and s(α) ∈ r(e),
qs(e)(e) if α = V and V ⊆ r(e),
0 otherwise,

=


eα if |α| ≥ 1 and s(α) ∈ r(e),
e if α = V and V ⊆ r(e),
0 otherwise,

= te(α)

for all α ∈ [V ], and

teqr(e)(α) =


te(α) if |α| ≥ 1 and s(α) ∈ r(e),
te(α) if α = V and V ⊆ r(e),
0 otherwise,

=


eα if |α| ≥ 1 and s(α) ∈ r(e),
e if α = V and V ⊆ r(e),
0 otherwise,

= te(α)

for all α ∈ [V ]. This shows that qs(e)te = te = teqr(e).

For (3), for each e ∈ G1 we have

t∗ete(α) =


t∗e(eα) if |α| ≥ 1 and s(α) ∈ r(e),
t∗e(e) if α = V and V ⊆ r(e),
0 otherwise,

=


α if |α| ≥ 1 and s(α) ∈ r(e),
V if α = V and V ⊆ r(e),
0 otherwise,

= pr(e)(α)

for all α ∈ [V ]. Let e and f be two distinct edges in G1. We then have

t∗etf (α) =


t∗e(fα) if |α| ≥ 1 and s(α) ∈ r(f),

t∗e(f) if α = V and V ⊆ r(e),
0 otherwise,

= 0

for all α ∈ [V ].

For (4), let v be a regular vertex in G. We then have V * {v} (since V is a

minimal infinite emitter in G0), and so

qv(V ) = 0 =
∑

e∈s−1(v)

tet
∗
e(V ) = (

∑
e∈s−1(v)

tet
∗
e)(V ).
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Let α ∈ [V ] \ {V }. If s(α) 6= v, then t∗e(α) = 0 for all e ∈ s−1(v), and so

(
∑

e∈s−1(v)

tet
∗
e)(α) =

∑
e∈s−1(v)

tet
∗
e(α) =

∑
e∈s−1(v)

(te(t
∗
e(α)) = 0 = qv(α).

Consider the case when s(α) = v. Write α = e1e2 . . . e|α| with e1 ∈ s−1(v). We

then have (
∑

e∈s−1(v)

tet
∗
e)(α) =

∑
e∈s−1(v)

tet
∗
e(α) =

∑
e∈s−1(v)

te(t
∗
e(α)) = te1(e2 . . . e|α|) =

α = qv(α). This implies that qv =
∑

e∈s−1(v)

tet
∗
e, proving (4).

By the universal property of ultragraph Leavitt path algebras, there is a unique

K-algebra homomorphism πV : LK(G) −→ EndK(SV∞) such that πV (A) = qA
for all A ∈ G0, πV (se) = te and πV (s∗e) = t∗e for all e ∈ G1, thus finishing the

proof. �

We denote the scalar multiplication of LK(G) on SV∞ by “ · ”, that means,

r · u = πV (r)(u) for all r ∈ LK(G) and u ∈ SV∞. The following result provides

simple modules over ultragraph Leavitt path algebras associated with minimal

infinite emitters.

Theorem 4.2. Let K be a field, G an ultragraph, and V and W minimal infinite

emitters in G0. Then the following statements hold:

(1) SV∞ is a simple left LK(G)-module;

(2) SV∞ ∼= SW∞ as left LK(G)-modules if and only if V = W ;

(3) EndLK(G)(SV∞) ∼= K.

Proof. Let x be a nonzero element in SV∞. Write x =
n∑
i=1

kiαi, where ki ∈ K\{0}

and αi’s are distinct elements in [V ]. Without loss of generality, we may assume

that |α1| ≤ |α2| ≤ · · · ≤ |αn|. We then have

s∗αn
· x = πV (s∗αn

)(

n∑
i=1

kiαi) =

n∑
i=1

kiπV (s∗αn
)(αi) = knV,

so V = k−1n s∗αn
· x ∈ LK(G)x and α = πV (sα)(V ) = sα · V ∈ LK(G)x for all

α ∈ [V ]. This implies that SV∞ = LK(G)x, and so SV∞ is a simple left LK(G)-

module, showing (1).

Assume that ϕ : SV∞ −→ SW∞ is an isomorphism of left LK(G)-modules.

Then, we have 0 6= ϕ(V ) =
n∑
i=1

kiαi, where ki ∈ K \ {0} and αi’s are distinct

elements in [W ]. We claim that n = 1 and α1 = V . We assume the converse.

Then we may assume that |α1| is longest among all the |αi|’s. In particular, we

have |α1| ≥ 1, and so s∗α1
· V = 0 and

0 = ϕ(s∗α1
· V ) = s∗α1

· ϕ(V ) = s∗α1
· (

n∑
i=1

kiαi) = k1W 6= 0,
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a contradiction. This shows the claim, and so we obtain that V = W and

EndLK(G)(SV∞) ∼= K, proving (2) and (3), thus finishing our proof. �

It is worth mentioning the following note.

Remark 4.3. In [15, Lemm 4.4] and [10, Lemma 5.3], the second author and

his coauthors defined the simple left LK(G)-module Nv∞, where v is an infinite

emitter in an ultragraph G. It is obvious that {v} is a minimal infinite emitter

in G0 and S{v}∞ = Nv∞. Using Theorem 4.2 we may construct a new class of

simple modules over ultragraph Leavitt path algebras. For example, let G be the

ultragraph such that G0 = {vn | n ∈ N} and G1 = {en | n ∈ N} with s(en) = vn
for all n ∈ N, r(e0) = {vn | n ≥ 1} and r(en) = {v0, vn} for all n ≥ 1. Then

r(e0) is a minimal infinite emitter in G. We refer the reader to [8, Example 3.20]

in more details. By Theorem 4.2, Sr(e0)∞ is a simple left LK(G)-modules. This

provides a new class of simple modules over ultragraph Leavitt path algebras

which has been not appeared in [14, 15, 10].

The following result extends [23, Proposition 2.2] to ultragraph Leavitt path

algebras.

Proposition 4.4. Let K be a field, G an ultragraph and V a minimal infinite

emitter in G0. Then, the simple left LK(G)-module SV∞ is not finitely presented.

Consequently, if every simple left LK(G)-module is finitely presented, then G is a

row-finite ultragraph such that G0 has no minimal infinite emitters.

Proof. Assume that SV∞ is finitely presented. Consider the exact sequence

0→ ker (ϕ)
ι−→ LK(G)pV

ϕ−→ SV∞ → 0,

where ι is the canonical injection and ϕ(x) = x·V for all x ∈ LK(G)pV . Since SV∞
is finitely presented and by [19, Schanuel’s Lemma], ker (ϕ) is a finitely generated

submodule of the left LK(G)-module LK(G)pV . Let x1, · · · , xn be the generators

of ker (ϕ). For each 1 ≤ t ≤ n, by Lemma 2.5, we can write xt =
∑mt

i=1 kisαipAis
∗
βi

where mt ≥ 1, ki ∈ K \ {0}, αi, βi ∈ G∗, Ai ∈ G0 and r(αi) ∩ Ai ∩ r(βi) 6= ∅ for

all 1 ≤ i ≤ mt. Consider the following two possible cases.

Case 1: V contains an infinite emitter inG0. Then, since V is a minimal infinite

emitter, V = {v}. We claim that |βi| ≥ 1 for all 1 ≤ i ≤ t. Because, otherwise,

by renumbering the terms of xt, we may assume that xt =
∑s

i=1 kisαipAipBi +∑mt
j=s+1 kjsαjpAjs

∗
βj

, where v ∈ r(αi)∩Ai∩Bi ∈ G0 for all 1 ≤ i ≤ s, and v = s(βj)

and |βj | ≥ 1 for all s+1 ≤ j ≤ mt. We then have xt = xtpv = (
∑s

i=1 kisαipAipBi+∑mt
j=s+1 kjsαjpAjs

∗
βj

)pv =
∑s′

i=1 k
′
isα′ipv +

∑mt
j=s+1 kjsαjpAjs

∗
βj

, where 1 ≤ s′ ≤ s,

k′i ∈ K \ {0} and α′i’s are distinct paths in G∗ with v ∈ r(α′i). Since s∗βj · v = 0 for

all s+ 1 ≤ j ≤ mt, we have 0 = ϕ(xt) = xt · v = (
∑s′

i=1 kisα′ipv) · v =
∑s′

i=1 kisα′i
in SV∞. This implies that k′i = 0 for all 1 ≤ i ≤ s′, a contradiction, thus

showing the claim. Therefore, each xt is a K-linear combination of finitely many

monomials of the form sαipAis
∗
βi

, and so ker(ϕ) =
∑m

i=1 LK(G)sαipAis
∗
βi

, where
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m ≥ 1, αi, βi ∈ G∗, Ai ∈ G0 and r(αi) ∩ Ai ∩ r(βi) 6= ∅, |βi| ≥ 1 and v = s(βi)

for all 1 ≤ i ≤ m. Since v is an infinite emitter, there exists an edge e ∈ G1 such

that v = s(e) and βi 6= eγ for all γ ∈ G∗ for all 1 ≤ i ≤ m. Since s∗e · V = 0,

s∗e ∈ ker(ϕ), and so s∗e =
∑m

i=1 yisαipAis
∗
βi

, where yi ∈ LK(G). We then have

pr(e) = s∗ese = (
∑m

i=1 yisαipAis
∗
βi

)se =
∑m

i=1 yisαipAis
∗
βi
se = 0 (since s∗βise = 0).

On the other hand, by Lemma 2.5 we always have pr(e) 6= 0, a contradiction.

Case 2: V does not contain infinite emitters in G0. We then have either

V ∩ A = V or V ∩ A is finite for all A ∈ G0. We note that xtpV = xt for

all 1 ≤ t ≤ n. Therefore, we have s(βi) ∈ V for all βi with |βi| ≥ 1, and

V ⊆ r(αi)∩Ai ∩Bi or r(αi)∩Ai ∩Bi is a finite subset of V for all βi = Bi ∈ G0.
Assume that there exists a number 1 ≤ t ≤ n such that

xt =
s∑
i=1

kisαipAi +
r∑

j=s+1

kjsαjpBj +

mt∑
l=r+1

klsαl
pAl

s∗βl ,

where kj is nonzero in K for all s + 1 ≤ j ≤ r, Ai’s are finite subsets of

r(αi) ∩ V and Bj ’s are elements in G0 with V ⊆ r(αj) ∩ Bj . We then have

0 = ϕ(xt) = xt · V =
∑r

j=s+1 kjsαj in SV∞. This implies that kj = 0 for all

s + 1 ≤ j ≤ r, a contradiction. Therefore, each xt is a K-linear combination

of finitely many monomials of the forms sα′ipA′i and sαjpAjs
∗
βj

, where A′i is a

finite subset of V ∩ r(α′i) and |βj | ≥ 1, s(βj) ∈ V . Since V is an infinite emit-

ter, there exists an edge e ∈ G1 such that s(e) ∈ V , βj 6= eγ for all γ ∈ G∗
and for all βj , and s(e) /∈ A′i for all A′i. Since s∗e · V = 0, s∗e ∈ ker(ϕ), and so

s∗e =
∑m

j=1 yjsαjpAjs
∗
βj

+
∑m′

i=1 y
′
isα′ipA′i , where yj , y

′
i ∈ LK(G). We then have

pr(e) = s∗ese = (
∑m

j=1 yjsαjpAjs
∗
βj

+
∑m′

i=1 y
′
isα′ipA′i)se =

∑m
j=1 yjsαjpAjs

∗
βj
se +∑m′

i=1 y
′
isα′ipA′ise = 0 (since s∗βise = 0 and s(e) /∈ A′i). On the other hand, by

Lemma 2.5 we always have pr(e) 6= 0, a contradiction.

In any case we arrive at a contradiction. This shows that SV∞ is not finitely

presented, thus finishing the proof. �

Let G be an ultragraph. A generalized vertex A ∈ G0 is called a minimal sink

if A is a finite emitter with infinite cardinality and has no subsets (in G0) with

infinite cardinality (see [24, Definition 3.8]). We will construct an additional class

of simple modules over ultragraph Leavitt path algebras associated with minimal

sinks.

Let K be a field, G an ultragraph and V a minimal sink in G0. We denote by

NV the K-vector space having

[V ] := {α ∈ G∗ | |α| ≥ 1, V ⊆ r(α)} ∪ {V }

as a basis. By repeating the method established in Proposition 4.1, there exists a

K-algebra homomorphism πV : LK(G) −→ EndK(NV ) such that πV (A) = qA for

all A ∈ G0, πV (se) = te and πV (s∗e) = t∗e for all e ∈ G1, where endomorphisms qA
(A ∈ G0) and te, t

∗
e (e ∈ G1) are defined similarly as directly before Proposition
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4.1. This forms the scalar multiplication of LK(G) on NV denoted by “ · ”, that

means, r · u = πV (r)(u) for all r ∈ LK(G) and u ∈ NV . Moreover, we have the

following.

Theorem 4.5. Let K be a field, G an ultragraph, and V and W minimal sinks

in G0. Then the following statements hold:

(1) NV is a simple left LK(G)-module;

(2) NV ∼= NW as left LK(G)-modules if and only if V = W ;

(3) EndLK(G)(NV ) ∼= K;

(4) NV � SV ′∞ for all minimal infinite emitter V ′ ∈ G0;

(5) NV is not finitely presented.

Proof. Items (1), (2) and (3) are done similarly as in the proof of Theorem 4.2.

For (4), assume that ϕ : NV −→ SV ′∞ is an isomorphism of left LK(G)-

modules. We then have 0 6= ϕ(V ) =
∑n

i=1 kiαi, where k ∈ K \ {0} and αi’s

are distinct elements in [V ′]. We claim that n = 1 and α1 = V ′. We assume

the converse. Then we may assume that |α1| is longest among all the |αi|’s. In

particular, we have |α1| ≥ 1, and so s∗α1
· V = 0 and

0 = ϕ(s∗α1
· V ) = s∗α1

· ϕ(V ) = s∗α1
· (

n∑
i=1

kiαi) = k1V
′ 6= 0,

a contradiction. This shows the claim, and so we obtain that 0 6= ϕ(V ) = k1V
′.

Since V 6= V ′, we obtain that V ∩ V ′ is finite, and 0 = ϕ(pV ′ · V ) = pV ′ · ϕ(V ) =

pV ′ · (k1V ′) = k1V
′ 6= 0, a contradiction. This implies that NV � SV ′∞ for all

minimal infinite emitter V ′ ∈ G0, proving (4).

For (5), assume that NV is finitely presented. Consider the exact sequence

0→ ker (ϕ)
ι−→ LK(G)pV

ϕ−→ NV → 0,

where ι is the canonical injection and ϕ(x) = x ·V for all x ∈ LK(G)pV . Since NV
is finitely presented and by [19, Schanuel’s Lemma], ker (ϕ) is a finitely generated

submodule of the left LK(G)-module LK(G)pV . By repeating the method estab-

lished in Case 2 of the proof of Proposition 4.4, we obtain that ker (ϕ) is generated

by finitely many elements of the forms sα′ipA′i and sαjpAjs
∗
βj

, where A′i is a finite

subset of V ∩ r(α′i) and |βj | ≥ 1, s(βj) ∈ V . Since V is infinite, there exists a

vertex v ∈ V such that v 6= s(βj) for all βj , and v /∈ A′i for all A′i. Since pv ·V = 0,

pv ∈ ker(ϕ), and so pv =
∑m

j=1 yjsαjpAjs
∗
βj

+
∑m′

i=1 y
′
isα′ipA′i , where yj , y

′
i ∈

LK(G). We then have pv = pvpv = (
∑m

j=1 yjsαjpAjs
∗
βj

+
∑m′

i=1 y
′
isα′ipA′i)pv =∑m

j=1 yjsαjpAjs
∗
βj
pv +

∑m′

i=1 y
′
isα′ipA′ipv = 0 (since v 6= s(βi) and v /∈ A′i). On the

other hand, by Lemma 2.5 we always have pv 6= 0, a contradiction, thus finishing

the proof. �

For clarification, we illustrate Theorem 4.5 by presenting the following example.
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Example 4.6. Let K be a field and G the ultragraph such that G0 = {vn | n ∈ N}
and G1 = {e} with s(e) = v0 and r(e) = {vn | n ≥ 1}. Then r(e) is a minimal

sink in G0. By Theorem 4.2, Nr(e) is a simple left LK(G)-modules, but not finitely

presented. This provides a new class of simple modules over ultragraph Leavitt

path algebras which has been not appeared in [14, 15, 10].

Let G be an ultragraph. An infinite path in G is a sequence e1e2 · · · en · · · of

edges in G such that s(ei+1) ∈ r(ei) for all i ≥ 1. We denote by p∞ the set

of all infinite paths in G. For p = e1e2 · · · en · · · ∈ p∞ and n ∈ N, we denote

by τ≤n(p) the finite path e1e2 · · · en, while we denote by τ>n(p) the infinite path

en+1en+2 · · · . If p and q are infinite paths in G, then we say that p and q are

equivalent (written p ∼ q) in case there exist non-negative integers m,n such that

τ>m(p) = τ>n(q). Clearly ∼ is an equivalence on p∞, and we let [p] denote the

∼ equivalence class of the infinite path p. Let c be a closed path in G. Then the

path ccc · · · is an infinite path in G, which we denote by c∞. An infinite path p

is called a rational path if p ∼ c∞ for some closed path c. An infinite path p is

called an irrational path if p is not rational.

For p := e1 · · · en · · · ∈ p∞, in [14, Proposition 3.9] Gonçalves and Royer defined

the simple left LK(G)-module V[p] to be the K-vector space having [p] as a basis

and with the scalar multiplication satisfying the following: for all A ∈ G0, e ∈ G1
and α ∈ [p],

pA · α =

{
α if s(α) ∈ A,
0 otherwise,

se · α =

{
eα if s(α) ∈ r(e),
0 otherwise

and

s∗e · α =

{
τ>1(α) if α = eτ>1(α),

0 otherwise.

We should note that in [15, Subsection 4.2] Hazrat and the first author con-

structed all these modules V[p], by using the realization of ultragraph Leavitt

path algebras as Steinberg algebras. The following proposition provides us with

another method to construct the modules V[p] where p is an irrational path, which

extends [6, Theorem 3.4] to ultragraph Leavitt path algebras.

Proposition 4.7. Let K be a field and G an ultragraph, and let p = e1 · · · en · · ·
be an irrational path in G with v = s(p). Let ε0 = pv and εi = se1 · · · seis∗ei · · · s

∗
e1

for all i ≥ 1. Then, a cyclic left module Sp over LK(G), generated by x subject

to x = εix for all i ≥ 0, is both simple and isomorphic to V[p]. Consequently, one

has

AnnLK(G)(x) =
∞⊕
i=0

LK(G)(εi − εi+1)⊕ LK(G)(1− ε0),

where LK(G)(1− ε0) := {r − rε0 | r ∈ LK(G)}.
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Proof. We note that εi · p = p, as elements in V[p], for all i ≥ 0. Since V[p] is a

simple left LK(G)-module, V[p] is an image of Sp under the map sending x ∈ Sp
to p ∈ V[p], and so Sp is nonzero. Let x0 = p0x = x and xi = s∗ei · · · s

∗
e1x for

all i ≥ 1. We have x = se1 · · · seixi for all i ≥ 1. Let y be a nonzero ele-

ment in Sp. Since Sp = LK(G)x, y may be written in the form y = rx and

0 6= r =
∑m

i=1 kisαipAis
∗
βi
∈ LK(G), where m is minimal such that ki ∈ K \ {0},

αi, βi ∈ G∗, Ai ∈ G0 and r(αi) ∩ Ai ∩ r(βi) 6= ∅ for all 1 ≤ i ≤ m. Let

n ≥ max{|βi| | 1 ≤ i ≤ m} + 1. We then have y = (
∑m

i=1 kisαipAis
∗
βi

)x =

(
∑m

i=1 kisαipAis
∗
βi

)εnx = (
∑m

i=1 kisαipAis
∗
βi
sτ≤n(p)s

∗
τ≤n(p)

)x. By the minimality

of m, sαipAis
∗
βi
sτ≤n(p)s

∗
τ≤n(p)

6= 0 for all 1 ≤ i ≤ m. In particular, we have

s∗βisτ≤n(p) 6= 0 for all 1 ≤ i ≤ m. Then, for each i, there exists a path δi ∈ G∗
such that |δi| ≥ 1, τ≤n(p) = βiδi and s(δi) ∈ r(αi)∩Ai ∩ r(βi). This implies that

y = (
m∑
i=1

kisαipAis
∗
βi
sτ≤n(p)s

∗
τ≤n(p)

)x = (
m∑
i=1

kisαiδis
∗
τ≤n(p)

)x =
m∑
i=1

kisαiδixn.

By the minimality of m, sαiδixn’s are nonzero, pairwise different elements in Sp,

and so αiδi’s are pairwise different paths of positive length in G∗.
By renumbering paths αiδi, without loss of generality, we may assume that

ps(α1δ1)y = ps(α1δ1)(
∑
kisαiδixn) =

∑d
i=1 kisαiδixn, where 1 ≤ d ≤ m, and

s(αiδi) = s(α1δ1) for all 1 ≤ i ≤ d. We note that s∗α1δ1
sα1δ1 = pr(α1δ1) = pr(τ≤n(p))

and s∗α1δ1
sαiδi = 0 for all 2 ≤ i ≤ d, and so

k−11 sτ≤n(p)s
∗
α1δ1ps(α1δ1)y = k−11 sτ≤n(p)s

∗
α1δ1(

d∑
i=1

kisαiδixn) = sτ≤n(p)xn = x.

This implies that x ∈ LK(G)y, and hence Sp = LK(G)x = LK(G)y. Therefore,

Sp is both simple and isomorphic to V[p], thus finishing the proof. �

Let G be an ultragraph and v, w ∈ G0. We write w ≥ v to mean that there

exits a path α ∈ G∗ with s(α) = w and v ∈ r(α). We denote by TG(v) the set

{w ∈ G0 | v ≥ w}. We say there is a bifucation at v if |s−1(v)| ≥ 2. The vertex v

is called a line point if |r(e)| = 1 for all e ∈ G1 with s(e) ∈ TG(v) and there is no

bifucations or a cycle based at any vertex in TG(v). Let p = e1 · · · en · · · be an

infinite path in G. We say that p contains a line point if there exists a number

m such that s(em) is a line point.

Corollary 4.8. Let K be a field, G an ultragraph and p = e1 · · · en · · · an irra-

tional path in G. Then, the simple left LK(G)-module V[p] is finitely presented if

and only if p contains a line point.

Proof. (=⇒). Assume that V[p] is finitely presented. By Proposition 4.7, the

direct sum
∞⊕
i=0

LK(G)(εi − εi+1) is a finite direct sum, where ε0 = ps(e1) and

εi = se1 · · · seis∗ei · · · s
∗
e1 for all i ≥ 1, and so there exists m such that εm = εm+i
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for all i ≥ 0. We then have

pr(em) = s∗em · · · s
∗
e1εmse1 · · · sem = s∗em · · · s

∗
e1εm+1se1 · · · sem = sem+1s

∗
em+1

,

and

ps(em+1) = ps(em+1)pr(em) = ps(em+1)sem+1s
∗
em+1

= sem+1s
∗
em+1

= pr(em).

This shows that r(em) = {sem+1}. Similarly, since εm+i = εm+i+1 for all i ≥ 0,

we obtain that r(em+i) = {s(em+i+1)} for all i, that means, all these vi (i ≥ m)

are line points.

(⇐=). Assume that there exists m such that vm is a line point. We then

have εm = εm+i for all i ≥ 0. By Proposition 4.7, V[p] is finitely presented, thus

finishing the proof. �

The following result extends [6, Theorem 3.7] to ultragraph Leavitt path alge-

bras, showing that V[p] is finitely presented for all rational path p.

Proposition 4.9. Let K be a field and G an ultragraph, and p = π∞ a rational

path with a simple closed path π based at vertex v. Then V[p] = V[π∞] is isomorphic

to a cyclic left LK(G)-module Sπ generated by x ∈ Sπ subject to sπx = x, whence

it is both isomorphic to LK(G)pv/LK(G)(pv − sπ) and finitely presented.

Proof. We have sπ · p = p as elements in V[p]. Since V[p] is a simple left LK(G)-

module, V[p] is an image of Sπ under the map sending x ∈ Sπ to p ∈ V[p], and so

Sπ is nonzero.

We note that x = snπx as elements in Sπ for all n ≥ 0, where π0 := pv. Let y

be a nonzero element in Sπ. Since Sπ = LK(G)x, y may be written in the form

y = rx and 0 6= r =
∑m

i=1 kisαipAis
∗
βi
∈ LK(G), where m is minimal such that

ki ∈ K \ {0}, αi, βi ∈ G∗, Ai ∈ G0 and r(αi) ∩Ai ∩ r(βi) 6= ∅ for all 1 ≤ i ≤ m.

Let n be a positive integer such that |βi| < n|π| for all 1 ≤ i ≤ m. We then

have

y = (
m∑
i=1

kisαipAis
∗
βi

)x = (
m∑
i=1

kisαipAis
∗
βi

)snπx = (
m∑
i=1

kisαipAis
∗
βi
snπ)x.

By the minimality of m, sαipAis
∗
βi
snπ 6= 0 for all 1 ≤ i ≤ m. Then, for each i,

there exists δi ∈ G∗ such that |δi| ≥ 1, πn = βiδi and s(δi) ∈ r(αi) ∩ Ai ∩ r(βi).
This implies

y = (

m∑
i=1

kisαipAis
∗
βi
snπ)x = (

m∑
i=1

kisαiδi)x.

By the minimality of m, sαiδix’s are nonzero, pairwise different elements in Sπ,

and so αiδi’s are pairwise different paths positive length in G∗.
By renumbering paths αiδi, without loss of generality, we may assume that

ps(α1δ1)y = ps(α1δ1)(
∑
kisαiδix) =

∑d
i=1 kisαiδix, where 1 ≤ d ≤ m, and s(αiδi) =
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s(α1δ1) for all 1 ≤ i ≤ d. We note that s∗α1δ1
sα1δ1 = pr(α1δ1) = pr(π) and

s∗α1δ1
sαiδi = 0 for all 2 ≤ i ≤ d, and so

k−11 s∗α1δ1ps(α1δ1)y = k−11 s∗α1δ1(
d∑
i=1

kisαiδix) = pr(π)x = pr(π)(sπx) = sπx = x.

This implies that x ∈ LK(G)y, and hence Sπ = LK(G)x = LK(G)y. Therefore,

Sπ is both simple and isomorphic to V[p], thus finishing the proof. �

Consequently, we obtain the following corollary.

Corollary 4.10. Let K be a field, G an ultragraph and p an infinite path in G.

Then, the simple left LK(G)-module V[p] is finitely presented if and only if p either

contains a line point or is equivalent to a rational path.

Proof. It immediately follows from Corollary 4.8 and Proposition 4.9. �

Now we are able to present the main result of this section.

Theorem 4.11. Let K be a field and G an ultragraph such that every simple left

LK(G)-module is finitely presented. Then the following statements hold:

(1) G is a row-finite ultragraph having Condition (EXC);

(2) There are neither minimal infinite emitters nor minimal sinks in G0;
(3) The maximal length of chains of cycles in G is finite;

(4) Every infinite path in G either contains a line point or is equivalent to a

rational path;

(5) GKdim(LK(G)) <∞.

Proof. (1) By Proposition 4.4, G is a row-finite ultragraph. Assume that G con-

tains two cycles α = α1α2 · · ·αn and β = β1β2 · · ·βm such that s(αi), s(βj) ∈
r(αi−1)∩r(βj−1) and (αi−1, αi) 6= (βj−1, βj) for some 1 ≤ i ≤ n, 1 ≤ j ≤ m, where

r(α0) := r(αn) and r(β0) := r(βm). By renumbering edges of α and β, without

loss of generality, we may assume that i = j = 1. We then have an irrational path

p = αβα2β2 · · ·αnβn · · · . By Corollary 4.8, the simple left LK(G)-module V[p] is

not finitely presented, a contradiction. Therefore, G satisfies Condition (EXC).

(2) It follows from Proposition 4.4 and Theorem 4.5 (5).

(3) If there exists a chain of cycles of infinite length in G, then this chain

may be expanded to an irrational path p in G. This leads to a contradiction

since the corresponding simple left LK(G)-module V[p] is not finitely presented,

by Corollary 4.8. Thus, the maximal length of chains of cycles in G is finite.

(4) Let p be an infinite path in G. We then have that the simple left LK(G)-

module V[p] is finitely presented. By Corollary 4.10, p either contains a line point

or is equivalent to a rational path, as desired.

(5) It follows from items (1) and (3) and Theorem 3.4, thus finishing the

proof. �
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[14] D. Gonçalves and D. Royer, Irreducible and permutative representations of ultragraph

Leavitt path algebras, Forum Math. 32 (2020), 417–431.

[15] R. Hazrat and T. G. Nam, Realizing ultragraph Leavitt path algebras as Steinberg algebras,

arXiv:2008.04668 [math.RA], 2020.

[16] M. Imanfar, A. Pourabbas and H. Larki, The Leavitt path algebras of ultragraphs, Kyung-

pook Math. J. 60 (2020), 21–43.

[17] T. Katsura, P. S. Muhly, A. Sims and M. Tomforde, Graph algebras, Exel-Laca algebras,

and ultragraph algebras coincide up to Morita equivalence, J. Reine Angew. Math. 640

(2010), 135-165.

[18] G. R. Krause and T. H. Lenagan, Growth of algebras and Gelfand-Kirillov dimension,

revised edition, Graduate studies in Mathematics Vol. 22 (AMS, 2000).

[19] T.Y. Lam, Lectures on Modules and Rings. Graduate Texts in Mathematics series, Vol. 189,

Springer-Verlag, New York, 1999.

[20] H. Larki, Primitive ideals and pure infiniteness of ultragraph C∗-algebras, J. Korean Math.

Soc. 56 (2019), 1–23

[21] J. M. Moremo-Fernández and M. Siles Molina, Graph algebras and the Gelfand-Kirillov

dimension, J. Algebra Appl. 17 (2018), no. 5, 1850095, 15 pp.

[22] T. G. Nam and N. D. Nam, Purely infinite simple ultragraph Leavitt path algebras,

Mediterr. J. Math. 19 (2022), no. 1, Paper No. 7, 20 pp.

[23] K. M. Rangaswamy, Leavitt path algebras with finitely presented irreducible representa-

tions, J. Algebra 447 (2016), 624-648.

27



[24] F. A. Tasca and D. Gonalves, KMS states and continuous orbit equivalence for ultragraph

shift spaces with sinks, Publicacions Matemàtiques 66 (2022), no 2, 729-787.
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