
Asymptotic behaviour of solutions to
non-commensurate fractional-order planar systems

Kai Diethelm∗ Ha Duc Thai† Hoang The Tuan‡

Abstract

This paper is devoted to studying non-commensurate fractional order planar
systems. Our contributions are to derive sufficient conditions for the global at-
tractivity of non-trivial solutions to fractional-order inhomogeneous linear planar
systems and for the Mittag-Leffler stability of an equilibrium point to fractional
order nonlinear planar systems. To achieve these goals, our approach is as fol-
lows. Firstly, based on Cauchy’s argument principle in complex analysis, we obtain
various explicit sufficient conditions for the asymptotic stability of linear systems
whose coefficient matrices are constant. Secondly, by using Hankel type contours,
we derive some important estimates of special functions arising from a variation of
constants formula of solutions to inhomogeneous linear systems. Then, by proposing
new weighted norms combined with the Banach fixed point theorem for appropri-
ate Banach spaces, we get the desired conclusions. Finally, numerical examples are
provided to illustrate the effect of the main theoretical results.
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1 Introduction

Fractional calculus and fractional order differential equations are research topics that
have generated a great amount of interest in recent years. For details on their various
applications in in science and engineering, we refer the interested reader to the collections
[2, 3, 14, 18, 19] and the references therein.
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To our knowledge, the first contribution in the qualitative study of the fractional order
autonomous linear systems was published by Matignon [13]. In that paper, using Laplace
transform and the final value theorem, the author has obtained an algebraic criterion
to ensure the attractiveness of solutions. The BIBO (bounded input, bounded output)
stability for non-commensurate fractional order systems, i.e. for systems whose differential
equations are not all of the same order, was investigated by Bonnet and Partington [4],
and their result shows that the systems are stable if and only if their transfer function
has no pole in the closed right hand side of the complex plane.

Starting from [4], a new difficult task appears: finding the conditions to ensure that the
poles of the characteristic polynomial of the system lie on the open left side of the com-
plex plane. Trigeassou et al. [20] have proposed a method based on Nyquist’s theorem.
In particular, they have derived Routh-like stability conditions for fractional order sys-
tems involving at most two fractional derivations. Unfortunately, for higher numbers of
differential operators, this approach seems to be unsuitable by its numerical implementa-
tion. After that, Sabatier et al. [16] have introduced another realization of the fractional
system. This realization is recursively defined and involves nested closed-loops. Based
on this realization, they have obtained a recursive algorithm that involves, at each step,
Cauchy’s argument principle on a frequency range and removes the numerical limitation
mentioned in [20] above.

In addition to the algorithmic approach as in [16], a number of analytic approaches have
been used to investigate the zeros of characteristic polynomials of systems of fractional
order systems. In [12], the stability and resonance conditions are established for fractional
systems of second order in terms of a pseudo-damping factor and a fractional differenti-
ation order. The method in [12] has been successfully extended in [26] for a wide class
of second kind non-commensurate elementary systems. By the substitution method, a
variation of constants formula and the properties of the Mittag-Leffler function in the sta-
ble domain, in [10], the authors have shown the asymptotic stability for fractional order
systems with (block) triangular coefficient matrices. By combining a variation of con-
stants formula, properties of Mittag-Leffler functions, a special weighted norm type and
Banach’s fixed-point theorem, Tuan and Trinh [23] have proved the global attractivity
and asymptotic stability for a class of mixed-order linear fractional systems when the co-
efficient matrices are strictly diagonally dominant and the elements on the main diagonal
of these matrices are negative. Using the positivity of the system and developing a novel
comparison principle, Shen and Lam [17] have considered the stability and performance
analysis of positive mixed fractional order linear systems with bounded delays. Tuan et
al. [24] have established a necessary and sufficient condition for the asymptotic stability of
positive mixed fractional-order linear systems with bounded or unbounded time-varying
delays.

Although there have been some articles on mixed fractional order systems as listed above,
in our view, the qualitative theory of non-commensurate fractional order systems is still
a challenging topic whose development is in its infancy. Even in the simplest case when
the coefficient matrix is constant, the current results seem to be far away from a complete
characterization of the stability of these systems. In particular, the entire theory for
non commensurate systems is far less well developed than the corresponding theory for
commensurate systems (i.e. systems all of whose associated differential equations are of
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the same order) that have been extensively discussed, e.g., in the papers mentioned above
or in [7, 8] and the references cited therein.

For these reasons, we study in this paper the fractional-order planar system with Caputo
fractional derivatives

CDα
0+x(t) = Ax(t) + f(t, x(t)), t > 0, (1)

x(0) = x0 ∈ R2, (2)

where α = (α1, α2) ∈ (0, 1]2 is a multi-index, A ∈ R2×2 is a square matrix and f : [0,∞)×
R2 → R2 is vector valued continuous function. It is worth noting that for the case f = 0,
in [6], by constructing a smooth parameter curve and using Rouché’s theorem, Brandibur
and Kaslik have provided criteria for the asymptotic stability and for the instability of
solutions, respectively. However, these conditions are not explicit and are quite difficult
to verify. Motivated by [6], our aim is as follows. First, we want to give sufficient simple
and clear conditions that can guarantee the Mittag-Leffler stability of the system (1) in
the homogeneous case. Then, by establishing a variation of constants formula, estimates
for general Mittag-Leffler type functions, and proposing new weighted norms, we show the
asymptotic behavior of the system when the vector field f is inhomogeneous or represents
small nonlinear noise around its equilibrium point.

The paper is organized as follows. Section 2 contains a brief summary of existence and
uniqueness results for solutions to multi-order fractional differential systems and a vari-
ation of constants formula for solutions to fractional order inhomogeneous linear planar
systems. Section 3 deals with some properties of the characteristic function to a general
fractional order homogeneous linear planar system whose coefficient matrix is constant.
Section 4 is devoted to studying important estimates for special functions arising from
the variation of constants formula for the solutions. Our main contributions are presented
in Section 5 where we show the asymptotic behaviour of solutions to fractional-order lin-
ear planar systems and the Mittag-Leffler stability of an equilibrium point to fractional
nonlinear planar systems. Numerical examples are provided in Section 6 to illustrate the
main theoretical results.

To conclude the introduction, we present some notations that will be used throughout
the rest of the paper. In R2, we define the norm ‖ · ‖ by ‖x‖ := max{|x1|, |x2|} for every
x ∈ R2. For any r > 0, the closed ball of radius r centered at the origin 0 in R2 is given
by B(0, r) := {x ∈ R2 : ‖x‖ ≤ r}. The space of all continuous functions ξ : [0,∞) → R2

is denoted by C([0,∞);R2). For any ξ ∈ C([0,∞);R2), let ‖ξ‖∞ := supt≥0 ‖ξ(t)‖. Then,
we use the notation C∞([0,∞);R2) := {ξ ∈ C([0,∞);R2) : ‖ξ‖∞ < ∞} to designate the
subspace of C([0,∞);R2) that comprises the bounded continuous functions on [0,∞).

For α ∈ (0, 1) and J = [0, T ] or J = [0,∞), we define the Riemann-Liouville fractional
integral of a function f : J → R as

Iα0+f(t) :=
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds, t ∈ J,

and the Caputo fractional derivative of the order α ∈ (0, 1) of a function f : J → R as

CDα
0+f(t) :=

d

dt
I1−α

0+ (f(t)− f(0)), t ∈ J \ {0},
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where Γ(·) is the Gamma function and d
dt

is the usual derivative. Letting α = (α1, α2) ∈
(0, 1] × (0, 1] be a multi-index and f = (f1, f2) with fi : J → R, i = 1, 2, be a vector
valued function, we write

CDα
0+f(t) :=

(
CDα1

0+f1(t),C Dα2

0+f2(t)
)
.

See, e.g., [9, Chapter III] and [25] for more details on the Caputo fractional derivative.

2 Preliminaries

2.1 Existence and uniqueness of global solutions and exponen-
tial boundedness of solutions

Consider the two-component incommensurate fractional-order initial value problem with
Caputo fractional derivatives

CDα
0+x(t) = f(t, x(t)), t > 0, (3a)

x(0) = x0 ∈ R2, (3b)

where α = (α1, α2) ∈ (0, 1]2 is a multi-index and f : [0,∞) × R2 → R2 is a continuous
function.

Theorem 2.1 (Existence and uniqueness of global solutions). Suppose that the function
f : [0,∞) × R2 → R2 is continuous and that, for some constant L > 0, it satisfies the
Lipschitz condition

‖f(t, x)− f(t, x̂)‖ ≤ L||x− x̂||, ∀t ∈ [0.∞), x, x̂ ∈ R2

with respect to its second variable. Then, for any initial value x0 ∈ R2, the two-component
incommensurate fractional-order system (3) has a unique global solution ϕ(·, x0) on the
interval [0,∞).

Proof. See [22, Theorem 2.2 and Remark 2.3].

Theorem 2.2 (Exponential boundedness of global solutions). Suppose that the function
f satisfies the assumptions of Theorem 2.1. Moreover, let there exist a constant γ > 0
such that

sup
t≥0

e−γt
∫ t

0

(t− s)αi−1‖f(s, 0)‖ds <∞.

Then, for any initial value x0 ∈ R2, the two-component incommensurate fractional-order
system (3) has a unique global solution ϕ(·, x0) ∈ C ([0,∞),R2) and

‖ϕ(t, x0)‖ ≤Meγt, ∀t ≥ 0,

where M is some positive constant which depends on x0.

Proof. See [22, Theorem 2.4].
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2.2 The variation of constants formula for the solutions

Consider the non-homogeneous two-component incommensurate fractional-order linear
system

CDα
0+x(t) = Ax(t) + f(t), t > 0 (4a)

with initial condition

x(0) = x0 ∈ R2, (4b)

where α = (α1, α2) ∈ (0, 1]2, A = (aij) ∈ R2×2 is a square real matrix and f = (f1, f2)T :
[0,∞)→ R2 is a continuous function such that

‖f(t)‖ ≤Meγt, ∀t ≥ 0 (5)

for some M > 0 and some γ > 0. Then, we have∫ t

0

(t− s)αi−1|fi(s)|ds ≤M

∫ t

0

(t− s)αi−1eγsds

= −Meγt

γαi

∫ t

0

(γ(t− s))αi−1 e−γ(t−s)d(γ(t− s))

=
Meγt

γαi

∫ γt

0

ταi−1e−τdτ

≤ MΓ(αi)

γαi
eγt.

Due to Theorems 2.1 and 2.2, for any initial condition x0 ∈ R2, the system (4) has a
unique exponentially bounded solution in C ([0,∞),R2). Taking Laplace transform on
both sides of the system (4), we obtain the algebraic system{

(sα1 − a11)X1(s)− a12X2(s) = sα1−1x0
1 + F1(s)

−a21X1(s) + (sα2 − a22)X2(s) = sα2−1x0
2 + F2(s)

, (6)

where Xi(s) and Fi(s), i = 1, 2, are the Laplace transforms of xi(t) and fi(t), respectively.
By Cramer’s rule, we see that

X1(s) =
x0

1(sα1+α2−1 − a22s
α1−1) + x0

2a12s
α2−1 + F1(s)(sα2 − a22) + a12F2(s)

Q(s)

=
sα1+α2 − a22s

α1

sQ(s)
x0

1 +
sα2

sQ(s)
x0

2 +
sα2 − a22

Q(s)
F1(s) +

a12F2(s)

Q(s)
, (7)

and

X2(s) =
x0

2(sα1+α2−1 − a11s
α2−1) + x0

1a21s
α1−1 + a12F1(s) + F2(s)(sα1 − a11)

Q(s)

=
sα1+α2 − a11s

α2

sQ(s)
x0

2 +
a21s

α1

sQ(s)
x0

1 +
a21F1(s)

Q(s)
+
sα1 − a11

Q(s)
F2(s), (8)
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where Q(s) := sα1+α2 − a11s
α2 − a22s

α1 + detA. Put

Rλ(t) = L−1

{
sl(α)−λ

sQ(s)

}
(t), λ ∈ {0, α1, α2} , (9a)

Sβ(t) = L−1

{
sl(α)−β

Q(s)

}
(t), β ∈ {α1, α2, l(α)} (9b)

with l(α) := α1 + α2. Then, with each i ∈ {1, 2}, we obtain

L−1

{
sl(α)−β

Q(s)
Fi(s)

}
(t) = L−1

{
L
{
Sβ
}

(s)L{fi} (s)
}

(t)

= L−1
{
L
{
Sβ ∗ fi

}
(s)
}

(t)

= Sβ ∗ fi(t), β ∈ {α1, α2, l(α)} ,

where ”∗” is the Laplace convolution operator.

From the arguments above, the unique solution to the initial value problem (4) has the
following form.

Lemma 2.3. On the interval [0,∞), the non-homogeneous linear two-component incom-
mensurate fractional-order system (4) has the unique solution

ϕ(·, x0) =

(
ϕ1(·, x0)
ϕ2(·, x0)

)
with

ϕ1(t, x0) =
(
R0(t)− a22Rα2(t)

)
x0

1 + a12Rα1(t)x0
2

+
(
(Sα1 − a22S l(α)) ∗ f1

)
(t) + a12

(
S l(α) ∗ f2

)
(t), (10)

ϕ2(t, x0) = a21Rα2(t)x0
1 +

(
R0(t)− a11Rα1(t)

)
x0

2

+ a21

(
S l(α) ∗ f1

)
(t) +

(
(Sα2 − a11S l(α)) ∗ f2

)
(t). (11)

3 Some properties of the characteristic function

In this paper, we only focus on incommensurate systems, i.e. on systems of the form (1)
with α1 6= α2, because the case α1 = α2 has already been discussed in detail elsewhere
[13]. Thus, without loss of generality, we assume 0 < α1 < α2 ≤ 1. Our first auxiliary
statement in this context deals with functions of the form

Q(s) = sα1+α2 − asα2 − bsα1 + c; (12)

the characteristic functions of the problems under consideration will be of precisely this
structure.

Lemma 3.1. Let 0 < α1 < α2 ≤ 1 and a, b, c ∈ R. Then, the following statements hold
for the function Q defined in (12).
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(i) If c < 0 then Q has at least one positive real zero.

(ii) If s ∈ C is a zero of Q then its complex conjugate is also a zero of Q.

(iii) Let 0 < ω < π. Then, Q has only a finite number of zeros in the set C = {z ∈ C :
| arg (z)| ≤ ω}.

(iv) If c > 0, then s = iω with ω > 0 is a zero of Q if and only if{
a = ρ2ω

α1 − cρ1ω
−α2 ,

b = cρ2ω
−α1 − ρ1ω

α2 ,
(13)

where

ρ1 =
sin α1π

2

sin (α2−α1)π
2

, ρ2 =
sin α2π

2

sin (α2−α1)π
2

. (14)

Proof. (i) and (ii) are obvious.

(iii) First, we assume that c 6= 0. Then Q(0) 6= 0. Due to the continuity of Q at 0, we
can find ε which is small enough such that Q has no zero in {z ∈ C : |z| < ε} . Moreover,
because |Q(s)| ≥ |s|α1+α2 − |a| · |s|α2 − |b| · |s|α1 − |c|, we have that lim|s|→∞ |Q(s)| = ∞
uniformly for all arg s. This implies that there is a positive real number R such that Q has
no zero in the domain {z ∈ C : |z| > R} . Hence, all zeros of Q in {z ∈ C : | arg (z)| ≤ ω}
(if they exist) belong to the set Ω := {z ∈ C : ε ≤ |z| ≤ R, | arg (z)| ≤ ω} . Notice that Ω
is a compact set and Q is analytic on this domain. If now Q has infinitely many zeros in Ω
then, because of the compactness of Ω, the set of zeros has a cluster point. This implies,
in view of the analyticity of Q, that Q(s) = 0 for all s which contradicts the definition of
Q. Hence, Q has only a finite number of zeros in Ω. This shows that Q has only a finite
number of zeros in the domain C if c 6= 0.
To deal with the case c = 0, we write

Q(s) = sα1
(
sα2 − asα2−α1 − b

)
= sα1P (s),

where P (s) = sα2 − asα2−α1 − b. By repeating the above arguments for P , the proof is
complete.

(iv) See [5, Proposition 1, Part 3b].

Corollary 3.2. Assume that a, b, c > 0 and that one of conditions

(i) c(ρ2
2 − ρ2

1) < ab < c(ρ2
2 + ρ2

1),

(ii) ab ≤ c (ρ2 − ρ1)2,

is satisfied where ρ1, ρ2 are defined in (14). Then, the function Q defined in (12) has no
purely imaginary zero.
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Proof. Consider the system (13). Due to the fact that ρ2 6= 0, this system is equivalent
to  ωα1 =

a

ρ2

+ c
ρ1

ρ2

ω−α2 ,

ρ1aω
α2 + ρ2bω

α1 = c(ρ2
2 − ρ2

1).
(15)

Thus, we obtain
aρ1ω

α2 + bcρ1ω
−α2 + ab− c(ρ2

2 − ρ2
1) = 0. (16)

Setting X = ωα2 , equation (16) takes the form

aρ1X
2 +

[
ab− c(ρ2

2 − ρ2
1)
]
X + bcρ1 = 0. (17)

The discriminant of the quadratic equation (17) is

∆ =
(
ab− c(ρ2

2 − ρ2
1)
)2 − 4abcρ2

1

= a2b2 + c2(ρ2
2 − ρ2

1)2 − 2abc(ρ2
1 + ρ2

2)

=
(
ab− c(ρ2

1 + ρ2
2)
)2 − 4c2ρ2

1ρ
2
2

=
(
ab− c(ρ1 + ρ2)2

) (
ab− c(ρ2 − ρ1)2

)
.

(i) Clearly, if c(ρ2
2−ρ2

1) < ab < c(ρ2
2 +ρ2

1), then ∆ < 0. Hence, the quadratic equation (17)
has no real roots. This implies that the system (13) has no root ω > 0. This together
with Lemma 3.1(ii) and Lemma 3.1(iv) shows that Q has no purely imaginary zero.

(ii) If ab ≤ c (ρ2 − ρ1)2, the quadratic equation (17) has two (not necessarily distinct)
real roots. Because 0 < ρ1 < ρ2, we have (ρ2 − ρ1)2 < ρ2

2 − ρ2
1. This implies that

ab− c(ρ2
2− ρ2

1) < 0. Moreover, a, b, c, ρ1 > 0, thus the two roots of the quadratic equation
(17) are negative. Hence, in view of the relation X = ωα2 with 0 < α2 ≤ 1 between the
solution X of (17) and the solution ω of (13), the system (13) has no root ω > 0. Using
Lemma 3.1(ii) and Lemma 3.1(iv), we see that Q has no purely imaginary zero.

Recall that if c ≤ 0, then Q has at least one non-negative real zero, which precludes any
kind of stability. Thus, in this section, we only consider the case c > 0. As shown above,
because Q has only a finite number of zeros in the domain C, there exists a constant
R > 0 which is large enough such that Q has no zero in {z ∈ C : |z| ≥ R} . On the other
hand, Q is continuous at 0 with Q(0) > 0, so we can find a small constant ε > 0 such that
Q(z) 6= 0 in {z ∈ C : |z| ≤ ε}. We define an oriented contour γ formed by four segments:

γ1 := {s = iω : ε ≤ ω ≤ R} ;

γ2 :=
{
s = Reiϕ : −π

2
≤ ϕ ≤ π

2

}
;

γ3 :=
{
s = εeiϕ : −π

2
≤ ϕ ≤ π

2

}
;

γ4 := {s = iω : −R ≤ ω ≤ −ε} .

Clearly, if Q has no purely imaginary zero, then all zeros in the closed right hand side of
the complex plane {s = r(cosφ + i sinφ) ∈ C : r ≥ 0, φ ∈ (−π, π]} of Q (if they exist)
must lie inside the contour γ. Based on Cauchy’s argument principle in complex analysis,
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we see that n(Q(C), 0) = Z − P, where n(Q(C), 0) is the number of encirclements in
the positive direction (counter-clockwise) around the origin of the the Nyquist plot Q(γ),
Z and P are the number of zeros and number of poles of Q inside the contour γ in
the s-plane, respectively. Due to the fact that Q is analytic inside γ, we have P = 0
and thus n(Q(C), 0) = Z. This implies that if Q has no purely imaginary zero, then
all roots of the equation Q(s) = 0 lie in the open left-half complex plane if and only if
n(Q(C), 0) = 0. Notice that Q(0) > 0, lim|s|→∞ |Q(s)| = ∞, <Q(iω) = <Q(−iω) and
=Q(iω) = −=Q(−iω). It is easy to see that n(Q(C), 0) = 0 if <Q(iω) > 0 for any ω > 0
that satisfies =Q(iω) = 0. Consider ω > 0 and put

h1(ω) := <(Q(iω)) = ωα1+α2 cos
(α1 + α2)π

2
− aωα2 cos

α2π

2
− bωα1 cos

α1π

2
+ c, (18)

h2(ω) := =(Q(iω)) = ωα1+α2 sin
(α1 + α2)π

2
− aωα2 sin

α2π

2
− bωα1 sin

α1π

2
. (19)

If there exists some ω > 0 such that h2(ω) = 0, then

sin
(α1 + α2)π

2
h1(ω) = sin

(α1 + α2)π

2
h1(ω)− cos

(α1 + α2)π

2
h2(ω)

= aωα2

(
sin

α2π

2
cos

(α1 + α2)π

2
− cos

α2π

2
sin

(α1 + α2)π

2

)
+ bωα1

(
sin

α1π

2
cos

(α1 + α2)π

2
− cos

α1π

2
sin

(α1 + α2)π

2

)
+ c sin

(α1 + α2)π

2

= c sin
(α1 + α2)π

2
− aωα2 sin

α1π

2
− bωα1 sin

α2π

2
.

Thus, the variable ω > 0 satisfies the system{
h2(ω) = 0
h1(ω) = c− aωα2q1 − bωα1q2

(20)

with

q1 =
sin α1π

2

sin (α2+α1)π
2

, q2 =
sin α2π

2

sin (α2+α1)π
2

. (21)

It is then clear from our assumptions on α1 and α2 that q1, q2 > 0. Based on the analysis
above, we obtain some sufficient conditions that ensure that the function Q(·) has no zero
lying in the closed right half of the complex plane.

Lemma 3.3. Assume that a, b ≤ 0, and c > 0. Then, all zeros of Q are in the open
left-half complex plane regardless of α1 and α2.

Proof. See [5, Proposition 1(b)].

Lemma 3.4. Let 0 < α1 < α2 ≤ 1. Assume that a = 0, b > 0 and

c > (bq1)α1/α2 bq2. (22)

Then, all zeros of Q lie in the open left-half of the complex plane.
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Proof. Because a = 0 and b > 0, we see that h2(ω0) = 0 if and only if ω0 = (bq1)1/α2 . From

(20), we have h1(ω0) = c− (bq1)α1/α2 bq2. By the assumption (22), we obtain h1(ω0) > 0.
This implies that all zeros of Q lie in the open left-half of complex plane.

Lemma 3.5. Let 0 < α1 < α2 ≤ 1. Assume that b = 0, a > 0 and

c > (aq2)α2/α1 aq1. (23)

Then, all zeros of Q lie in the open left-half complex plane.

Proof. Since b = 0 and a > 0, it is easy to show that h2(ω0) = 0 if and only if ω0 =

(aq2)1/α1 . From (20), it follows that h1(ω0) = c− (aq2)α2/α1 aq1. By the assumption (23),
we see that h1(ω0) > 0 which implies that all zeros of Q lie in the open left-half of the
complex plane.

Lemma 3.6. Let 0 < α1 < α2 ≤ 1. Assume that a, b, c > 0. Then, all zeros of Q are in
the open left-half of the complex plane if one of the following conditions holds:

(i) aq2 + bq1 > 1 and aq2 ((a+ b)q2)α2/α1 + b(a+ b)q2
2 ≤ c.

(ii) aq2 + bq1 ≤ 1 and aq1 + bq2 < c.

Proof. We have

h′2(ω) = (α1 + α2)ωα1+α2−1 sin
(α1 + α2)π

2
− aα2ω

α2−1 sin
α2π

2
− α1ω

α1−1 sin
α1π

2

= ωα1−1

(
(α1 + α2)ωα2 sin

(α1 + α2)π

2
− aα2ω

α2−α1 sin
α2π

2
− bα1 sin

α1π

2

)
= ωα1−1g2(ω) (24)

where

g2(ω) := (α1 + α2)ωα2 sin
(α1 + α2)π

2
− aα2ω

α2−α1 sin
α2π

2
− bα1 sin

α1π

2
. (25)

Notice that

g′2(ω) = α2(α1 + α2)ωα2−1 sin
(α1 + α2)π

2
− (α2 − α1)α2aω

α2−α1−1 sin
α2π

2
.

It is not difficult to check that g′2(ω) < 0 in (0, ω1) and g′2(ω) > 0 in (ω1,∞), where ω1 =(
α2−α1

α1+α2
aq2

)1/α1

. Due to the fact that g2(0) = −α1b sin α1π
2
< 0, and limω→+∞ g2(ω) = +∞,

the equation g2(ω) = 0 has a unique root ω2 ∈ (0,∞). Moreover g2(ω) < 0 in (0, ω2) and
g2(ω) > 0 in (ω2,∞). Hence, h2 is decreasing in (0, ω2) and increasing in (ω2,∞). On
the other hand, h2(0) = 0 and limω→+∞ h2(ω) = +∞. This shows that the equation
h2(ω) = 0 has a unique root ω3 ∈ (0,∞) and then h2(ω) < 0 for all ω ∈ (0, ω3) and
h2(ω) > 0 for all ω ∈ (ω3,∞).
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(i) If aq2+bq1 > 1, then h2(1) < 0. This implies that ω3 > 1.Moreover, due to α1 < α2 ≤ 1,
we have

h2(ω) > ωα1+α2 sin
(α1 + α2)π

2
− (a+ b)ωα2 sin

α2π

2
(26)

for every ω > 1, and thus h2

(
((a+ b)q2)1/α1

)
> 0. This implies that 1 < ω3 < ((a+ b)q2)1/α1 .

Hence, if

c ≥ aq2 ((a+ b)q2)α2/α1 + b(a+ b)q2
2,

due to q2 > q1 > 0, we obtain c > aωα2
3 q1 + bωα1

3 q2, which together with (20) leads to
h1(ω3) > 0. The proof of this part is complete.

(ii) If aq2 + bq1 ≤ 1, then h2(1) ≥ 0. This implies that 0 < ω3 ≤ 1. Due to c > aq1 + bq2,
we have c > aωα2

3 q1 + bωα1
3 q2,. This together with (20) shows that h1(ω3) > 0. The proof

is finished.

Lemma 3.7. Assume that a < 0 and b, c > 0. Then, all zeros of Q are in the open
left-half complex plane if one of the following conditions holds:

(i) aq2 + bq1 > 1 and (bq1)α1/α2 bq2 ≤ c.

(ii) aq2 + bq1 ≤ 1 and bq2 ≤ c.

Proof. As shown in the proof of Lemma 3.6, we have h′2(ω) = ωα1−1g2(ω) where g2 is as
in (25). Notice that

g′2(ω) = α2(α1 + α2)ωα2−1 sin
(α1 + α2)π

2
− (α2 − α1)α2aω

α2−α1−1 sin
α2π

2
> 0

for ω ∈ (0,∞). Due to the facts that g2(0) = −α1b sin α1π
2
< 0 and limω→+∞ g2(ω) = +∞,

the equation g2(ω) = 0 has a unique root ω1 ∈ (0,∞). Moreover g2(ω) < 0 in (0, ω1)
and g2(ω) > 0 in (ω1,∞). This shows that h2 is decreasing on (0, ω1) and increasing on
(ω1,∞). On the other hand, since h2(0) = 0 and limω→+∞ h2(ω) = +∞, the equation
h2(ω) = 0 has a unique root ω2 ∈ (0,∞) and h2(ω) < 0 for all ω ∈ (0, ω2) and h2(ω) > 0
for all ω ∈ (ω2,∞).

(i) If aq2 + bq1 > 1 then h2(1) < 0. Thus ω2 > 1. Moreover, since a < 0, we have

h2(ω) > ωα1+α2 sin
(α1 + α2)π

2
− bωα1 sin

α1π

2
,

and thus h2

(
(bq1)1/α2

)
> 0. This implies that 1 < ω2 < (bq1)1/α2 . From that if

(bq1)α1/α2 bq2 ≤ c,

we obtain c > aωα2
2 q1 + bωα1

2 q2, which together with (20) leads to h1(ω2) > 0.

(ii) If aq2 + bq1 ≤ 1, then h2(1) ≥ 0. Thus 0 < ω2 ≤ 1. Due to c ≥ bq2, we see that
c > aωα2

2 q1 + bωα1
2 q2. The proof is completed.
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4 Estimates for the functions Rλ and Sβ

This section is devoted to the study of some important estimates of the functions Rλ and
Sβ on (0,∞). We recall their definitions from (9), viz.

Rλ(t) = L−1

{
sl(α)−λ

sQ(s)

}
(t), λ ∈ {0, α1, α2} ,

Sβ(t) = L−1

{
sl(α)−β

Q(s)

}
(t), β ∈ {α1, α2, l(α)} ,

where l(α) = α1 + α2 and Q(s) = sα1+α2 − a11s
α2 − a22s

α1 + detA.

Lemma 4.1. Let α1, α2 ∈ (0, 1] and denote ν = min{α1, α2}. Assume there are no zeros
of the characteristic function Q in the closed right-half complex plane. Then, the following
estimates hold for λ ∈ {0, α1, α2} and β ∈ {α1, α2, l(α)}:

Rλ(t) = O(t−ν) as t→∞, (27)

Sβ(t) = O(t−ν−1) as t→∞, (28)

Sβ(t) = O(tν−1) as t→ 0. (29)

Moreover, ∫ ∞
0

|Sβ(t)|dt <∞. (30)

The proof of the lemma is quite lengthy and technical. Therefore, in order not to distract
the reader and to make it easier to focus on the main results, we provide the proof in the
Appendix at the end of the paper.

Our first application of Lemma 4.1 deals with estimates for the convolution of Sβ and a
continuous function.

Theorem 4.2. Let α1, α2 ∈ (0, 1] and β ∈ {α1, α2, l(α)}. For each continuous function
g : [0,∞)→ R, we put

F β
g (t) := Sβ ∗ g(t) =

∫ t

0

Sβ(t− s)g(s)ds (31)

and

F̄ β
g (t) := |Sβ| ∗ |g|(t) =

∫ t

0

|Sβ(t− s)| · |g(s)|ds. (32)

Assume that all zeros of the characteristic function Q are in the open left-half complex
plane. Then, the following statements hold.

(i) If g is bounded then F̄ β
g and F β

g are also bounded.

(ii) If limt→∞ g(t) = 0 then limt→∞ F̄
β
g (t) = limt→∞ F

β
g (t) = 0.
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(iii) If there exists some η ≥ 0 such that g(t) = O(t−η) for t→∞ then

F̄ β
g (t) = O(t−µ) and F β

g (t) = O(t−µ) for t→∞

where µ = min {α1, α2, η} .

Proof. We denote ν = min{α1, α2}. Since, by definition, |F β
g (t)| ≤ F̄ β

g (t), the claims for
F β
g immediately follow from those for F̄ β

g , and therefore it suffices to explicitly prove the
latter.

Statement (i) is merely the special case of η = 0 of part (iii).

To prove (ii), we note that F̄ β
g (t) ≥ 0 by definition. Therefore, it is sufficient to show that

for every ε > 0 there exists a constant T̃ = T̃ (ε) such that

F̄ β
g (t) ≤ ε for all t > T̃ . (33)

Since this is trivially fulfilled if g(t) = 0 for all t, we from now on assume that g(t) 6= 0
for some t, and hence ‖g‖∞ > 0.

Our first observation is then that, from (28) and (29), we know that there exists some
constant C > 0 such that

|Sβ(t)| ≤

{
Ct−ν−1 for t ≥ 1,

Ctν−1 for t ≤ 1.
(34)

Given an arbitrary ε > 0, due to our assumption on g we may then find some T̂ > 0 such
that |g(t)| < νε/(3C) for all t > T̂ . Using these values T̂ and C, we then define

T̃ = T̂ + max

1,

(
3C‖g‖∞T̂

ε

)1/(ν+1)
 .

For t > T̃ ≥ T̂ + 1, we can then write

F̄ β
g (t) =

∫ T̂

0

|Sβ(t− s)| · |g(s)|ds+

∫ t−1

T̂

|Sβ(t− s)| · |g(s)|ds+

∫ t

t−1

|Sβ(t− s)| · |g(s)|ds

= F1(t) + F2(t) + F3(t). (35)

Our goal now is to show that, under these assumptions, Fj(t) ≤ ε/3 for j = 1, 2, 3, which
implies (33) and thus suffices to prove part (ii) of the Theorem. In this context, we see
that

F1(t) =

∫ T̂

0

|Sβ(t− s)| · |g(s)|ds ≤ ‖g‖∞C
∫ T̂

0

(t− s)−ν−1ds

≤ ‖g‖∞CT̂ (t− T̂ )−ν−1 <
ε

3
.

because here t − s ≥ t − T̂ > T̃ − T̂ ≥ 1, so that we may use the first of the bounds
given in (34). In the penultimate step, we have bounded the integral by the product of
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the length of the integration interval and the maximum of the integrand, and in the last
step, we have used the fact that t > T̃ and the definition of T̃ .

Furthermore,

F2(t) =

∫ t−1

T̂

|Sβ(t− s)| · |g(s)|ds ≤ νε

3C
C

∫ t−1

T̂

(t− s)−ν−1ds

=
νε

3

1

ν

(
1− (t− T̂ )−ν

)
<
ε

3

because here s ≥ T̂ , so that |g(s)| ≤ νε/(3C), and t − s ≥ 1, so we may once again use
the first bound of (34).

Finally,

F3(t) =

∫ t

t−1

|Sβ(t− s)| · |g(s)|ds ≤ νε

3C
C

∫ t

t−1

(t− s)ν−1ds =
νε

3

1

ν
=
ε

3

where now t and s are such that we may invoke the second bound of (34) but, as in the
previous step, s ≥ T̂ , so that once again |g(s)| ≤ νε/(3C). This completes the proof of
part (ii) of the Theorem.

For the proof of (iii), we note that (34) is valid in this case too. Moreover, since we are
interested in the asymptotic behaviour of F̄ β

g (t) for large t, we may assume without loss
of generality that t ≥ 2. Then we write

F̄ β
g (t) =

∫ 1

0

|Sβ(t− s)| · |g(s)|ds+

∫ t/2

1

|Sβ(t− s)| · |g(s)|ds

+

∫ t−1

t/2

|Sβ(t− s)| · |g(s)|ds+

∫ t

t−1

|Sβ(t− s)| · |g(s)|ds

= F4(t) + F5(t) + F6(t) + F7(t), (36)

and we need to show that Fj(t) = O(t−µ) for j = 4, 5, 6, 7.

In this connection, we first note that, by assumption,

|g(t)| ≤ C ′t−η ∀t ≥ 1 (37)

with some C ′ > 0, so that the upper branch of (34) implies

0 ≤ F4(t) ≤ C‖g‖∞
∫ 1

0

(t− s)−ν−1ds =
C‖g‖∞
ν

(
(t− 1)−ν − t−ν

)
<
C‖g‖∞
ν

(t− 1)−ν = O(t−ν) = O(t−µ)

and

0 ≤ F5(t) ≤ CC ′
∫ t/2

1

(t− s)−ν−1s−ηds ≤ CC ′
∫ t/2

1

(t− s)−ν−1ds

=
CC ′

ν

(
(t− 1)−ν − (t/2)−ν

)
<
CC ′

ν
(t− 1)−ν = O(t−ν) = O(t−µ)
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as well as

0 ≤ F6(t) ≤ CC ′
∫ t−1

t/2

(t− s)−ν−1s−ηds ≤ CC ′
(
t

2

)−η ∫ t−1

t/2

(t− s)−ν−1ds

= 2η
CC ′

ν
t−η
(
1− (t/2)−ν

)
< 2η

CC ′

ν
t−η = O(t−η) = O(t−µ).

For the remaining part we need to invoke the second branch of (34) in combination with
(37) to derive

0 ≤ F7(t) ≤ CC ′
∫ t

t−1

(t− s)ν−1s−ηds ≤ CC ′(t− 1)−η
∫ t

t−1

(t− s)ν−1ds

=
CC ′

ν
(t− 1)−η = O(t−η) = O(t−µ),

thus completing the proof.

As an immediate application of Theorem 4.2(iii), we can conclude that

F̄ β
g1

(t) = O(t−ν) as t→∞ for g1(t) = min{1, t−ν}. (38)

Moreover, assuming ν < 1 and setting

g2(t) = t−ν − g1(t) =

{
t−ν − 1 for t ∈ [0, 1],

0 for t > 1,

we can obtain (using Lemma 4.1 and the classical relation between the incomplete Beta
function and the hypergeometric Function 2F1, cf. [1, eq. (6.6.8)]) the following bounds:

• If t ≥ 2 then we have

F̄ β
g2

(t) =

∫ 1

0

|Sβ(t− s)|(s−ν − 1)ds ≤ C

∫ 1

0

(t− s)−ν−1s−νds = Ct−2νB1/t(1− ν,−ν)

=
C

1− ν
t−ν−1

2F1(1− ν, 1 + ν; 2− ν; t−1) ≤ C ′t−ν−1 (39)

with some C ′ > 0.

• If t ∈ [1, 2] then

F̄ β
g2

(t) =

∫ 1

0

|Sβ(t− s)|(s−ν − 1)ds ≤ C

∫ 1

0

(t− s)ν−1s−νds = CB1/t(1− ν, ν)

=
C

1− ν
tν−1

2F1(1− ν, 1− ν; 2− ν; t−1) ≤ C ′′t−ν (40)

with some C ′′ > 0.

Since F̄ β
g1

(t) + F̄ β
g2

(t) = F̄ β
g1+g2(t), we can summarize the observations of eqs. (38), (39)

and (40) in the following way:

Remark 4.3. Assuming that ν = min{α1, α2} < 1, there exists a constant C such that,
for all t ≥ 1 and β ∈ {α1, α2, l(α)},

tν
∫ t

0

|Sβ(t− s)| 1
sν
ds ≤ C. (41)
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5 Asymptotic behaviour of solutions

to non-commensurate fractional planar systems

In this section we will study the asymptotic behaviour of solutions to fractional-order
linear planar systems and the Mittag-Leffler stability of an equilibrium point to fractional
nonlinear planar systems.

5.1 Asymptotic behaviour of solutions to fractional linear pla-
nar systems

Consider the non-homogeneous linear two-component incommensurate fractional-order
system

CDα
0+x(t) = Ax(t) + f(t), t > 0, (42a)

x(0) = x0 ∈ R2, (42b)

where α = (α1, α2) ∈ (0, 1] × (0, 1] is a multi index, A = (aij) ∈ R2×2 is a square real
matrix and f = (f1, f2) is a continuous vector valued function which is exponentially
bounded on [0,∞).

Theorem 5.1. Suppose that all zeros of the characteristic function Q = sα1+α2−a11s
α2−

a22s
α1+detA lie in the open left-half of the complex plane. Then, the following statements

hold.

(i) If f is bounded, then for any x0 ∈ R2 the solution to (42) is also bounded.

(ii) If limt→∞ f(t) = 0 then the solution to (42) tends to 0 when t→∞ for any x0 ∈ R2.

(iii) If ‖f(t)‖ = O(t−η) as t→∞ with some η > 0 then every solution x of (42a) behaves
as ‖x(t)‖ = O(t−µ) for t→∞ where µ = min {α1, α2, η} .

Proof. The proof is straightforward by combining Lemma 2.3, Lemma 4.1 and Theorem
4.2.

Based on Theorem 5.1 and Lemmas 3.3, 3.4, 3.5, 3.6 and 3.7, we obtain the following
corollary.

Corollary 5.2. Let

q1 =
sin α1π

2

sin (α1+α2)π
2

and q2 =
sin α2π

2

sin (α1+α2)π
2

.

The statements of Theorem 5.1 (i), (ii) and (iii) are true if one of the following conditions
is satisfied.

(i) a11, a22 ≤ 0 and detA > 0.
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(ii) a11 = 0, a22 > 0, detA > 0 and

(a22q1)α1/α2a22q2 < detA.

(iii) a22 = 0, a11 > 0, detA > 0 and

(a11q2)α2/α1a11q1 < detA.

(iv) a11, a22, detA > 0 and one of the following conditions holds:

(iv)1 a11q2 + a22q1 > 1 and a11q2 ((a11 + a22)q2)α2/α1 + a22(a11 + a22)q2
2 ≤ detA;

(iv)2 a11q2 + a22q1 ≤ 1 and a11q1 + a22q2 < detA.

(v) a11 < 0, a22, detA > 0 and one of the following conditions holds:

(v)1 a11q2 + a22q1 > 1 and (a22q1)α1/α2 a22q2 ≤ detA;

(v)2 a11q2 + a22q1 ≤ 1 and a22q2 ≤ detA.

5.2 Mittag-Leffler stability of fractional nonlinear planar sys-
tems

We now look at a different class of systems. Specifically, we now allow the differential
equations to contain nonlinearities, but we do require them to have the structure of an
autonomous system, i.e., we consider a fractional nonlinear planar system of the form

CDα
0+x(t) = Ax(t) + f(x(t)), t > 0, (43a)

x(0) = x0 ∈ Ω ⊂ R2, (43b)

where α = (α1, α2) ∈ (0, 1] × (0, 1] is a multi-index, A = (aij) ∈ R2×2 is a square real
matrix, Ω is an open subset of R2 containing the origin and f : Ω→ R2 is locally Lipschitz
continuous at the origin such that f(0) = 0 and limr→0 lf (r) = 0 with

lf (r) := sup
x,y∈B(0,r), x 6=y

‖f(x)− f(y)‖
‖x− y‖

.

Definition 5.3. The trivial solution of (43a) is Mittag-Leffler stable if there exist positive
constants γ,m and δ such that for any initial condition x0 ∈ B(0, δ), the solution ϕ(·, x0)
of the initial value problem (43) exists globally on the interval [0,∞) and

max{ sup
t∈[0,1]

‖ϕ(t, x0)‖, sup
t≥1

tγ‖ϕ(t, x0)‖} ≤ m.

Our aim is to prove the following theorem.

Theorem 5.4. Suppose that all zeros of the characteristic function Q(s) = sα1+α2 −
a11s

α2 − a22s
α1 + detA lie in the open left-half of the complex plane. Then, the triv-

ial solution of differential equation (43a) is Mittag-Leffler stable. More precisely, there
exist constants δ, ε > 0 such that for any ‖x0‖ < δ, the unique solution ϕ(·, x0) of
the initial value problem (43) exists globally on [0,∞) and supt≥1 t

ν‖ϕ(t, x0)‖ ≤ ε with
ν = min{α1, α2}.
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As shown above, we see that Lemmas 3.3, 3.4, 3.5, 3.6 and 3.7 give sufficient conditions
which ensure that the characteristic function Q has no zero in the closed right hand side
of the complex plane. Thus, by combining these lemmas and Theorem 5.4, we obtain the
result below.

Corollary 5.5. Let

q1 =
sin α1π

2

sin (α1+α2)π
2

and q2 =
sin α2π

2

sin (α1+α2)π
2

.

The statement of Theorem 5.4 is true if one of the following conditions is satisfied.

(i) a11, a22 ≤ 0 and detA > 0.

(ii) a11 = 0, a22 > 0, detA > 0 and

(a22q1)α1/α2a22q2 < detA.

(iii) a22 = 0, a11 > 0, detA > 0 and

(a11q2)α2/α1a11q1 < detA.

(iv) a11, a22, detA > 0 and one of the following conditions holds:

(iv)1 a11q2 + a22q1 > 1 and a11q2 ((a11 + a22)q2)α2/α1 + a22(a11 + a22)q2
2 ≤ detA;

(iv)2 a11q2 + a22q1 ≤ 1 and a11q1 + a22q2 < detA.

(v) a11 < 0, a22, detA > 0 and one of the following conditions holds:

(v)1 a11q2 + a22q1 > 1 and (a22q1)α1/α2 a22q2 ≤ detA;

(v)2 a11q2 + a22q1 ≤ 1 and a22q2 ≤ detA.

Proof of Theorem 5.4. From the assumption of the theorem that f is locally Lipschitz
continuous at the origin, we can find a constant ε0 > 0 such that the function f is
Lipschitz continuous on B(0, ε0). Denote by f̂ a Lipschitz extension of f to R2. This
means that f̂ is globally Lipschitz continuous and f̂(x) = f(x) on B(0, ε0). We now focus
on the system

CDα
0+x(t) = Ax(t) + f̂(x(t)), t > 0, (44a)

x(0) = x0. (44b)

Then, for any x0 ∈ B(0, ε0), its unique solution ϕ̂(·, x0) = (ϕ̂1(·, x0), ϕ̂2(·, x0))T on [0,∞)
staifies the relationships

ϕ̂1(·, x0) =
(
R0(t)− a22Rα2(t)

)
x0

1 + a12Rα1(t)x0
2

+
(

(Sα1 − a22S l(α)) ∗ f̂1(ϕ̂(·, x0))
)

(t) + a12

(
S l(α) ∗ f̂2(ϕ̂(·, x0))

)
(t), (45a)

ϕ̂2(t, x0) = a21Rα2(t)x0
1 +

(
R0(t)− a11Rα1(t)

)
x0

2

+ a21

(
S l(α) ∗ f̂1(ϕ̂(·, x0))

)
(t) +

(
(Sα2 − a11S l(α)) ∗ f̂2(ϕ̂(·, x0))

)
(t). (45b)
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To show the Mittag-Leffler stability of the trivial solution to the original system, we will
prove that for any small initial value vector, the unique solution of the system (44) is
contained in the space C∞([0,∞);R2) which is equipped the norm

‖ξ‖w := max{ sup
t∈[0,1]

‖ξ(t)‖, sup
t≥1

tν‖ξ(t)‖}.

It is easy to see that Cw([0,∞);R2) := {ξ ∈ C∞([0,∞);R2) : ‖ξ‖w < ∞} is a Banach
space with the norm ‖ · ‖w. For ε > 0, let BCw(0, ε) := {ξ ∈ C∞([0,∞);R2) : ‖ξ‖w ≤ ε}.

Based on the representation in (45), we establish a Lyapunov–Perron type operator Tx0
on the space Cw([0,∞);R2) as follows. For any ξ ∈ Cw([0,∞);R2), let

(Tx0ξ)1(t) :=
(
R0(t)− a22Rα2(t)

)
x0

1 + a12Rα1(t)x0
2

+
(

(Sα1 − a22S l(α)) ∗ f̂1(ξ(·))
)

(t) + a12

(
S l(α) ∗ f̂2(ξ(·))

)
(t),

(Tx0ξ)2(t) := a21Rα2(t)x0
1 +

(
R0(t)− a11Rα1(t)

)
x0

2

+ a21

(
S l(α) ∗ f̂1(ξ(·))

)
(t) +

(
(Sα2 − a11S l(α)) ∗ f̂2(ξ(·))

)
(t).

On the interval [0, 1], we have

|(Tx0ξ)1(t)| ≤ (|R0(t)|+ |a22| · |Rα2(t)|)|x0
1|+ |a12| · |Rα1(t)| · |x0

2|

+ lf̂ (‖ξ‖∞)‖ξ‖w
∫ t

0

(
|Sα1(s)|+ (|a22|+ |a12|)|S l(α)(s)|

)
ds

≤ sup
t∈[0,1]

((
|R0(t)|+ |a22| · |Rα2(t)|

)
|x0

1|+ |a12| · |Rα1(t)| · |x0
2|
)

+ lf̂ (‖ξ‖∞)‖ξ‖wC(1 + |a22|+ |a12|)
∫ 1

0

1

s1−ν ds

≤ sup
t∈[0,1]

((
|R0(t)|+ |a22| · |Rα2(t)|

)
|x0

1|+ |a12| · |Rα1(t)| · |x0
2|
)

+ lf̂ (‖ξ‖∞)‖ξ‖w
C(1 + |a22|+ |a12|)

ν
, (46)

|(Tx0ξ)2(t)| ≤ |a21| · |Rα2(t)| · |x0
1|+ (|R0(t)|+ |a11| · |Rα1(t)|)|x0

2|

+ lf̂ (‖ξ‖∞)‖ξ‖w
∫ t

0

(
|Sα2(s)|+ (|a12|+ |a11|)|S l(α)(s)|

)
ds

≤ sup
t∈[0,1]

(
|a21| · |Rα2(t)| · |x0

1|+ (|R0(t)|+ |a11| · |Rα1(t)|)|x0
2|
)

+ lf̂ (||ξ||∞)||ξ||wC(1 + |a21|+ |a11|)
∫ 1

0

1

s1−ν ds

≤ sup
t∈[0,1]

(
|a21| · |Rα2(t)| · |x0

1|+ (|R0(t)|+ |a11| · |Rα1(t)|)|x0
2|
)

+ lf̂ (‖ξ‖∞)‖ξ‖w
C(1 + |a21|+ |a11|)

ν
. (47)
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For t ∈ [1,∞), then

tν |(Tx0ξ)1(t)| ≤ sup
t≥1

( (
tν |R0(t)|+ |a22|tν |Rα2(t)|

)
|x0

1|+ |a12|tν |Rα1(t)||x0
2|
)

+ lf̂ (||ξ||∞)tν
∫ t

0

(
|Sα1(t− s)|+ (|a22|+ |a12|)|S l(α)(t− s)|

)
s−νsν |ξ(s)|ds

≤ sup
t≥1

( (
tν |R0(t)|+ |a22|tν |Rα2(t)|

)
|x0

1|+ |a12|tν |Rα1(t)||x0
2|
)

+ lf̂ (||ξ||∞)‖ξ‖w sup
t≥1

tν
∫ t

0

(
|Sα1(t− s)|+ (|a22|+ |a12|)|S l(α)(t− s)|

)
s−νds, (48)

tν |(Tx0ξ)2(t)| ≤ sup
t≥1

(
|a21|tν |Rα2(t)||x0

1|+ (tν |R0(t)|||+ |a11|tν |Rα1(t)|)|x0
2|
)

+ lf̂ (||ξ||∞)tν
∫ t

0

(
|Sα2(t− s)|+ (|a21|+ |a11|)|S l(α)(t− s)|

)
s−νsν‖ξ(s)‖ds

≤ sup
t≥1

(
|a21|tν |Rα2(t)||x0

1|+ (tν |R0(t)|||+ |a11|tν |Rα1(t)|)|x0
2|
)

+ lf̂ (||ξ||∞)‖ξ‖w sup
t≥1

tν
∫ t

0

(
|Sα2(t− s)|+ (|a21|+ |a11|)|S l(α)(t− s)|

)
s−νds. (49)

From (48) and (49), we obtain the estimates

‖(Tx0ξ)1‖w,1 ≤ (‖R0‖w,1 + |a22| · ‖Rα2‖w,1 + |a12| · ‖Rα1‖w,1)‖x0‖ (50)

+ lf̂ (||ξ||∞)‖ξ‖w
(
C

ν
(1 + |a12|+ |a22|) +Mα1 + (|a22|+ |a12|)Ml(α)

)
and

‖(Tx0ξ)2‖w,1 ≤ (‖R0‖w,1 + |a21| · ‖Rα2‖w,1 + |a11| · ‖Rα1‖w,1)‖x0‖ (51)

+ lf̂ (||ξ||∞)‖ξ‖w
(
C

ν
(1 + |a21|+ |a11|) +Mα2 + (|a21|+ |a11|)Ml(α)

)
where ‖ξ‖w,1 := max{supt∈[0,1] |ξ(t)|, supt≥1 t

ν |ξ(t)|} for any ξ ∈ C∞([0,∞);R), Mβ =

supt≥1 t
ν
∫ t

0
|Sβ(t− s)|s−νds, for β ∈ {α1, α2, l(α)}, and By (50) and (51), we see that

‖(Tx0ξ)‖w ≤ (2‖R0‖w,1 + (|a11|+ |a12|)‖Rα1‖w,1 + (|a21|+ |a22| · ‖Rα2‖w,1)‖x0‖

+ lf̂ (||ξ||∞)‖ξ‖w

(
C

ν

(
2 +

2∑
i,j=1

|aij|

)
+Mα1 +Mα2 +

2∑
i,j=1

|aij|Ml(α)

)
.

On the other hand, by virtue of the assumption that limr→0 l(r) = 0, we can choose
ε ∈ (0, ε0) so that

r0 :=

[
2C

ν
+Mα1 +Mα2 +

2∑
i,j=1

|aij|
(
Ml(α) +

C

ν

)]
lf̂ (ε) < 1.

Take δ = ε(1− r)/ (2‖R0‖w,1 + (|a11|+ |a12|)‖Rα1‖w,1 + (|a21|+ |a22|)‖Rα2‖w,1), then for
any initial condition x0 ∈ B(0, δ), we have

‖Tx0ξ‖w ≤ ε, ∀ξ ∈ BCw(0, ε),
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that is, Tx0(BCw(0, ε)) ⊂ BCw(0, ε). Moreover, for every ξ, ξ̂ ∈ BCw(0, ε),

‖Tx0ξ − Tx0 ξ̂‖w ≤

[
2C

ν
+Mα1 +Mα2 +

2∑
i,j=1

|aij|(Ml(α) +
C

ν
)

]
lf̂ (ε)‖ξ − ξ̂‖w (52)

= r0‖ξ − ξ̂‖w. (53)

Thus, the operator Tx0 is contractive on BCw(0, ε), and by Banach’s fixed point theorem,
Tx0 has a unique fixed point ξ∗ in this set. Furthermore, this function is the unique solution
to the system (44) in BCw(0, ε). Notice that if ξ∗ ∈ BCw(0, ε) then f(ξ∗(t)) = f̂(ξ∗(t)) for
every t ∈ [0,∞), and thus ξ∗ is also a solution to the system (43). This completes the
proof.

6 Numerical examples

To complete this paper, we now give some numerical examples to illustrate the main
theoretical results. In all the examples below, we use the functions f1 and f2 with

fi(t) =

{
1 if 0 ≤ t < 1,
1
t2i

if t ≥ 1
(i = 1, 2).

For all cases, we have calculated numerical solutions to verify the theoretical findings.
These solutions have been computed with Garrappa’s MATLAB implementation of the
implicit trapezoidal method described in detail in [11]. This algorithm is known to have
very favourable stability properties which makes it highly suitable for handling equations
like ours over large intervals (which is required in this case to demonstrate the asymptotic
behaviour). The step size has always been chosen as h = 1/200.

Example 6.1. Consider the inhomogeneous two-component incommensurate fractional-
order linear system{

CD
1/3

0+ x1(t) = 0.25x2(t) + f1(t),
CD

1/2

0+ x2(t) = −2x1(t) + x2(t) + f2(t),
t > 0. (54)

In this example, the characteristic function is Q(s) = s5/6 + s1/2 + 0.5. According to
Lemma 3.4, all zeros of Q lie in the open left-half of the complex plane. Furthermore,
the function f satisfies the assumption stated in Theorem 5.1. Hence, every solution to
(54) tends to the origin as t→∞ with the rate O(t−1/3). This property is illustrated in
Figure 1. The left graph shows that the components x1(t) and x2(t) decay to zero; the
right graph visualizes the fact that t1/3xj(t) tends to a nonzero constant for t → ∞ and
j = 1, 2, thus demonstrating that the decay behaviour of xj(t) is indeed O(t−1/3).

Example 6.2. Consider the two-component incommensurate fractional-order nonlinear
system {

CD
1/3

0+ x1(t) = 0.25x2(t) + x2
1(t)x2

2(t),
CD

1/2

0+ x2(t) = −2x1(t) + x2(t) + x2
1(t) + x2

2(t),
t > 0. (55)
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Figure 1: Solution to the differential equation (54) from Example 6.1 with initial condi-
tions x1(0) = 1 and x2(0) = 2. The left graph shows the components xj(t) of the solutions
themselves, the right graph shows the functions t1/3xj(t).

It is not difficult to check that all conditions of Lemma 3.4 and Theorem 5.4 are verified.
Thus, the trivial solution to (55) is Mittag-Leffler stable; more precisely, by Theorem 5.4,
we have to expect an O(t−1/3) decay behavior for nontrivial solutions with initial values
sufficiently close to those of the trivial solution.

Defintion 5.3 states that the boundedness of the solutions cannot be expected for all
choices of the initial value any more (as had been the case in Example 6.1) but only for
initial values sufficiently close to (0, 0). Indeed we can see this behaviour in Figure 2 for
the initial value (0.1,−0.2), whereas Figure 3 shows that this behaviour is not present
for initial values farther away from (0, 0) such as, e.g., the initial value (1,−1). In the
latter case, the solutions still seem to be bounded, but the decay behaviour appears to
be absent. If one moves the initial values even farther away from the equilibrium point,
then one cannot even expect this boundedness any more.

Figure 2: Solution to the differential equation (55) from Example 6.2 with initial condi-
tions x1(0) = 0.1 and x2(0) = −0.2. The left graph shows the components xj(t) of the
solutions themselves, the right graph shows the functions t1/3xj(t).
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Figure 3: Solution to the differential equation (55) from Example 6.2 with initial con-
ditions x1(0) = 1 and x2(0) = −1. The left graph shows the components xj(t) of the
solutions themselves, the right graph shows the functions t1/3xj(t).

Example 6.3. Consider the fractional linear system{
CD0.6

0+x1(t) = x1(t) + 2x2(t) + f1(t),
CD0.8

0+x2(t) = −x1(t) + f2(t),
t > 0. (56)

The characteristic function of the system is Q(s) = s1.4 +s0.6 +2. By Lemma 3.5, all zeros
of Q lie in the open left-half of the complex plane and the assumptions of Theorem 5.1
are satisfied. Hence, every solution to this system converges to the origin as t→∞ with
an O(t−0.6) convergence rate. As in Example 6.1, we can also reproduce this behaviour
numerically. The corresponding graphs are plotted in Figure 4.

Figure 4: Solution to the differential equation (56) from Example 6.3 with initial condi-
tions x1(0) = 1 and x2(0) = 2. The left graph shows the components xj(t) of the solutions
themselves, the right graph shows the functions t0.6xj(t).

Example 6.4. Consider the system{
CD0.6

0+x1(t) = x1(t) + 2x2(t) + x2
1(t)x2

2(t),
CD0.8

0+x2(t) = −x1(t) + x2
1(t) + x2

2(t),
t > 0. (57)
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Based on Lemma 3.5 and Theorem 5.4, we see that the trivial solution of (57) is Mittag-
Leffler stable. As in Example 6.2, this is exhibited—together with the decay behaviour
predicted by Theorem 5.4— in Figure 5.

Figure 5: Solution to the differential equation (57) from Example 6.4 with initial condi-
tions x1(0) = 0.1 and x2(0) = −0.2. The left graph shows the components xj(t) of the
solutions themselves, the right graph shows the functions t0.6xj(t).

Example 6.5. Consider the inhomogeneous two-component incommensurate fractional-
order linear system {

CD0.3
0+x1(t) = x1(t)− x2(t) + f1(t),

CD0.4
0+x2(t) = 2x1(t) + x2(t) + f2(t),

t > 0. (58)

The system (58) has the characteristic function Q(s) = s0.7 + s0.4 + s0.3 + 3. From Lemma
3.6 (i) and Theorem 5.1, it follows that every solution of this system tends to the origin
as t→∞ as O(t−0.3). Once again, our numerical results, shown in Figure 6, support this
statement.

Figure 6: Solution to the differential equation (58) from Example 6.5 with initial condi-
tions x1(0) = 1 and x2(0) = 2. The left graph shows the components xj(t) of the solutions
themselves, the right graph shows the functions t0.3xj(t).
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Example 6.6. Consider the two-component incommensurate fractional-order nonlinear
system {

CD0.3
0+x1(t) = 0.1x1(t)− 0.4x2(t) + x2

1(t)x2
2(t),

CD0.4
0+x2(t) = 0.7x1(t) + 0.2x2(t) + x2

1(t) + x2
2(t),

t > 0. (59)

Its characteristic function is Q(s) = s0.7 + 0.2s0.4 + 0.1s0.3 + 0.3. It follows from Lemma
3.6(ii) and Theorem 5.4 that the trivial solution is Mittag-Leffler stable. Once again, we
can visualize this observarion on the basis of numerical results, cf. Figure 7.

Figure 7: Solution to the differential equation (59) from Example 6.6 with initial condi-
tions x1(0) = 0.1 and x2(0) = −0.2. The left graph shows the components xj(t) of the
solutions themselves, the right graph shows the functions t0.3xj(t).

Example 6.7. Consider the two-component incommensurate fractional-order linear system{
CD0.4

0+x1(t) = −x1(t) + 2x2(t) + f1(t),
CD0.5

0+x2(t) = −5x1(t) + 4x2(t) + f2(t),
t > 0. (60)

The system (60) has the characteristic function Q(s) = s0.9 +4s0.5−s0.3 +6. According to
Lemma 3.7(i) and Theorem 5.1, its solution converges to the origin with a rate O(t−0.4).
As above, the numerical data shown in Figure 8 confirms this theoretical observation.

Example 6.8. Consider two-component incommensurate fractional-order nonlinear system{
CD0.4

0+x1(t) = −x1(t)− 2x2(t) + x2
1(t)x2

2(t),
CD0.5

0+x2(t) = 2x1(t) + 2x2(t) + x2
1(t) + x2

2(t),
t > 0. (61)

Its characteristic function Q(s) = s0.9 + 2s0.5 − s0.3 + 2. According to Lemma 3.7(ii) and
Theorem 5.4, the trivial solution of (61) is Mittag-Leffler stable as illustrated graphically
in Figure 9.

Appendix: Proof of Lemma 4.1

Proof of Lemma 4.1. Due to the fact that there are no zeros of the characteristic function
Q in the closed right half of the complex plane, from Lemma 3.1(iii), we can find δ > 0
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Figure 8: Solution to the differential equation (60) from Example 6.7 with initial condi-
tions x1(0) = 1 and x2(0) = 2. The left graph shows the components xj(t) of the solutions
themselves, the right graph shows the functions t0.4xj(t).

Figure 9: Solution to the differential equation (61) from Example 6.8 with initial condi-
tions x1(0) = 0.1 and x2(0) = −0.2. The left graph shows the components xj(t) of the
solutions themselves, the right graph shows the functions t0.4xj(t).

(which is small enough) such that all zeros of Q are not in the domain | arg(s)| ≤ π
2

+ δ.
Let R > 0 be a large enough constant such that

|Q(s)| ≥ 1

2
|s|α1+α2 whenever |s| ≥ R. (62)

For µ > 0 and θ ∈ (0, π), we establish an oriented contour γ(µ, θ) formed by three
segments:

• {s ∈ C : |s| ≥ µ, arg s = θ},

• {s ∈ C : |s| = µ, | arg s| ≤ θ},

• {s ∈ C : |s| ≥ µ, arg s = −θ}.
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(i) Because all zeros of Q (if they exist) lie on the left of the contour γ(R, π
2

+ δ), using
the same argument as in [21, Lemma 4.1], we obtain the representation

Rλ(t) =
1

2πi

∫
γ(R,π

2
+δ)

sl(α)−λ−1est

Q(s)
ds, t > 0, λ ∈ {0, α1, α2} . (63)

Choose ε > 0 such that Q has no zero in the ball {s ∈ C : |s| ≤ ε} . From (63), we have

Rλ(t) =
1

2πi

∫
Λ′
t

sl(α)−λ−1est

Q(s)
ds+

1

2πi

∫
γ( ε
t
,π
2

+δ)

sl(α)−λ−1est

Q(s)
ds, t ≥ 1

= I1(t) + I2(t), (64)

where Λ′t is the clockwise oriented contour bounding the domain

Ωt :=
{
s ∈ C :

ε

t
< |s| < R, | arg s| < π

2
+ δ
}
,

see Figure 10. Notice that (sl(α)−λ−1est)/Q(s) is analytic on Ωt ∪ Λ′t for all t ≥ 1. Thus,
by applying Cauchy’s theorem, we obtain

I1(t) = 0 for all t ≥ 1.

Therefore, for each t ≥ 1, we see that

Rλ(t) =
1

2πi

∫
γ( ε
t
,π
2

+δ)

sl(α)−λ−1est

Q(s)
ds

=
1

2πi

∫
Λ1

sl(α)−λ−1est

Q(s)
ds+

1

2πi

∫
Λ2

sl(α)−λ−1est

Q(s)
ds+

1

2πi

∫
Λ3

sl(α)−λ−1est

Q(s)
ds

= I3(t) + I4(t) + I5(t) (65)

with

Λ1 :=
{
s ∈ C : |s| ≥ ε

t
, arg s =

π

2
+ δ
}
,

Λ2 :=
{
s ∈ C : |s| ≥ ε

t
, arg s = −(

π

2
+ δ)

}
,

Λ3 :=
{
s ∈ C : |s| = ε

t
, | arg s| ≤ π

2
+ δ
}
.

Put

η := inf
s∈γ(ε,π

2
+δ)∪B(0,ε)

|Q(s)|. (66)

For s ∈ Λ1, s = rei(
π
2

+δ) = r(− sin δ + i cos δ) with r ≥ ε
t
, and therefore

I3(t) =
1

2πi

∫ ∞
ε/t

rl(α)−λ−1ei(l(α)−λ−1)(π
2

+δ)ert(− sin δ+i cos δ)(− sin δ + i cos δ)

Q̃(r)
dr. (67)

Here, Q̃(r) = Q(rei(
π
2

+δ)). From (66), we have the estimate |Q̃(r)| ≥ η for all r ≥ ε
t
. This

implies that

|I3(t)| ≤ 1

2πη

∫ ∞
ε/t

rl(α)−λ−1e−rt sin δdr. (68)
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Figure 10: The contours and sets used in the proof of Lemma 4.1: The radii of the green
and magenta circular arcs are ε/t and R, respectively. The contour γ(R, π/2+δ) comprises
the upper blue ray, the magenta circular arc, and the lower blue ray and is traversed from
top to bottom; Ωt is the open set bounded by the magenta and green boundary lines (so
these magenta and green lines together form the contour Λ′t). Λ1 comprises the upper
blue ray and the upper green line; Λ2 denotes the union of the lower blue ray and the
lower green line, and Λ3 is the green circular arc.

By the change of variable r = u/(t sin δ),∫ ∞
ε/t

rl(α)−λ−1e−rt sin δdr ≤ 1

(t sin δ)l(α)−λ

∫ ∞
0

ul(α)−λ−1e−udu

=
1

(t sin δ)l(α)−λΓ(l(α)− λ)

≤ C1,1

tl(α)−λ . (69)

Hence,

|I3(t)| ≤ C1,1

tl(α)−λ . (70)

Similarly, there is a C1,2 > 0 such that

|I4(t)| ≤ C1,2

tl(α)−λ . (71)

For s ∈ Λ3, s = (ε/t)eiϕ with |ϕ| ≤ π
2

+ δ, and so

I5(t) = − 1

2πi

∫ π
2

+δ

−(π
2

+δ)

(ε/t)l(α)−λ−1 eiϕ(l(α)−λ−1)eε(cosϕ+i sinϕ)i(ε/t)eiϕ

Q̂(ϕ)
dϕ (72)
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where Q̂(ϕ) = Q( ε
t
eiϕ). From (66), we know that |Q̂(ϕ)| ≥ η for all ϕ ∈ [−(π

2
+ δ), π

2
+ δ].

Thus

|I5(t)| ≤ 1

2πη

(ε
t

)l(α)−λ
∫ π

2
+δ

−(π
2

+δ)

eε cosϕdϕ ≤ C1,3

tl(α)−λ . (73)

From (65), (70), (71) and (73), we obtain

|Rλ(t)| ≤ C

tl(α)−λ ≤
C

tν
(74)

for all t ≥ 1 and all λ ∈ {0, α1, α2}, with C := C1,1 + C1,2 + C1,3.

(ii) For the proof of the seocnd statement, we first look at the case β ∈ {α1, α2}. Here,
we apply the arguments as in the proof of the part (i) above to obtain

Sβ(t) =
1

2πi

∫
γ( ε
t
,π
2

+δ)

sl(α)−βest

Q(s)
ds

=
1

2πi

∫
Λ1

sl(α)−βest

Q(s)
ds+

1

2πi

∫
Λ2

sl(α)−βest

Q(s)
ds+

1

2πi

∫
Λ3

sl(α)−βest

Q(s)
ds

with each t ≥ 1. In the same way as above, we can find a constant C2,1 so that the
estimate

|Sβ(t)| ≤ C2,1

tl(α)−β+1
(75)

holds for all t ≥ 1 and all β ∈ {α1, α2}. Clearly, tl(α)−β+1 ≥ tν+1 for all t ≥ 1 and all
β ∈ {α1, α2}. Thus,

|Sβ(t)| ≤ C2,1

tν+1
, β ∈ {α1, α2} , t ≥ 1. (76)

Next, we consider the remaining case β = l(α). For t ≥ 1, we see

S l(α)(t) =
1

2πi

∫
γ( ε
t
,π
2

+δ)

est

Q(s)
ds

=
1

2πi

∫
γ( ε
t
,π
2

+δ)

1

detA
estds− 1

2πi

∫
γ( ε
t
,π
2

+δ)

(sα1+α2 − a11s
α2 − a22s

α1)est

(detA)Q(s)
ds

= I6(t) + I7(t) (77)

By using the same estimates as in the proof of the part (i) above, there exist constants
C2,2, C2,3 and C2,4 such that

|I7(t)| ≤ C2,2

tl(α)+1
+

C2,3

tα1+1
+

C2,4

tα2+1
≤
∑

2≤i≤4C2,i

tν+1
, ∀t ≥ 1. (78)

On the other hand, by the change of variable s = u1/µ

t
with some µ ∈ (0, 1), we find

I6(t) =
1

2πµi

1

t detA

∫
γ(εµ,µ(π

2
+δ))

eu
1/µ

u(1−µ)/µdu =
1

t detA

1

Γ(0)
= 0, (79)
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the last equality being deduced from [15, eq. (1.52)]. Combining (77) and (78), for each
t ≥ 1, we conclude

|S l(α)(t)| ≤ C

tν+1
. (80)

(iii) For each t ∈ (0, 1) and β ∈ {α1, α2, l(α)}, we have

Sβ(t) =
1

2πi

∫
γ(R,π

2
+δ)

sl(α)−βest

Q(s)
ds

=
1

2πi

∫
Ψt

sl(α)−βest

Q(s)
ds+

1

2πi

∫
γ(R

t
,π
2

+δ)

sl(α)−βest

Q(s)
ds

= I8(t) + I9(t), (81)

where Ψt is the boundary of the domain Ut :=
{
s ∈ C : R < |s| < R/t, | arg s| < π

2
+ δ
}

.

Since sl(α)−βest/Q(s) is analytic on Ut ∪Ψt for t ∈ (0, 1), by applying Cauchy’s theorem,
we obtain I8(t) = 0 for all t ∈ (0, 1). Thus,

Sβ(t) =
1

2πi

∫
γ(R

t
,π
2

+δ)

sl(α)−βest

Q(s)
ds

=
1

2πi

∫
Ψ1

sl(α)−βest

Q(s)
ds+

1

2πi

∫
Ψ2

sl(α)−βest

Q(s)
ds+

1

2πi

∫
Ψ3

sl(α)−βest

Q(s)
ds

= I10(t) + I11(t) + I12(t) (82)

where

Ψ1 :=

{
s ∈ C : |s| ≥ R

t
, arg s =

π

2
+ δ

}
,

Ψ2 :=

{
s ∈ C : |s| ≥ R

t
, arg s = −(

π

2
+ δ)

}
,

Ψ3 :=

{
s ∈ C : |s| = R

t
, | arg s| ≤ π

2
+ δ

}
.

For s ∈ Ψ1, s = rei(
π
2

+δ) = r(− sin δ + i cos δ) with r ≥ R/t, and so

I10(t) =
1

2πi

∫ ∞
R/t

rl(α)−βei(l(α)−β)(π
2

+δ)ert(− sin δ+i cos δ)

Q̃(r)
(− sin δ + i cos δ)dr (83)

where Q̃(r) = Q(rei(
π
2

+δ)). From (62), we have the estimate

|Q̃(r)| = |Q(rei(
π
2

+δ))| ≥ 1

2
|rei(

π
2

+δ)|α1+α2 =
1

2
rα1+α2 , ∀r ≥ R

t
. (84)

This implies

|I10(t)| ≤ 1

π

∫ ∞
R/t

rl(α)−βe−rt sin δ

rl(α)
dr ≤ 1

πt sin δ

∫ ∞
R/t

1

rβ+1
dr =

C3,1

t1−β
. (85)
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The second inequality here is obtained by applying the relation e−x ≤ 1/x for x > 0.
Similarly,

|I11(t)| ≤ C3,2

t1−β
. (86)

For s ∈ Ψ3, s = (R/t)eiϕ with |ϕ| ≤ π
2

+ δ, thus

I12(t) =
1

2πi

∫ π
2

+δ

−(π
2

+δ)

(
R

t

)l(α)−β+1
ei(l(α)−β)ϕeR(cosϕ+i sinϕ)

Q̂(ϕ)
ieiϕdϕ, (87)

where Q̂(ϕ) = Q(R
t
eiϕ). From (62), we have

|Q̂(ϕ)| =
∣∣∣∣Q(Rt eiϕ

)∣∣∣∣ ≥ 1

2

∣∣∣∣Rt eiϕ
∣∣∣∣α1+α2

=
1

2

(
R

t

)α1+α2

, ∀ϕ ∈ [−(
π

2
+ δ),

π

2
+ δ], (88)

and thus

|I12(t)| ≤ 1

2π

∫ π
2

+δ

−(π
2

+δ)

(
R

t

)l(α)−β+1 |ei(l(α)−β)ϕ| · |eR(cosϕ+i sinϕ)|
|Q̂(ϕ)|

|ieiϕ|dϕ

≤ R1−β

t1−β
1

π

∫ π
2

+δ

−(π
2

+δ)

eR cosϕdϕ ≤ C3,3

t1−β
. (89)

From (82), (85), (86) and (89), we obtain

|Sβ(t)| ≤ C

t1−β
,∀t ∈ (0, 1), β ∈ {α1, α2, l(α)} . (90)

Finally, (30) is an immediate consequence of (28) and (29).
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