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Abstract. This paper addresses the regularity and large-time behavior of solutions for the frac-

tional semilinear mobile-immobile equations where the nonlinearity term admits various kind of

growth conditions. Concerning the associated linear Cauchy problem, a variation of parameters

formula of mild solution via the relaxation functions and the eigenfunction expansions is estab-

lished and the C1−regularity in time of this solution is proved. In addition, based on the theory

of completely positive functions, local estimates and fixed point arguments, some results on ex-

istence, regularity and stability of solutions to above mentioned semilinear problem are shown.

Furthermore, we prove a result on convergence to equilibrium of solutions with polynomial rate

in the case when the nonlinearity function is globally Lispschitzian.
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1. Introduction

Nonlocal partial differential equation models arise directly and naturally from
applications. In recent years, researchers have shown that time fractional partial
differential equations are effective tools to describe many different processes in
mathematical physics such as anomalous diffusion in porous media [10, 13, 19, 25],
behavior of non-Newtonian flows in a viscous and elastic media [2], homogenization
of a single phase flow in a porous medium containing a thin layer [1],..., etc. Details
of the history and recent development of fractional partial differential equations can
be found in the monographs [7, 14, 15, 17] and the documents cited therein.

A fractal mobile/immobile model for solute transport assumes power law waiting
times in the immobile zone, leading to a fractional time derivative in the model
equations. The equations are equivalent to previous models of mobile/immobile
transport with memory functions under in term of a law power and are the limiting
equations that govern continuous time random walks with heavy tailed random
waiting times.

As dissolved solutes move through an aquifer or stream, they may sorb to solids
or diffuse into regions where the advective flux is negligible. To sufficiently de-
scribe the mobile solute concentrations and masses, ones have to formulate some
functional relationship between the concentrations in the relatively mobile and im-
mobile regions (phases). Typically, this is done with the first-order kinetic mass
transfer, commonly called the mobile/immobile (MIM) model. This method has
been successfully applied to a large number of tracer tests. It predicts exponential
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decline of the late portion of a breakthrough curve. However, several recent field
tests that have resolved very low concentrations show breakthrough curves with
heavier, power law, tails.

In 2003, R. Schumer and his co-authors have proposed a fractal mobile/immobile
model for solute transport assumes power law waiting times in the immobile zone,
leading to a fractional time derivative in the model equations (FrMIM). The equa-
tions are equivalent to previous models of mobile/immobile transport with memory
functions under in term of a law power. After [23], there have been many studies
discussing numerical solutions for FrMIMs [11, 16, 21, 26, 27, 28]. Concerning a
special form of nonlinear FrMIMs, in [22], under some suitable conditions on non-
linear terms and coefficients, Sánchez and V. Vergara have constructed a suitable
Lyapunov energy functional and used the Lojasiewicz-Simon inequality to prove
results on convergence to the equilibrium point of non-trivial solutions.

Let Ω ⊂ Rd, d ≥ 1 be a bounded domain with smooth boundary ∂Ω. In this
paper, we consider the following problem

∂tu+ ν∂α0+u− β∆u = f(t, u) in Ω, t > 0, (1.1)

u = 0 on ∂Ω, t ≥ 0, (1.2)

u(0, ·) = ξ, in Ω, (1.3)

where ν, β > 0 and ∂α0+ , α ∈ (0, 1), stands for the Caputo derivative of order α
defined by

∂α0+u(t, x) :=
d

dt

(
g1−α ∗ [u(s, x)− u(0, x)]

)
(t), x ∈ Ω, t > 0,

where g1−α(t) = t−α/Γ(1 − α), t > 0, α ∈ (0, 1), Γ(·) is the Gamma function
and f : R+ × R → R, ξ : Ω → R are given functions. On the characteristics of
functions having fractional derivatives (in the Caputo or Riemann-Liouville sense),
we introduce the reader to the interesting paper by Vainikko [24]. Our main aim is
to find sufficient conditions on the nonlinear term to achieve the following results

(1) Global solvability;
(2) Regularity of mild solutions;
(3) Large-time behavior of solutions.

The article is organized as follows. Based on the theory of integral equations with
completely positive kernel and relaxation functions, we describe in detail the as-
ymptotic behavior of its solutions in some special cases. Then, by using the eigen-
function expansion, we present the formula of a mild solution to linear FrMIMs.
Some important properties of operators containing the formula of the mild solution
are obtained. This section is ended with a new Gronwall type inequality which
plays an important role in our analysis in the next steps. Section 3 is devoted to
studying the global solvability of the problem (1.1)-(1.3), where the nonlinear term
allows both sublinear and superlinear growth conditions. The regularity (including
the regularity Hölder and C1-regularity) of solutions to the linear and nonlinear
problems is proved in Section 4. In the last part, we propose the results on asymp-
totic stability and dissipativity for solutions. In addition, when the external force
function f is independent of time, say f = f(u), we prove a result of convergence
to an equilibrium point of nontrivial solutions with the polynomial rate.
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2. Preliminaries

In this section, we aim to present formula of a mild solution to linear problems.
Let {en}∞n=1 be the orthonormal basis of L2(Ω) consisting of the eigenfunctions of
the Laplace −∆ subject to homogeneous Dirichlet boundary condition, that is

−∆en = λnen in Ω, en = 0 on ∂Ω,

where we can assume that {λn}∞n=1 is an increasing sequence, λn > 0 and λn →∞
as n → ∞, see for example [6, Sect. 6.5, p. 354]. For β ∈ R, the fractional power
operator (−∆)β is defined as follows

(−∆)βv =

∞∑
n=1

λβn(v, en)en,

D((−∆)β) = {v ∈ L2(Ω) :

∞∑
n=1

λ2β
n (v, en)2 <∞},

here the notation (·, ·) denotes the inner product in L2(Ω). Let Vβ = D((−∆)β).
It should be noted that Vβ is a Hilbert space equipped with the norm

‖z‖Vβ =

( ∞∑
n=1

λ2β
n (z, en)

2

) 1
2

, z ∈ D((−∆)β).

Furthermore, for each β > 0, we can identify V−β = D((−∆)−β) with V∗β , the dual
space of Vβ .

Let Eα,β with α, β > 0 be the Mittag-Leffler function defined by

Eα,β(z) =

∞∑
n=0

zn

Γ(αn+ β)
, z ∈ C.

Consider the following integral equation

`+ νg1−α ∗ ` = 1, on [0,∞), (2.1)

here and in the sequel the notation ‘*’ is used to indicate the convolution with
respect to the time t of locally integrable two functions m, v defined on R+, i.e.,

(m ∗ v)(t) =

∫ t

0

m(t− s)v(s)ds.

Using the Laplace transform, we find from (2.1) that

`(t) = E1−α,1(−νt1−α), t ≥ 0. (2.2)

To motivate for a definition of a mild solution to the equation (1.1) (which is
defined in Section 3), we will give a representation for a solution of the following
linear equation

∂tu+ ν∂α0+u− β∆u = F in Ω, t > 0, (2.3)

u = 0 on ∂Ω, t ≥ 0, (2.4)

u(0, ·) = ξ in Ω. (2.5)

where F ∈ L1
loc

(
R+;L2(Ω)

)
. Assume that

u(t, ·) =

∞∑
n=1

un(t)en, F (t) =

∞∑
n=1

Fn(t)en.
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Substituting into (2.3)-(2.5) one has

u′n(t) + ν
d

dt

(
g1−α ∗ [un(·)− un(0)]

)
(t) + βλnun(t) = Fn(t), t > 0 (2.6)

un(0) = ξn := (ξ, en). (2.7)

In order to find a representation of un, we consider the following scalar Volterra
integral equations

s(t) + µ(` ∗ s)(t) = 1, t ≥ 0, (2.8)

r(t) + µ(` ∗ r)(t) = `(t), t ≥ 0, (2.9)

where µ > 0 and `(t) = E1−α,1(−νt1−α) is given by (2.2). Let us remark that the
function ` is completely monotonic, that is,

(−1)n`(n)(t) ≥ 0, for all n = 0, 1, 2, . . . , t > 0,

thanks to [9, Proposition 3.23, p. 47] (see also [20]). Some useful other properties
of ` are listed in the following proposition.

Proposition 2.1. Let ` be given by (2.2). Then the following estimates hold.

(i)
1

1 + νΓ(α)t1−α
≤ `(t) ≤ 1

1 + ν
Γ(2−α) t

1−α , for all t ≥ 0.

(ii) 0 < −`′(t) < νt−α, for almost all t > 0.

Proof. In order to prove the statement (i), we use the following bounds of the
Mittag-Leffler Eα,1(·) (see, e.g., [25, Inequality (39), p. 227]):

1

1 + Γ(1− α)t
≤ Eα,1(−t) ≤ 1

1 + t
Γ(1+α)

, for all t ≥ 0. (2.10)

Thus the statement (i) is followed by exploiting the inequality (2.10) above with
α and t replaced by 1 − α and µt1−α, respectively. Since E1−α,1(z) is entire in z,

we can directly differentiate E1−α,1(−νt1−α) =
∑∞
k=0

(−νt1−α)k

Γ
(

(1−α)k+1
) term by term to

get

d

dt
E1−α,1(−νt1−α) =

∞∑
k=1

(−ν)kt(1−α)(k−1)−α

Γ
(
(1− α)k

)
= −νt−α

∞∑
k=1

(−ν)k−1t(1−α)(k−1)

Γ
(
(1− α)(k − 1) + 1− α

)
= −νt−αE1−α,1−α(−νt1−α), t > 0. (2.11)

By [9, Lemma 4.25, p. 86], we know that E1−α,1−α(·) is a completely monotonic
function on (0,∞). Thus

0 < E1−α,1−α(−νt1−α) < 1, for all t > 0. (2.12)

The bounds in the statement (ii) then follows by combining (2.11) and (2.12). This
completes the proof. �

From Proposition 2.1, we know (see, e.g. , [8, Theorem 2.3.5]) that the equations
(2.8) and (2.9) are uniquely solved. Denote by sα(·, µ) and rα(·, µ) the solutions of
(2.8) and (2.9), respectively. It should be noted that, for each fixed µ > 0, sα(·, µ)
and rα(·, µ) are continuous functions on [0,∞), thanks to [8, Theorem 2.3.5] again.
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In addition, some important other properties of sα(·, µ) and rα(·, µ) are provided
in the next proposition.

Proposition 2.2. Let ` be given by (2.2). The following assertions are true.

(i) For every µ > 0, the function rα(·, µ) is nonnegative and the following two
equalities hold

sα(t, µ) = 1− µ
∫ t

0

rα(τ, µ)dτ = rα(t, µ) + ν
(
g1−α ∗ rα(·, µ)

)
(t), t ≥ 0. (2.13)

(ii) For every µ > 0, the function sα(·, µ) is nonnegative and nonincreasing.
Moreover,

sα(t, µ)

[
1 + µ

∫ t

0

`(τ)dτ

]
≤ 1, ∀t ≥ 0. (2.14)

(iii) For every µ > 0, the following estimates hold

µrα(t, µ) ≤ 1

t
, for all t > 0 and rα(t, µ) ≤ `(t), for all t ≥ 0. (2.15)

(iv) For each t > 0, the functions µ 7→ sα(t, µ) and µ 7→ rα(t, µ) are nonin-
creasing.

Proof. We first prove part (i). The nonnegativeness of rα(·, µ) is shown by applying
[18, Theorem 2, p. 322]. It remains to show two equalities in (2.13). For µ > 0,
convolving the equation (2.9) with g1−α and using (2.1), we find that

g1−α ∗ rα(·, µ) + µg1−α ∗ ` ∗ rα(·, µ) = g1−α ∗ `,
g1−α ∗ rα(·, µ) + µ` ∗ (g1−α ∗ rα(·, µ)) = g1−α ∗ `,
g1−α ∗ rα(·, µ) + µ` ∗ (g1−α ∗ rα(·, µ)) = ν−1(1− `). (2.16)

Then, by combining (2.8) and (2.16), one has(
sα(·, µ)− νg1−α ∗ rα(·, µ)

)
+ µ` ∗ (sα(·, µ)− νg1−α ∗ rα(·, µ)) = `. (2.17)

Because rα(·, µ) is a unique solution of (2.9), it follows from (2.17) that

rα(·, µ) = sα(·, µ)− νg1−α ∗ rα(·, µ),

which is equivalent to

sα(·, µ) = rα(·, µ) + νg1−α ∗ rα(·, µ). (2.18)

Thus the second equality in (2.13) is testified. Regarding the remainder equality,
by virtue of (2.1), (2.8), (2.9) and (2.18), we see that

µ
(
1 ∗ rα(·, µ)

)
= µ

(
` ∗ rα(·, µ)

)
+ µ

(
νg1−α ∗ ` ∗ rα(·, µ)

)
= µ

(
` ∗ rα(·, µ)

)
+ µ

(
νg1−α ∗ rα(·, µ) ∗ `

)
= µ

(
` ∗ rα(·, µ)

)
+ µ

(
[sα(·, µ)− rα(·, µ)] ∗ `

)
= µ(sα(·, µ) ∗ `) = 1− sα(·, µ).

Before proving part (ii), we first note that the nonnegativity of sα(·, µ) is followed
by applying [18, Theorem 1, p. 321]. On the other hand, by Proposition 2.1, one
can take the derivative the first equality in (2.13) for almost every t and obtain

s′α(t, µ) = −µrα(t, µ). (2.19)
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The later equality and the nonnegativity of rα(·, µ) imply that s(·, µ) is a nonin-
creasing function on (0,∞). Using this fact and the equation (2.8), it is easy to get
the inequality (2.14).

To prove part (iii), notice that the convolution term in (2.9) is nonnegative,
we conclude that rα(t, µ) ≤ `(t), for all t ≥ 0. On the other hand, since ` is a
nonincreasing function, it implies from (2.18) that

rα(t, µ) + µ`(t)

∫ t

0

rα(τ, µ)dτ ≤ `(t).

Moreover, using the first equality in (2.13), one has∫ t

0

rα(τ, µ)dτ = µ−1(1− sα(t, µ))) ≥ µ−1

(
1− 1

1 + µ(1 ∗ `)(t)

)
=

(1 ∗ `)(t)
1 + µ(1 ∗ `)(t)

,

thanks to the statement (ii). Therefore

rα(t, µ) ≤ `(t)
(

1− µ
∫ t

0

rα(τ, µ)dτ

)
≤ `(t)

(
1− µ(1 ∗ `)(t)

1 + µ(1 ∗ `)(t)

)
=

`(t)

1 + µ(1 ∗ `)(t)

≤ `(t)

1 + µt`(t)
for all t ≥ 0, (2.20)

thanks to (1 ∗ `)(t) ≥ t`(t),∀t ≥ 0. From the inequality (2.20), it implies

µrα(t, µ) ≤ 1

t
, for all t > 0.

We finally prove part (iv). By the above arguments, the Laplace transform of the
functions sα(·, µ), rα(·, µ) exist and given by

̂sα(·, µ)(λ) =
1

λ(1 + µ̂̀) , ̂rα(·, µ)(λ) =
̂̀

1 + µ̂̀,<(λ) > 0.

Differentiating with respect to µ we see that

∂

∂µ
̂sα(·, µ)(λ) = −

̂̀
λ
(
1 + µ̂̀)2 = − ̂sα(·, µ)(λ) ̂rα(·, µ)(λ),

∂

∂µ
̂rα(·, µ)(λ) = −

̂̀(
1 + µ̂̀)2 = − ̂rα(·, µ)(λ) ̂rα(·, µ)(λ).

Applying the formula for the inverse Laplace transform and using the convolution
rule, we conclude that

∂

∂µ
sα(t, µ) = −sα(·, µ) ∗ rα(·, µ)(t) ≤ 0,

∂

∂µ
rα(t, µ) = −rα(·, µ) ∗ rα(·, µ)(t) ≤ 0, t > 0.
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The proof is complete. �

Remark 2.1. (i) According to the estimates (2.14), (2.15), for each fixed µ >
0, one has

sα(t, µ) = O(t−α) and rα(t, µ) = O(tα−1) as t→∞.

(ii) In view of the representation (2.19) and the inequality (2.15), for each fixed
µ > 0, we have

0 ≤ −s′α(t, µ) = µrα(t, µ) ≤ 1

t
, for all t > 0.

Let us now consider the following initial value problem

v′(t) + ν
d

dt

(
g1−α ∗ [v − v0]

)
(t) + βµv(t) = ω(t), t > 0, (2.21)

v(0) = v0. (2.22)

where µ > 0 and ω ∈ L1
loc(R+). The following proposition gives a representation

for the solution of (2.21)-(2.22).

Proposition 2.3. The function

v(t) = sα(t, βµ)v0 +
(
rα(·, βµ) ∗ ω

)
(t), t ≥ 0, (2.23)

be the unique solution of (2.21)-(2.22).

Proof. Assume that v is given by the formula (2.23). We will show that v is a
solution to the problem (2.21)-(2.22). Indeed, by the formulation of v, we have
v(0) = sα(0, βµ)v0 = v0, thanks to the fact that sα(0, βµ) = 1. Furthermore,

v + νg1−α ∗ [v − v0] = sα(·, βµ)v0 + rα(·, βµ) ∗ ω + νg1−α ∗ [sα(·, βµ)− 1]v0

+ νg1−α ∗ rα(·, βµ) ∗ ω
= sα(·, βµ)v0 + rα(·, βµ) ∗ ω + νg1−α ∗ [sα(·, βµ)− 1]v0

+
(
sα(·, βµ)− rα(·, βµ)

)
∗ω

= sα(·, βµ)v0 + νg1−α ∗ [sα(·, βµ)− 1]v0 + sα(·, βµ) ∗ ω,
(2.24)

thanks to (2.18). Straightforward differentiation of (2.24) and using (2.19), Propo-
sition 2.2(i), Remark 2.1(ii) leads to

v′ + ν
d

dt

(
g1−α ∗ [v − v0]

)
= s′α(·, βµ)v0 + νg1−α ∗ s′α(·, βµ)v0 + sα(0, βµ)ω

+ s′α(·, βµ) ∗ ω
= −βµrα(·, βµ)v0 − βµνg1−α ∗ rα(·, βµ)v0 + ω

− βµrα(·, βµ) ∗ ω
= −βµrα(·, βµ)v0 − βµ

(
sα(·, βµ)− rα(·, βµ)

)
v0 + ω

− βµrα(·, βµ) ∗ ω
= −βµsα(·, βµ)v0 − βµrα(·, βµ) ∗ ω + ω

= −βµv + ω,

which implies the equality (2.21) as asserted.
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Conversely, let v is a solution of (2.21)-(2.22). Noting that, as shown in the proof
of part (iv) in Proposition 2.2, the Laplace transform of the functions sα(·, βµ), rα(·, βµ)
admit the following representations

̂sα(·, βµ)(λ) =
1

λ(1 + βµ̂̀)
=

1 + νλα−1

λ+ νλα−1 + βµ
,<(λ) > 0, (2.25)

and

̂rα(·, βµ)(λ) =
̂̀

1 + βµ̂̀
=

1

λ+ νλα−1 + βµ
,<(λ) > 0. (2.26)

Now taking the Laplace transform of both sides of the equation (2.21), then we get

λv̂(λ)− v0 + ν(λαv̂(λ)− λα−1v0) + βµv̂(λ) = ω̂(λ),

or equivalently

v̂(λ) =
1 + νλα−1

λ+ νλα + βµ
v0 +

1

λ+ νλα + βλn
ω̂(λ). (2.27)

From (2.25), (2.26) and (2.27), we have

v̂(λ) = ̂sα(·, βµ)(λ)v0 + ̂rα(·, βµ)(λ)ω̂(λ).

Taking the inverse Laplace transform yields v(t) = sα(t, βµ)v0 +
(
rα(·, βµ) ∗ ω

)
(t),

which is (2.23). The proof is complete. �

According to Proposition 2.23, the solution of problem (2.6)-(2.7) is given by

un(t) = sα(t, βλn)ξn +

∫ t

0

rα(t− τ, βλn)Fn(τ)dτ, t ≥ 0.

Therefore

u(t, ·) = Sα(t)ξ +

∫ t

0

Rα(t− τ)F (τ)dτ, t ≥ 0, (2.28)

where

Sα(t)v =

∞∑
n=1

sα(t, βλn)vnen, (2.29)

Rα(t)v =

∞∑
n=1

rα(t, βλn)vnen. (2.30)

It is easily seen that Sα(t) and Rα(t) are linear. We collect some basic properties
of these operators in the following lemma.

Lemma 2.4. Let {Sα(t)}t≥0 and {Rα(t)}t≥0 be the families of linear operators
defined by (2.29) and (2.30), respectively. Then
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(a) For each v ∈ L2(Ω) and T > 0, Sα(·)v ∈ C([0, T ];L2(Ω)) and ∆Sα(·)v ∈
C((0, T ];L2(Ω)). Moreover,

‖Sα(t)v‖ ≤ sα(t, βλ1)‖v‖, t ∈ [0, T ], (2.31)

‖Sα(t)v‖V1 ≤
‖v‖

(1 ∗ `)(t)
, t ∈ (0, T ]. (2.32)

In addition, Sα(·) is differentiable on (0,∞) and the following estimate
holds

‖S ′α(t)v‖ ≤ ‖v‖
t
,∀v ∈ L2(Ω),∀t > 0. (2.33)

(b) Let v ∈ L2(Ω), T > 0 and g ∈ C([0, T ];L2(Ω)). Then Rα(·)v ∈ C([0, T ];L2(Ω))
and Rα ∗ g ∈ C([0, T ];V1/2). Furthermore,

‖Rα(t)v‖ ≤ rα(t, βλ1)‖v‖, t ∈ [0, T ], (2.34)

‖(Rα ∗ g)(t)‖ ≤
∫ t

0

rα(t− τ, βλ1)‖g(τ)‖dτ, t ∈ [0, T ], (2.35)

‖(Rα ∗ g)(t)‖V1/2
≤
(∫ t

0

rα(t− τ, βλ1)‖g(τ)‖2dτ
) 1

2

, t ∈ [0, T ]. (2.36)

Moreover, Rα(·) is differentiable on (0,∞) and the following estimate holds

‖R′α(t)v‖ ≤
(
t−1 + νt−α

)
‖v‖,∀v ∈ L2(Ω),∀t > 0. (2.37)

Proof. The proof of the first parts of assertions (a), (b) are similar to the ones
proposed in [12, Lemma 2.3] and thus we omit them. We now derive the proof for
the estimates (2.33), (2.37). Consider the series

∞∑
n=1

s′α(t, βλn)vnen, t > 0, vn = (v, en), v ∈ L2(Ω), (2.38)

one sees that s′(·, βλn) is continuous on (0,∞) and

|s′α(t, βλn)| ≤ 1

t
, for all n = 1, 2, . . . ,

thanks to Remark 2.1(ii). By this and the Weierstrass’s criterion, the series (2.38)
uniformly converges on [ε, T ] for every ε ∈ (0, T ) and it holds that

S ′α(t)v =

∞∑
n=1

s′α(t, βλn)vnen, ‖S ′α(t)v‖ ≤ t−1‖v‖, ∀t > 0.

Regarding the quality S ′α(t)v, we first study the series

∞∑
n=1

r′α(t, βλn)vnen, t > 0, vn = (v, en), v ∈ L2(Ω).

Observing that, for each µ > 0, then

|
(
`′ ∗ rα(·, µ)

)
(t)| ≤

∫ t

0

ν(t− τ)−α`(τ)dτ

≤ ν(1− α)−1t1−α <∞, for each t > 0,

thanks to Proposition 2.1(ii) and Proposition 2.2(iii). Therefore, the convolution
term in equation (2.9) is differentiable almost everywhere on (0,∞). From this
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observation and the differentiability of `, one concludes that rα(·, µ) is also differ-
entiable almost everywhere on (0,∞). Therefore, by differentiating on both sides
of (2.9) with respect to t, one obtains

r′α(t, µ) + µ[
(
`′ ∗ rα(·, µ)

)
(t) + `(0)rα(t, µ)] = `′(t), t > 0,

thanks to [8, Corollary 2.7.4(ii), p. 101]. Then

r′α(t, µ) + µrα(t, µ)− `′(t) ≥ 0, (2.39)

thanks to the facts that `(0) = 1 and
(
`′ ∗ rα(·, µ)

)
(t) ≤ 0, for all t > 0. Using this

fact, one has

−r′α(t, µ) ≤ µrα(t, µ)− `′(t)
≤ t−1 + νt−α,

thanks to Proposition 2.1(ii) and Proposition 2.2(iii). Moreover, using the differ-
entiability of rα(·, µ), we also have

r′α(t, µ) + µ[
(
` ∗ r′α(·, µ)

)
(t) + `(t)rα(0, µ)] = `′(t), t > 0.

By this equality and the nonincreasing of `, it implies that

r′α(t, µ) + µ`(t)(1 ∗ r′α(·, µ))(t) + µ`(t) ≤ `′(t),

or equivalently

r′α(t, µ) + µ`(t)
(
r(t, µ)− 1

)
+ µ`(t) ≤ `′(t).

The later inequality shows that

r′α(t, µ) ≤ `′(t)− µ`(t)rα(t, µ), for all t > 0.

By combining the above estimates, we have

0 ≤ −r′α(t, µ) ≤ t−1 + νt−α, for all t > 0.

The remainder of the proof is similar to those given as above. We have finished the
proof of Lemma 2.4. �

Remark 2.2. The first statement of Lemma 2.4 guarantees that the operator Sα(t) :
L2(Ω)→ L2(Ω) is compact for any t > 0, due to the compactness of the embedding
V1 ↪→ L2(Ω).

In the following, for sake of simplicity we make use of the notation u(t) for u(t, ·)
and consider u as a function defined on [0, T ], taking values in L2(Ω). The notation
‖ · ‖ will be understood as the standard norm in L2(Ω) and ‖ · ‖op stands for the
operator norm of bounded linear operators on L2(Ω). Exploiting the properties of
Rα, we prove the compactness of the Cauchy operator defined by

Qα : C([0, T ];L2(Ω))→ C([0, T ];L2(Ω)),

Qα(g)(t) =
(
Rα ∗ g

)
(t), (2.40)

in the next lemma.

Lemma 2.5. The operator Qα defined by (2.40) is compact.
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Proof. To prove this lemma, we use the Arzelà-Ascoli theorem. LetD ⊂ C([0, T ];L2(Ω))
be a bounded set and denote ‖g‖∞ = sup

t∈[0,T ]

‖g(t)‖ for g ∈ C([0, T ];L2(Ω)). We

first testify that (−∆)1/2Qα(D)(t) is bounded in L2(Ω) for each t ≥ 0. Indeed, by
using Lemma 2.4(b), we get

‖(−∆)1/2Qα(g)(t)‖2 ≤
∫ t

0

rα(t− τ, βλ1)‖g(τ)‖2dτ, ∀t ≥ 0, g ∈ D,

which ensures the boundedness of (−∆)1/2Qα(D)(t) in L2(Ω) for all t ≥ 0. Since
the embedding V1/2 ↪→ L2(Ω) is compact (see, e.g., [3, Theorem 1.1]), we obtain
the relative compactness of Qα(D)(t) for each t ≥ 0.

Now we show that Qα(D) is equicontinuous. Let g ∈ D, t ∈ (0, T ), and h ∈
(0, T − t], then one sees that

‖Qα(g)(t+ h)−Qα(g)(t)‖ ≤
∫ t

0

‖[Rα(t+ h− τ)−Rα(t− τ)]g(τ)‖dτ

+

∫ t+h

t

‖Rα(t+ h− τ)g(τ)‖dτ

= I1(t) + I2(t).

It is easy to see that I2(t) → 0 as h → 0 uniformly in g ∈ D. Regarding I1(t), we
observe that

I1(t) ≤ ‖g‖∞
∫ t

0

‖Rα(t+ h− τ)−Rα(t− τ)‖opdτ.

Put Ih(t) = ‖Rα(t+h−τ)−Rα(t−τ)‖op. Then, for every τ ∈ (0, t), lim
h→0

Ih(τ) = 0.

Furthermore, in accordance to Proposition 2.1(i) and Lemma 2.4(b), we have

Ih(t) ≤ rα(t+ h− τ, βλ1) + rα(t− τ, βλ1)

≤ `(t+ h− τ) + `(t− τ)

≤ 1

1 + ν
Γ(2−α) (t+ h− τ)1−α +

1

1 + ν
Γ(2−α) (t− τ)1−α

≤ 2Γ(2− α)

ν(t− τ)1−α = I(t).

Since I ∈ L1(0, t), it follows from the Lebesgue dominated convergence theorem
that

I1(t) ≤ ‖g‖∞
∫ t

0

Ih(τ)dτ → 0 as h→ 0 uniformly in g ∈ D.

Finally, for h ∈ (0, T ), we have

‖Qα(g)(h)−Qα(g)(0)‖ ≤
∫ h

0

‖Rα(h− τ)g(τ)‖dτ

≤ ‖g‖∞
∫ h

0

rα(h− τ, βλ1)dτ

=
‖g‖∞
βλ1

(
1− sα(h, βλ1)

)
→ 0 as h→ 0 uniformly in g ∈ D.

Therefore, Qα(D) is equicontinuous. Thus the proof of Lemma 2.5 is completed. �
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We are in a position to prove a Gronwall type inequality which plays an important
role in our analysis in the next sections.

Lemma 2.6. Let v be a nonnegative function satisfying

v(t) ≤ sα(t, βµ)v0 +

∫ t

0

rα(t− τ, βµ)[a(τ) + bv(τ)]dτ, t ≥ 0, (2.41)

for b ∈ (0, βµ), v0 ≥ 0 and a ∈ L1
loc(R+). Then

v(t) ≤ sα(t, βµ− b)v0 +

∫ t

0

rα(t− τ, βµ− b)a(τ)dτ, t ≥ 0.

Especially, if a is constant then

v(t) ≤ sα(t, βµ− b)v0 +
a

βµ− b
(
1− sα(t, βµ− b)

)
, t ≥ 0.

Proof. Let y(t) be the right hand side of (2.41). Then v(t) ≤ y(t) and y satisfies
the equation

y′(t) + ν
d

dt

(
g1−α ∗ [y(·)− y(0)]

)
(t) + βµy(t) = a(t) + bv(t), t > 0, y(0) = v0,

as stated by Proposition 2.3. It follows that

y′(t) + ν
d

dt

(
g1−α ∗ [y(·)− y(0)]

)
(t) + (βµ− b)y(t) = a(t) + b[v(t)− y(t)], t > 0, y(0) = v0,

and then y admits the representation

y(t) = sα(t, βµ− b)v0 +

∫ t

0

rα(t− τ, βµ− b)
(
a(τ) + b[v(τ)− y(τ)]

)
dτ

≤ sα(t, βµ− b)v0 +

∫ t

0

rα(t− τ, βµ− b)a(τ)dτ,

thanks to the positivity of rα(·, βµ− b) and the fact that v(τ)− y(τ) ≤ 0 for τ ≥ 0.
In addition, if a is constant then

y(t) ≤ sα(t, βµ− b)v0 +

∫ t

0

rα(t− τ, βµ− b)a(τ)dτ,

= sα(t, βµ− b)v0 +
a

βµ− b
(
1− sα(t, βµ− b)

)
,

thanks to Proposition 2.2(i). So we get the conclusion as stated. �

3. Solvability

This section is devoted to study the existence of mild global solutions of semi-
linear evolution problems (1.1)-(1.3) on the bounded time intervals [0, T ], where T
is arbitrary but fixed. Based on the representation (2.28), we give the following
definition of mild solution for (1.1)-(1.3).

Definition 3.1. A function u ∈ C([0, T ];L2(Ω)) is said to be a mild solution to
the problem (1.1)-(1.3) on [0, T ] iff

u(t) = Sα(t)ξ +

∫ t

0

Rα(t− τ)f(τ, u(τ))dτ for any t ∈ [0, T ].
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Let Φ : C([0, T ];L2(Ω))→ C([0, T ];L2(Ω)) be the operator defined by

Φ(u)(t) = Sα(t)ξ(0) +

∫ t

0

Rα(t− τ)f
(
τ, u(τ)

)
dτ.

This operator is continuous if f is a continuous map. Obviously, u is a fixed point
of Φ iff u is a mild solution of (1.1)-(1.3). So we call Φ the solution operator.

In the first result on the existence, the nonlinear function f is assumed to be
locally Lipschitzian.

Theorem 3.1. Assume that the nonlinearity function f : [0, T ]× L2(Ω)→ L2(Ω)
satisfies

(F1) f(·, 0) = 0 and is locally Lipschitz, i.e., for each r > 0, there exists a
nonnegative constant κ(r) such that

‖f(t, v1)− f(t, v2)‖ ≤ κ(r)‖v1 − v2‖,∀v1, v2 ∈ Br, t ∈ [0, T ], (3.1)

where Br is the closed ball in L2(Ω) with radius r and centered at origin
and κ is a nonnegative function such that lim sup

r→0
κ(r) = l ∈ [0, βλ1).

Then there exists δ > 0 such that the problem (1.1)-(1.3) has a unique mild solution
on [0, T ], provided ‖ξ‖ ≤ δ.

Proof. To prove this theorem, we use the contraction mapping principle. Since
l ∈ [0, βλ1), we can choose ε > 0 such that l + ε < βλ1. On the other hand, the
definition of lim sup implies that there exists R > 0 satisfying

κ(R) ≤ l + ε.

Let us denote by BR the closed ball in C([0, T ];L2(Ω)) centered at the origin with
radius R.

Set δ =
(l + ε)R

βλ1
, we will show that Φ(BR) ⊂ BR, provided ‖ξ‖ ≤ δ. Taking

u ∈ BR, then ‖u(τ)‖ ≤ R for all τ ∈ [0, T ]. Therefore

‖Φ(u)(t)‖ ≤ ‖Sα(t)ξ‖+ ‖
∫ t

0

Rα(t− τ)f(τ, u(τ))dτ‖

≤ sα(t, βλ1)‖ξ‖+

∫ t

0

rα(t− τ, βλ1)κ(R)‖u(τ)‖dτ

≤ sα(t, βλ1)‖ξ‖+ (l + ε)R

∫ t

0

rα(t− τ, βλ1)dτ

≤ sα(t, βλ1)δ +
(l + ε)R

βλ1
(1− sα(t, βλ1))

= sα(t, βλ1)

[
δ − (l + ε)R

βλ1

]
+

(l + ε)R

βλ1

≤ R, for all t ∈ [0, T ],
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thanks to Lemma 2.4 and the choice for δ. We now consider Φ : BR → BR. For
u1, u2 ∈ BR one gets

‖Φ(u1)(t)− Φ(u2)(t)‖ ≤
∫ t

0

rα(t− τ, βλ1)κ(R)‖u1(τ)− u2(τ)‖dτ

≤ (l + ε)

∫ t

0

rα(t− τ, βλ1) sup
θ∈[0,τ ]

‖u1(θ)− u2(θ)‖dτ

≤ (l + ε)‖u1 − u2‖∞
∫ t

0

rα(τ, βλ1)dτ

≤ l + ε

βλ1
‖u1 − u2‖∞,∀t ∈ [0, T ],

thanks to Proposition 2.2. Hence, the solution operator Φ is a contraction operator
on BR. We can conclude that there is a mild solution to (1.1)-(1.3).

We then prove the uniqueness of solutions. Observing that, if u, v ∈ C([0, T ];L2(Ω))
are two solutions of (1.1)-(1.3), then one can assume that u, v ∈ BR̄ for some R̄ > 0.
We have the following estimates

‖u(t)− v(t)‖ ≤
∫ t

0

rα(t− τ, βλ1)κ(R̄)‖u(τ)− v(τ)‖dτ

≤ κ(R̄)

∫ t

0

sup
θ∈[0,τ ]

‖u(θ)− v(θ)‖dτ, ∀t ∈ [0, T ],

thanks to the fact that u(0) = v(0) = ξ and rα(t, βλ1) ≤ 1 for t ≥ 0. Since the last
inequality is nondecreasing in t, we get

sup
τ∈[0,t]

‖u(τ)− v(τ)‖ ≤ κ(R̄)

∫ t

0

sup
θ∈[0,τ ]

‖u(θ)− v(θ)‖dτ, ∀t ∈ [0, T ].

Employing the classical Gronwall inequality, we get

sup
τ∈[0,t]

‖u(τ)− v(τ)‖ = 0,

for all t ∈ [0, T ], which implies that u = v. The proof is complete. �

In the next result, we relax condition imposed on initial datum. However, the
function f should be global Lipschitzian.

Theorem 3.2. Suppose that the nonlinearity function f : [0, T ]× L2(Ω)→ L2(Ω)
satisfies

(F2) ‖f(t, v1)− f(t, v2)‖ ≤ q(t)‖v1 − v2‖,∀t ∈ [0, T ], v1, v2 ∈ L2(Ω),

where q ∈ L1([0, T ]) is a nonnegative function. Then the problem (1.1)-(1.3) has a
unique mild solution.

Proof. Since lim
η→∞

sup
[0,T ]

∫ t
0
e−η(t−τ)q(τ)dτ = 0 (see [5, Lemma 2.7]), we can choose a

fixed number η > 0 such that

sup
[0,T ]

∫ t

0

e−η(t−τ)q(τ)dτ < 1.

We denote ‖v‖η = sup
[0,T ]

e−ηt‖v(t)‖ for each v ∈ C([0, T ];L2(Ω)). Then ‖ · ‖η is

equivalent to the sup norm in C([0, T ];L2(Ω)).
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For arbitrary u1, u2 ∈ C([0, T ];L2(Ω)), one has

‖Φ(u1)(t)− Φ(u2)(t)‖ ≤
∫ t

0

rα(t− τ, βλ1)q(τ)‖u1(τ)− u2(τ)‖dτ

≤
∫ t

0

rα(t− τ, βλ1)q(τ) sup
θ∈[0,τ ]

‖u1(θ)− u2(θ)‖dτ.

Hence

‖Φ(u1)− Φ(u2)‖η = sup
t∈[0,T ]

e−ηt‖Φ(u1)(t)− Φ(u2)(t)‖

≤ ‖u1 − u2‖η sup
[0,T ]

∫ t

0

e−η(t−τ)rα(t− τ, βλ1)q(τ)dτ,

≤ ‖u1 − u2‖η sup
[0,T ]

∫ t

0

e−η(t−τ)q(τ)dτ,

due to the fact that rα(t− τ, βλ1) ≤ 1, for t ≥ τ . The last relation implies that Φ
is a contraction operator. The proof is complete. �

In the following theorem, we employ the Schauder fixed point Theorem to obtain
an existence result where the function f may have a superlinear growth.

Theorem 3.3. Assume that the nonlinearity function f : [0, T ]× L2(Ω)→ L2(Ω)
satisfies

(F3) f is continuous such that

‖f(t, v)‖ ≤ q(t)ψf (‖v‖), ∀t ∈ [0, T ], v ∈ L2(Ω),

where q ∈ L1([0, T ]) is a nonnegative function and ψf ∈ C(R+) is a non-
negative and nondecreasing function such that

lim sup
r→0

ψf (r)

r
· sup
t∈[0,T ]

∫ t

0

rα(t− τ, βλ1)q(τ)dτ < 1. (3.2)

Then there exists δ > 0 such that the problem (1.1)-(1.3) has at least one mild
solution on [0, T ] provided ‖ξ‖ ≤ δ.

Proof. The idea for our proof is to utilize the Schauder fixed point theorem. We
first find a number % > 0 such that Φ(B%) ⊂ B%, where B% be the closed ball in
C([0, T ];L2(Ω)) centered at origin with radius %. Let

β̃ = lim sup
r→0

ψf (r)

r
and M = sup

t∈[0,T ]

∫ t

0

rα(t− τ, βλ1)q(τ)dτ.

From (3.2), we can choose ε > 0 small enough such that

(β̃ + ε)M < 1.

In addition, one can find % > 0 such that

ψf (%)

%
≤ β̃ + ε.
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Choosing δ = %[1 − (β̃ + ε)M ], it is obvious that δ ≤ % and δ > 0. Now, we take
ξ ∈ L2(Ω) such that ‖ξ‖ ≤ δ and u ∈ B%. Then one has

‖Φ(u)(t)‖ ≤ sα(t, βλ1)‖ξ‖+

∫ t

0

rα(t− τ, βλ1)‖f(τ, u(τ)‖dτ

≤ ‖ξ‖+

∫ t

0

rα(t− τ, βλ1)q(τ)ψf (‖u(τ)‖)dτ

≤ ‖ξ‖+

∫ t

0

rα(t− τ, βλ1)q(τ)ψf (%)dτ

≤ δ + %(β̃ + ε)

∫ t

0

rα(t− τ, βλ1)q(τ)dτ

≤ δ + %(β̃ + ε)M

≤ %[1− (β̃ + ε)M ] + %(β̃ + ε)M

≤ %, ∀t ∈ [0, T ]. (3.3)

The inequality (3.3) implies that Φ(B%) ⊂ B%, provided ‖ξ‖ ≤ δ. We are allowed
to consider Φ : B% → B%. It is easily seen that Φ is continuous because of the
continuity of f . By the representation

Φ(u) = Sα(·)ξ +Qα ◦Nf (u),

Nf (u)(t) = f
(
t, u(t)

)
,

we realize that Φ is a compact operator, thanks to the compactness of Qα which
is proved in Lemma 2.5. Hence, by the Schauder fixed point theorem, we get the
desired conclusion. The proof is complete. �

If the nonlinearity function has a sublinear growth then the smalless of given
data is omitted. We get the global solvability in the next theorem.

Theorem 3.4. Assume that f satisfies the condition

(F4) f is continuous such that ‖f(t, v)‖ ≤ q(t)‖v‖ + a(t), for all t ∈ [0, T ],
v ∈ L2(Ω), where q, a ∈ L1([0, T ]) are nonnegative functions.

Then the problem (1.1)-(1.3) has at least one mild solution on [0, T ].

Proof. Denote

D = {u ∈ C([0, T ];L2(Ω)) : sup
τ∈[0,t]

‖u(τ)‖ ≤ ϑ(t), ∀t ∈ [0, T ]},

where ϑ is the unique solution of the integral equation

ϑ(t) = ‖ξ‖+ sup
t∈[0,T ]

(a ∗ rα(·, βλ1)
)
(t) +

∫ t

0

rα(t− τ, βλ1)q(τ)ϑ(τ)dτ, t ∈ [0, T ].



Regularity and stability for FrMIMEs 17

Then D is a closed, bounded and convex set in C([0, T ];L2(Ω)). Considering the
solution operator Φ on D, we see that

‖Φ(u)(t)‖ ≤ ‖Sα(t)ξ‖+

∫ t

0

‖Rα(t− τ)‖op‖f(τ, u(τ))‖dτ

≤ sα(t, βλ1)‖ξ‖+

∫ t

0

rα(t− τ, βλ1)
(
q(τ)‖u(τ)‖+ a(τ)

)
dτ

≤ ‖ξ‖+ sup
t∈[0,T ]

(
a ∗ rα(·, βλ1)

)
(t)

+

∫ t

0

rα(t− τ, βλ1)q(τ) sup
θ∈[0,τ ]

‖u(θ)‖dτ, (3.4)

for any u ∈ D, thanks to (F4). Since the function t 7→ sup
τ∈[0,t]

‖u(τ)‖ is nondecreas-

ing, the integral term in the right hand side of (3.4) is nondecreasing in t as well.
Thus

sup
τ∈[0,t]

‖Φ(u)(τ)‖ ≤ ‖ξ‖+ sup
t∈[0,T ]

(
a ∗ rα(·, βλ1)

)
(t)

+

∫ t

0

rα(t− τ, βλ1)q(τ) sup
θ∈[0,τ ]

‖u(θ)‖dτ

≤ ‖ξ‖+ sup
t∈[0,T ]

(
a ∗ rα(·, βλ1)

)
(t)

+

∫ t

0

rα(t− τ, βλ1)q(τ)ϑ(τ)dτ for all t ∈ [0, T ]. (3.5)

The inequality (3.5) leads to Φ(D) ⊂ D. Then, by the same arguments in the proof
of Theorem 3.3, we get the conclusion. The proof is complete. �

4. Regularity of mild solutions

This section is devoted to analyze the regularity of solutions to the semilinear
problem (1.1)-(1.3). Our first result is the following.

Theorem 4.1. Suppose that the assumptions of Theorem 3.3 hold with q ∈ L∞(0, T ;R+).
Then every mild solutions of the problem (1.1)-(1.3) belong to Cγ([ρ, T ];L2(Ω)), for
any ρ ∈ (0, T ), here γ ∈ (γ0, 1), γ0 := max{α, 1− α}.
Proof. Fixing δ, % as in the proof of Theorem 3.3, where we know that for each
ξ ∈ L2(Ω) with ‖ξ‖ ≤ δ the problem (1.1)-(1.3) has a mild solution u which belongs
to B%. Recalling that

u(t) = Sα(t)ξ +

∫ t

0

Rα(t− τ)f(τ, u(τ))dτ, t ∈ [0, T ]. (4.1)

We next show that u given by (4.1) belongs to Cγ([ρ, T ];L2(Ω)) for any ρ ∈ (0, T ).
For t ∈ [ρ, T ] and h ∈ (0, T − t], we find that

‖u(t+ h)− u(t)‖ ≤ ‖[Sα(t+ h)− Sα(t)]ξ‖

+

∫ t

0

‖[Rα(t+ h− τ)−Rα(t− τ)]f(τ, u(τ))‖dτ

+

∫ t+h

t

‖Rα(t+ h− τ)f(τ, u(τ))‖dτ. (4.2)
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We now estimate the right hand side of (4.2) term by term as follows. For the first
summand, we have

‖[Sα(t+ h)− Sα(t)]ξ‖ = h‖
∫ 1

0

S ′α(t+ θh)ξdθ‖

≤ h‖ξ‖
∫ 1

0

dθ

t+ θh

= ‖ξ‖ ln
(
1 +

h

t

)
≤ γ−1‖ξ‖

(
h

t

)γ
= γ−1‖ξ‖t−γhγ

≤ γ−1‖ξ‖ρ−γhγ ,

thanks to Lemma 2.4(a).
For the second summand, we first get

‖[Rα(t+ h− τ)−Rα(t− τ)]f(τ, u(τ))‖

≤h
∫ 1

0

‖R′α(t+ θh− τ)f(τ, u(τ))‖dθ

≤h‖a‖L∞ψf (‖u(τ)‖)
∫ 1

0

(
(t+ θh− τ)−1 + νΓ(1− α)−1(t+ θh− τ)−α

)
dθ

≤‖a‖L∞(αf + ε)%

×
[

ln
(
1 +

h

t− τ
)

+ νΓ(1− α)−1(1− α)−1
(
(t+ h− τ)1−α − (t− τ)1−α)

)]
≤‖a‖L∞(αf + ε)%

[
γ−1(t− τ)−γhγ + νΓ(1− α)−1(1− α)−1h1−α

]
≤‖a‖L∞(αf + ε)%

[
γ−1(t− τ)−γ + νΓ(1− α)−1(1− α)−1

]
hγ ,

thanks to Lemma 2.4(b), here we have used the basic inequality |tγ1−t
γ
2 | ≤ |t1−t2|γ

for all t1, t2 ≥ 0. From which we infer that

∫ t

0

‖[Rα(t+ h− τ)−Rα(t− τ)]f(τ, u(τ))‖dτ

≤‖a‖L∞(αf + ε)%hγ
∫ t

0

[
γ−1(t− τ)−γ + νΓ(1− α)−1(1− α)−1

]
dτ

=‖a‖L∞(αf + ε)%[γ−1(1− γ)−1t1−γ + νΓ(1− α)−1(1− α)−1t]hγ

≤‖a‖L∞(αf + ε)%[γ−1(1− γ)−1T 1−γ + νΓ(1− α)−1(1− α)−1T ]hγ .
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For the third summand, by using Proposition 2.1 and Lemma 2.4, we obtain∫ t+h

t

‖Rα(t+ h− τ)f(τ, u(τ))‖dτ

≤ ‖a‖L∞(αf + ε)%

∫ t+h

t

rα(t− τ, βλ1)dτ

≤ ‖a‖L∞(αf + ε)%

∫ t+h

t

`(t− τ)dτ

≤ ‖a‖L∞(αf + ε)%

∫ t+h

t

1

1 + νΓ(2− α)−1(t− τ)1−α dτ

≤ ‖a‖L∞(αf + ε)%ν−1Γ(2− α)

∫ h

0

τα−1dτ

= ‖a‖L∞(αf + ε)%ν−1Γ(2− α)α−1hα

≤ ‖a‖L∞(αf + ε)%ν−1Γ(2− α)α−1hγ .

By combining all these previous estimates, it leads to

‖u(t+ h)− u(t)‖ ≤
(
γ−1‖ξ‖ρ−γ + ‖a‖L∞(αf + ε)%C0

)
hγ , t > 0, (4.3)

where

C0 = γ−1(1− γ)−1T 1−γ + νΓ(1− α)−1(1− α)−1T + ν−1Γ(2− α)α−1.

The proof is complete. �

Remark 4.1. In the case f possesses the sublinear growth condition (F4) with
a, b, c ∈ L∞(0, T ;R+), then the Hölder regularity of mild solutions for the problem
(1.1)-(1.3) can be proved without assuming the smallness of initial condition. In
this case, the existence of mild solution is received by Theorem 3.4 and the Hölder
regularity is proved the same lines as the proof of Theorem 4.1.

We next deal with C1−regularity of mild solutions for the problem (1.1)-(1.3).
To do this, we first establish a result on C1−regularity of mild solutions for the
linear problem (2.3)-(2.5).

Theorem 4.2. Suppose that F ∈ Cγ([0, T ];L2(Ω)), ξ ∈ L2(Ω). Let u be the
coresponding mild solution of problem (2.3)-(2.5), then the following statements
are true:

(i) u is Hölder continuous on (0, T ] with exponent γ;
(ii) u ∈ C1((0, T ];L2(Ω));

(iii) ∆u ∈ C((0, T ];L2(Ω));
(iv) ∂α0+u ∈ C((0, T ];L2(Ω)).

Consequently, u is a strong solution in time variable.

Proof. Let HF be the Hölder constant of F . Recalling that

u(t) = Sα(t)ξ +

∫ t

0

Rα(t− τ)F (τ)dτ, t ∈ [0, T ].

We now split the proof of this theorem into four claims.
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Claim 1. u is Hölder continuous on (0, T ] with exponent γ. Indeed, for t ∈ (0, T ]
and h ∈ (0, T − t], by using the similar arguments as in the proof of Theorem 4.1,
we have that

‖u(t+ h)− u(t)‖ ≤
(
γ−1‖ξ‖t−γ + ‖F‖∞C0

)
hγ , t > 0,

where C0 is given in Theorem 4.1.
Claim 2. We now check that u ∈ C1((0, T ];L2(Ω)). Noting that

u(t) = Sα(t)ξ +

∫ t

0

Rα(t− τ)F (τ)dτ = u1(t) + u2(t),

it is evidently clear from the formula above that u1 = Sα(·)ξ ∈ C1((0, T ], L2(Ω)),
according to the statement of Lemma 2.4(a). It remains to testify that u2 is a
continuously differentiable function on (0, T ].

Observe that

du2

dt
(t) = F (t) +

∫ t

0

R′α(t− τ)F (τ)dτ.

The later term has meaning because

‖
∫ t

0

R′α(t− τ)F (τ)dτ‖ ≤ ‖
∫ t

0

R′α(t− τ)[F (τ)− F (t)]dτ‖+ ‖
∫ t

0

R′α(t− τ)F (t)dτ‖

≤
∫ t

0

‖R′α(t− τ)‖op‖F (τ)− F (t)‖dτ + ‖
(
I −Rα(t)

)
F (t)‖

≤ HF

∫ t

0

[(t− τ)−1 + ν(t− τ)−α](t− τ)γdτ

+ ‖
(
I −Rα(t)

)
F (t)‖

= HF

(
γ−1tγ + ν(γ − α+ 1)−1tγ−α+1

)
+ ‖
(
I −Rα(t)

)
F (t)‖ <∞,∀t > 0,

thanks to Lemma 2.4(b). We next show that the mapping t 7→ Φ(t) :=
∫ t

0
R′α(t −

τ)F (τ)dτ is continuous on (0, T ]. For t ∈ (0, T ] and h ∈ (0, T − t), the following
estimate holds

‖Φ(t+ h)− Φ(t)‖ ≤ ‖
∫ t

0

[R′α(t+ h− τ)−R′α(t− τ)][F (τ)− F (t)]dτ‖

+ ‖
∫ t

0

[R′α(t+ h− τ)−R′α(t− τ)]F (t)dτ‖

+ ‖
∫ t+h

t

R′α(t+ h− τ)F (τ)dτ‖

= Φ1(t) + Φ2(t) + Φ3(t). (4.4)

Since, for each t ∈ (0, T ), the mapping τ 7→ R′α(t + h − τ)F (τ) is integrable on
(0, t) and hence Φ3(t)→ 0 as h→ 0. Regarding Φ1(t), we get

Φ1(t) ≤ HF

∫ t

0

‖R′α(t+ h− τ)−R′α(t− τ)‖op(t− τ)γdτ.
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Let Gh(t) = ‖R′α(t + h − τ) − R′α(t − τ)‖op(t − τ)γ . Clearly, for any τ ∈ (0, t),
lim
h→0

Gh(t) = 0. In addition, with the formula of Gh, one has

Gh(t) ≤
(
‖R′α(t+ h− τ)‖op + ‖R′α(t− τ)‖op

)
(t− τ)γ

≤
(
(t+ h− τ)−1 + ν(t+ h− τ)−α + (t− τ)−1

+ ν(t− τ)−α
)
(t− τ)γ

≤ 2
(
(t− τ)γ−1 + ν(t− τ)γ−α

)
= G(t).

Since G ∈ L1(0, t), it follows from the Lebesgue dominated convergence theorem
that

Φ1(t) ≤ HF

∫ t

0

Gh(τ)dτ → 0 as h→ 0.

With respect to Φ2, we have

Φ2(t) = ‖F (t)[Rα(t+ h)−Rα(t) + I −Rα(h)]‖ → 0 as h→ 0.

Therefore Φ is continuous on (0, T ] and hence u ∈ C1((0, T ], L2(Ω)).
Claim 3. ∆u ∈ C((0, T ];L2(Ω)). Noting that ∆u = ∆u1 + ∆u2 and ∆u1(·) =
∆Sα(·)ξ ∈ C((0, T ];L2(Ω)), thanks to Lemma 2.4(a), it remains to show ∆u2 ∈
C((0, T ];L2(Ω)). To do this, we first observe that S ′α(t)v = β∆Rα(t)v for all
v ∈ L2(Ω). And then

‖β∆u2(t)‖ = ‖
∫ t

0

β∆Rα(t− τ)F (τ)dτ‖

≤ ‖
∫ t

0

S ′α(t− τ)[F (τ)− F (t)]dτ‖+ ‖
∫ t

0

S ′α(t− τ)F (t)dτ‖

≤ HF

∫ t

0

(t− s)−1(t− s)γdτ + ‖
∫ t

0

S ′α(τ)F (t)dτ‖

≤ γ−1HF t
γ + ‖F (t)(I − Sα(t))‖ <∞, for all t > 0,

thanks to Lemma 2.4(a) again and then ∆u2 makes sense. We now prove that the
mapping t 7→ ∆u2(t) is continuous on (0, T ]. Let t > 0 and h ∈ (0, T − t], one has

‖∆u2(t+ h)−∆u2(t)‖

≤‖
∫ t+h

t

S ′α(t+ h− τ)F (τ)dτ‖

+ ‖
∫ t

0

[S ′α(t+ h− τ)− S ′α(t− τ)]F (t)dτ‖

+ ‖
∫ t

0

[S ′α(t+ h− τ)− S ′α(t− τ)][F (τ)− F (t)]dτ‖

=Φ4(t) + Φ5(t) + Φ6(t).
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According to Lemma 2.4(a), the function t 7→ ∆u2(t) is integrable, it implies that
Φ4(t)→ 0 as h→ 0. For same reason, one obtains the following estimates for Φ5:

Φ5(t) = ‖
∫ t+h

h

S ′α(τ)F (t)dτ −
∫ t

0

S ′α(τ)F (t)dτ‖

≤ ‖
∫ t+h

t

S ′α(τ)F (t)dτ‖+ ‖
∫ h

0

S ′α(τ)F (t)dτ‖

→ 0 as h→ 0.

Concerning Φ6(t), for all τ ∈ (0, t), we see

Ih(t) :=‖[S ′α(t+ h− τ)− S ′α(t− τ)][F (τ)− F (t)]‖ → 0 as h→ 0,

thanks to the fact that S ′α(·)z ∈ C((0, T ];L2(Ω)) for any z ∈ L2(Ω). Furthermore,
due to Lemma 2.4(a) and the Hölder continuity of F , we have that

Ih(t) ≤ [(t+ h− τ)−1 + (t− τ)−1]HF (t− τ)γ

≤ 2HFΓ(2− α)(t− τ)γ−1 =: I∗(τ).

Obviously, I∗ ∈ L1(0, t), so that

Φ5(t) ≤
∫ t

0

Ih(τ)dτ → as h→ 0,

thanks to the Lebesgue dominated convergence theorem.
Claim 4. Finally we show ∂α0+u ∈ C((0, T ];L2(Ω)) and u satisfies the equation
(2.3) on (0, T ].

Recalling that

u(t) = Sα(t)ξ +

∫ t

0

Rα(t− τ)F (τ)dτ

=

∞∑
n=1

[sα(t, βλn)ξn +
(
rα(·, βλn) ∗ Fn

)
(t)]en,

where Fn(t) =
(
F (t), en

)
. Then

(
g1−α ∗ [u(·)− ξ]

)
(t) =

∞∑
n=1

[(
g1−α ∗ [sα(·, βλn)− 1]

)
(t)ξn

+
(
g1−α ∗ rα(·, βλn) ∗ Fn

)
(t)
]
en.

Consider the series

∞∑
n=1

[g1−α ∗ sα(·, βλn)(t)ξn +
(
g1−α ∗ rα(·, βλn) ∗ Fn

)
(t)]′(t)en. (4.5)

Note that

g1−α ∗ [sα(·, βλn)− 1] + βλn
(
g1−α ∗ ` ∗ sα(·, βλn)

)
= 0,
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thus

ν
d

dt
g1−α ∗ [sα(·, βλn)− 1] = −βλn

d

dt

(
νg1−α ∗ ` ∗ sα(·, βλn)

)
= −βλn

d

dt
[(1− `) ∗ sα(·, βλn)]

= −βλnsα(·, βλn) + βλn
d

dt
` ∗ sα(·, βλn)

= −βλnsα(·, βλn)− s′α(·, βλn),

thanks to the differentiability of sα(·, βλn) and the equation (2.8). Furthermore,
by using Proposition 2.2(iii), we obtain

ν
d

dt
g1−α ∗ rα(·, βλn) = s′α(·, βλn)− r′α(·, βλn).

Therefore

ν
d

dt

(
g1−α ∗ rα(·, βλn) ∗ Fn

)
= s′α(·, βλn) ∗ Fn − r′α(·, βλn) ∗ Fn.

From the above calculations, one can write

∞∑
n=1

ν[g1−α ∗ sα(·, βλn)(t)ξn +
(
g1−α ∗ rα(·, βλn) ∗ Fn

)
(t)]′(t)en

= −
∞∑
n=1

βλnsα(t, βλn)ξnen −
∞∑
n=1

s′α(·, βλn)ξnen

+

∞∑
n=1

s′α(·, βλn) ∗ Fn(t)en −
∞∑
n=1

r′α(·, βλn) ∗ Fn(t)en. (4.6)

According to the representation (4.6), for any ε ∈ (0, T ) we have that the first and
second series are uniformly convergent on [ε, T ] to −β∆Sα(t)ξ, S ′α(t)ξ, respectively,
thanks to Lemma 2.4. We now show that the third and fourth series are also
uniformly convergent on [ε, T ]. Indeed, put

J1 =

∞∑
n=1

s′α(·, βλn) ∗ Fn(·)en,J2 =

∞∑
n=1

r′α(·, βλn) ∗ Fn(·)en.

It is clear that J1 converges pointwise in L2(Ω) to S ′α ∗ F (·) on [ε, T ]. Hence,
it only needs to prove that J1 is also uniformly convergent on [ε, T ]. Since F ∈
Cγ([0, T ];L2(Ω)), it follows that

‖F (t)− F (τ)‖2 =

∞∑
n=1

|Fn(t)− Fn(τ)|2 ≤ H2
F |t− τ |2γ ,∀t, τ ∈ [0, T ].

Denote

Υn(t, τ) =
|Fn(t)− Fn(τ)|
|t− τ |γ

, t, τ ∈ [0, T ], t 6= τ, n = 1, 2, . . .
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Then

J 2
1,n(t) : =

(
s′α(·, βλn) ∗ Fn(t)

)2
≤
(∫ t

0

βλnrα(t− τ, βλn)|Fn(t)− Fn(τ)|dτ

+

∫ t

0

βλnrα(t− τ, βλn)|Fn(t)|dτ
)2

≤ 2

(∫ t

0

βλnrα(t− τ, βλn)|Fn(t)− Fn(τ)|dτ
)2

+ 2

(∫ t

0

βλnrα(t− τ, βλn)|Fn(t)|dτ
)2

= 2

(∫ t

0

βλnrα(t− τ, βλn)(t− τ)γΥn(t, τ)dτ

)2

+ 2|Fn(t)|2
(∫ t

0

βλnrα(τ, βλn)dτ

)2

≤ 2

(∫ t

0

(t− τ)γ−1Υn(t, τ)dτ

)2

+ 2|Fn(t)|2
(∫ t

0

βλnrα(τ, βλn)dτ

)2

≤ 2

(∫ t

0

(t− τ)γ−1Υn(t, τ)dτ

)2

+ 2|Fn(t)|2, (4.7)

here we have utilized the inequalities
∫ t

0
βλnr(τ, βλn)dτ ≤ 1,∀t ≥ 0 and βλnrα(t−

τ, βλn) < (t − τ)−1,∀t > τ . In the light of the Hölder inequality, the first term in
(4.7) can be estimated as the following(∫ t

0

(t− τ)γ−1Υn(t, τ)dτ

)2

≤
∫ t

0

(t− τ)γ−1Υn(t, τ)2dτ

∫ t

0

(t− τ)γ−1dτ

≤ γ−1T γ
∫ t

0

(t− τ)γ−1Υn(t, τ)2dτ. (4.8)

It is to be noticed that, after defining values at diagonal, the function

Υ∗(t, τ) =
‖F (t)− F (τ)‖
|t− τ |γ

, t, τ ∈ [0, T ],

is continuous on [0, T ] × [0, T ]. Furthermore, the series
∑∞
n=1 Υ2

n(t, τ) converges
uniformly to Υ∗(t, τ) on [0, T ] × [0, T ]. Therefore, for ε > 0 there exists N =
N(ε) ∈ N such that

N+p∑
n=N

Υ2
n(t, τ) < ε, for all p ∈ N, t, τ ∈ [0, T ]. (4.9)

Similarly, due to the uniform convergence of the series
∑∞
n=1 |Fn(t)|2, t ∈ [0, T ], we

also have
N+p∑
n=N

|Fn(t)|2 < ε, for all p ∈ N, t ∈ [0, T ]. (4.10)
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From the estimates (4.7)-(4.10), it implies

N+p∑
n=N

J 2
2,n ≤ 2γ−1T γε

∫ t

0

(t− τ)ςdτ + 2ε

≤ 2
(
γ−2T 2γ + 1

)
ε,

where J 2
1,n(t) :=

(
r′α(·, βλn) ∗Fn(t)

)2
. We have the conclusion as required. By the

same arguments, we can prove that J2 is uniformly convergent on [ε, T ] to
(
R′α ∗

F
)
(·). From the previous considerations, it turns out that ∂α0+u ∈ C((0, T ], L2(Ω)).

Thus we get the desired claim.
Finally, we check that u satisfies equation (2.3). By the proof of Claim 2, one

has

∂tu(t, ·) = S ′α(t)ξ + F (t, ·) +

∫ t

0

R′α(t− τ)F (τ, ·)dτ. (4.11)

Furthermore, by (4.6), we get

ν∂α0+u = β∆Sα(t)ξ − S ′α(t)ξ + S ′α ∗ F (t)−
(
R′α ∗ F

)
(t)

= β∆
(
Sα(t)ξ +

(
Rα ∗ F

)
(t)
)
− S ′α(t)ξ −

(
R′α ∗ F

)
(t)

= β∆u− S ′α(t)ξ −
(
R′α ∗ F

)
(t). (4.12)

Combining (4.11) and (4.12) yields

∂tu+ ν∂α0+u− β∆u = F, t ∈ (0, T ],

which completes the proof of the theorem. �

Now we are in a position to formulate the result on C1−regularity of mild solu-
tions to the semilinear problem (1.1)-(1.3).

Theorem 4.3. Assume that the nonlinearity function f : [0, T ]× L2(Ω)→ L2(Ω)
satisfies f(·, 0) = 0 and a locally Lipschitz-Hölder condition

‖f(t1, v1)− f(t2, v2)‖ ≤ κ(r)
(
|t1 − t2|γ + ‖v1 − v2‖

)
, (4.13)

for all ti ∈ [0, T ], ‖vi‖ ≤ r, i ∈ {1, 2}, where κ is a nonnegative function such
that lim sup

r→0
κ(r) = l ∈

[
0, βλ1

)
. Then there exists δ > 0 such that the problem

(1.1)-(1.3) has a unique mild solution u on [0, T ] obeying u ∈ C([0, T ];L2(Ω)) ∩
C1((0, T ];L2(Ω)), provided that ‖ξ‖ ≤ δ.

Proof. Note that, the assumption (4.13) implies (3.1). Thus, due to Theorem 3.1,
for each ξ with ‖ξ‖ ≤ δ, the problem (1.1)-(1.3) has a unique mild u ∈ BR, where
δ,R are taken as in the proof of Theorem 3.1. Let F (t) = f(t, u(t)), t ∈ [0, T ]. Using
the same arguments as in the proof of Theorem 4.1 and of Claim 1 in Theorem 4.2,
the mild solution u given by (4.1) is Hölder continuous on [0, T ] with exponent γ.
According to this consideration and assumption (4.13), F is also Hölder continuous
on [0, T ] with exponent γ. Therefore the conclusion of this theorem follows by
applying Theorem 4.2. �

Remark 4.2. If f enjoys global Lipschitz condition, i.e.

‖f(t, v1)− f(t, v2)‖ ≤ Lf‖v1 − v2‖, (4.14)

for all t ∈ [0, T ], vi ∈ L2(Ω), i ∈ {1, 2}, then the C1−regularity of mild solution for
the problem (1.1)-(1.3) can be proved without any assumptions Lf ∈

[
0, βλ1

)
or the
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smallness of initial condition. In this case, the existence and uniqueness of mild
solution is received by Theorem 3.2 and the C1−regularity is proved the same lines
as the proof of Theorem 4.3.

5. Large-time behavior of solutions

Our main object in this section is to analyze the asymptotic behavior of mild
solutions of problem (1.1)-(1.3) on [0,∞). Using the Gronwall type inequality stated
in Lemma 2.6, we establish several results on asymptotic stability and dissipativity
of solutions. Furthermore, in the special case when the nonlinearity function f
does not depend on the time variable, say f(t, u) = f(u), we prove a result on the
convergence rate of nontrivial solutions to the equilibrium.

5.1. Stability and dissipativity.

Theorem 5.1. Consider the system (1.1)-(1.3). Suppose that the function f sat-
isfies the condition

(F4)’ f is continuous such that ‖f(t, v)‖ ≤ q(t)‖v‖ + a(t), for all t ∈ R+,
v ∈ L2(Ω), where q, a are nonnegative functions with q ∈ L∞(R+), a ∈
L1
loc(R+), ‖q‖L∞ < βλ1 and rα ∗ a is a bounded function.

Then, there exists an absorbing set for its solutions. Moreover, if a = 0, then the
trivial solution is asymptotically stable.

Proof. Let u be a solution of (1.1)-(1.3). Then, by using Lemma 2.4 and the
estimate of f , we obtain that

‖u(t)‖ ≤ sα(t, βλ1)‖ξ‖+

∫ t

0

rα(t− τ, βλ1)
(
a(τ) + q(τ)‖u(τ)‖

)
dτ

≤ sα(t, βλ1)‖ξ‖+

∫ t

0

rα(t− τ, βλ1)[a(τ) + ‖q‖L∞‖u(τ)‖]dτ.

Applying the Gronwall type inequality given in Lemma 2.6, we get

‖u(t)‖ ≤ sα(t, βλ1 − ‖q‖L∞)‖ξ‖+

∫ t

0

rα(t− τ, βλ1 − ‖q‖L∞)a(τ)dτ.

Put

R = 1 + sup
t≥0

∫ t

0

rα(t− τ, βλ1 − ‖q‖L∞)a(τ)dτ,

then the ball BR becomes an absorbing set for solutions of (1.1)-(1.3), by virtue of
the fact that

sα(t, βλ1 − ‖q‖L∞)→ 0 as t→∞.
Finally, if a = 0 then (1.1) admits the zero solution and it holds that

‖u(t)‖ ≤ sα(t, βλ1 − ‖q‖L∞)‖ξ‖, ∀t ≥ 0,

which means that the zero solution is asymptotically stable. The proof is complete.
�

Theorem 5.2. Suppose that the hypotheses of Theorem 3.1 hold for any T > 0.
Then the trivial solution of (1.1) is asymptotically stable.
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Proof. Take ρ, δ, and ε as in the proof of Theorem 3.1. Then for every ‖ξ‖ ≤ δ,
there exists a unique mild solution to (1.1)-(1.3) such that ‖u(t)‖ ≤ ρ for all t > 0
and it holds that

‖u(t)‖ ≤ ‖Sα(t)ξ‖+

∫ t

0

‖Rα(t− τ)‖op‖f(τ, u(τ))− f(τ, 0)‖dτ

≤ sα(t, βλ1)‖ξ‖+

∫ t

0

rα(t− τ, βλ1)κ(ρ)‖u(τ)‖dτ

≤ sα(t, βλ1)‖ξ‖+

∫ t

0

rα(t− τ, βλ1)(l + ε)‖u(τ)‖dτ, ∀t ≥ 0.

Using the Gronwall type inequality in Lemma 2.6 again, we obtain

‖u(t)‖ ≤ sα(t, βλ1 − l − ε)‖ξ‖, ∀t ≥ 0. (5.1)

Since βλ1 − l − ε > 0, we have

sα(t, βλ1 − l − ε)→ 0 as t→∞.
Hence inequality (5.1) ensures the stability and attractivity of the zero solution.
The proof is complete. �

Considering the case when f is globally Lipschitzian, we obtain a stronger result.

Theorem 5.3. If f satisfies the Lipschitz condition (4.14) with Lf ∈ [0, βλ1), then
every mild solution of (1.1)-(1.2) is asymptotically stable.

Proof. Let u and v be solutions of (1.1)-(1.2). Then

‖u(t)− v(t)‖ ≤ ‖Sα(t)[u(0)− v(0)]‖

+

∫ t

0

‖Rα(t− τ)‖op‖f(τ, u(τ))− f(τ, v(τ))‖dτ

≤ sα(t, βλ1)‖u(0)− v(0)‖+

∫ t

0

rα(t− τ, βλ1)Lf‖u(τ)− v(τ)‖dτ.

Applying Lemma 2.6 yields

‖u(t)− v(t)‖ ≤ sα(t, βλ1 − Lf )‖u(0)− v(0)‖, ∀t ≥ 0,

which implies that every solution of (1.1)-(1.2) is asymptotically stable. �

5.2. Convergence to equilibrium. In the special case the nonlinearity function
f being not dependent on the variable time t, i.e., f(t, u) = f(u), we obtain a result
on the convergence to equilibrium point with algebraic rate of solutions to problem
(1.1)-(1.3) in the following theorem.

Theorem 5.4. Let (F1) holds and u be a global mild solution of (1.1)-(1.3). As-
sume that ∂Ω ∈ C2. If there exists the limit lim

t→∞
u(t) = u∗ in L2(Ω), then u∗ is a

strong solution of the elliptic problem

−β∆v = f(v) in Ω (5.2)

v = 0 on ∂Ω. (5.3)

In addition, if f satisfies the Lipschitz condition (4.14) with Lf ∈ [0, βλ1) then the
problem (5.2)-(5.3) has a unique strong solution u∗, and for each ξ ∈ L2(Ω), the
mild solution of (1.1)-(1.3) converges to u∗ with algebraic rate as t→∞.
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Proof. We prove by the following two steps. By the continuity of f we obtain
lim
t→∞

f(u(t)) = f(u∗). That means for ε > 0 there exists T ∗ > 0 such that

‖f(u(t))− f(u∗)‖ ≤ ε, for all t > T ∗.

On the other hand, by the representation formula of mild solution, we can write

u(t) = Sα(t)ξ +

∫ t

0

Rα(t− τ)f(u(τ))dτ

= Sα(t)ξ +

∫ t

0

Rα(t− τ)f(u∗)dτ +

∫ t

0

Rα(t− τ)[f(u(τ))− f(u∗)]dτ

= N1(t) +N2(t) +N3(t).

Regarding N1, we have that

‖N1(t)‖ ≤ sα(t, βλ1)‖ξ‖ → 0 as t→∞.
As for N3, we find that

‖N3(t)‖ =

(∫ T∗

0

+

∫ t

T∗

)
Rα(t− τ)[f(u(τ))− f(u∗)]dτ

≤
∫ T∗

0

rα(t− τ, βλ1)κ(R)‖u(τ)− u∗‖dτ + ε

∫ t

T∗
rα(t− τ, βλ1)dτ

≤ 2Rκ(R)

∫ T∗

0

rα(t− τ, βλ1)dτ + ε

∫ t

T∗
rα(τ, βλ1)dτ

≤ 2Rκ(R)

∫ T∗

0

rα(t− τ, βλ1)dτ + εβ−1λ−1
1

≤ 2Rκ(R)

∫ t

t−T∗
rα(τ, βλ1)dτ + εβ−1λ−1

1 , for t > T ∗,

thanks to Proposition 2.2, where R = ‖u‖∞ + ‖u∗‖. Since rα(·, βλ1) ∈ L1(R+),
there exists T1 > 0 such that∫ t

T1

rα(τ, βλ1)dτ ≤ ε, for all t > T1.

Therefore for t > T ∗ + T1 we have

‖N3(t)‖ ≤ [2Rκ(R) + β−1λ−1
1 ]ε,

which guarantees that N3(t)→ 0 as t→∞. Since lim
t→∞

u(t) = u∗, it implies that

u∗ = lim
t→∞

N2(t) =

∫ ∞
0

Rα(τ)f(u∗)dτ = R̂α(0)f(u∗).

Noting that Sα(·) be the solution operator of the homogeneous problem

∂tu+ ν∂α0+u− β∆u = 0, in Ω, t > 0, (5.4)

u = 0 on ∂Ω, t ≥ 0, (5.5)

u(0, ·) = ξ in Ω. (5.6)

that is, u(t) = Sα(t)ξ, t ≥ 0. Furthermore, by integration the equation (5.4) in t
and using the relation (2.1), this problem can be rewritten in L2(Ω) under the form

u(t) +
(
` ∗ (−β∆)u

)
(t) = ξ, t ≥ 0.



Regularity and stability for FrMIMEs 29

With the aid of Laplace transform, we find that

û(λ) = ξλ−1
(
I + ̂̀(λ)(−β∆)

)−1
,

thus

Ŝα(λ) = λ−1
(
I + ̂̀(λ)(−β∆)

)−1
.

Since S ′α(t) = β∆Rα(t), it follows that

λŜα(λ)− Sα(0) = β∆R̂α(λ),

or equivalently

β∆R̂α(λ) =
(
I + ̂̀(λ)(−β∆)

)−1 − I.

By letting the limit as λ→ 0 in the last relation, we find that

β∆R̂α(0) = lim
λ→0

[
(
I + ̂̀(λ)(−β∆)

)−1 − I] = −I,

thanks to the fact that lim
λ→0

̂̀(λ) = lim
λ→0

1
λ+λα =∞. Therefore,

R̂α(0) = (−β∆)−1,

and then

u∗ = (−β∆)−1f(u∗).

According to ∂Ω ∈ C2, we obtain u∗ ∈ H2(Ω) and −β∆u∗ = f(u∗), thanks to [6,
Sect. 6.3.2].

We now consider the elliptic problem (5.2)-(5.3) where the nonlinear function f
satisfies the global Lipschitz hypothesis (4.14) with Lf ∈ [0, βλ1). Let Ce be the
constant of embedding H1

0 (Ω) ⊂ L2(Ω). By the smoothness of ∂Ω, we find that

C−2
e = inf

v∈H1
0 (Ω)\{0}

‖∇v‖2

‖v‖2
= λ1.

Since the Lipschitz constant Lf fulfills Lf < βλ1, then the problem (5.2)-(5.3)
admits a unique weak solution v ∈ H1

0 (Ω), due to [4, Theorem 7.4.1]. Observing
that if u∗ be a weak solution of (5.2)-(5.3) then f(u∗) ∈ L2(Ω). Using this fact and
the regularity result in [6, Sect. 6.3.2] again, it may be checked that u∗ ∈ H2(Ω)
and then u∗ be a unique strong solution of (5.2)-(5.3).

On the one hand, by the formula of mild solution, we have

u(t)− u∗ = Sα(t)ξ − (−β∆)−1f(u∗) +

∫ t

0

Rα(t− τ)f(u(τ))dτ

= Sα(t)ξ +

∫ t

0

Rα(τ)f(u∗)dτ − (−β∆)−1f(u∗)

+

∫ t

0

Rα(t− τ)[f(u(τ))− f(u∗)]dτ. (5.7)

On the other hand, by a direct computation, we obtain∫ t

0

Rα(τ)f(u∗)dτ − (−β∆)−1f(u∗) = −(−β∆)−1Sα(t)f(u∗). (5.8)
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The above relation (5.8) together with (5.7) yields

‖u(t)− u∗‖ ≤ ‖Sα(t)ξ − (−β∆)−1Sα(t)f(u∗)‖

+ ‖
∫ t

0

Rα(t− τ)[f(u(τ))− f(u∗)]dτ‖

≤ sα(t, βλ1)
(
‖ξ‖+ ‖(−β∆)−1‖op‖f(u∗)‖

)
+ Lf

∫ t

0

rα(t− τ, βλ1)‖u(τ)− u∗‖dτ.

Using the Gronwall type inequality, one sees that

‖u(t)− u∗‖ ≤ sα(t, βλ1 − Lf )
(
‖ξ‖+ ‖(−β∆)−1‖op‖f(u∗)‖

)
.

From the last inequality and Remark 2.1(i), we obtain

‖u(t)− u∗‖ = O(t−α) as t→∞.

The proof is complete. �
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