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1. Introduction. In 1967 W. M. Wonham in the famous paper [38] proved that
in a time-invariant linear continuous-time control system, the poles of a closed system
can be arbitrarily assignable through a linear feedback if and only if the system
is controllable. This result is a theoretical base for of the one of the fundamental
methods of designing control which is called pole placement method or pole-shifting
or the spectrum assignment method (see [36]). The idea of this method is to construct
a feedback in such a way that the eigenvalues of the closed loop system have a priory
given location.

When one wants to generalize this methodology to time-varying systems many
difficulties arise. One of them is that there are no direct equivalents of poles for time-
varying systems. The role of their real parts for continuous - time systems or modules
for discrete-time systems play Lyapunov, Bohl, Perron exponents or dichotomy spec-
tra. Another difficulty is that for time-varying systems there are many non-equivalent
definitions of controllability (see [20]).

The problem of generalization of the pole placement theorem to time-varying sys-
tems has been so far studied mainly for Lyapunov exponents as a counterpart of poles
and the results are summarized for continuous-time systems in [23] and for discrete-
time systems in [8, 5] and [4]. Very recently, several results on the assignability of
dichotomy spectrum for time-varying control systems have been established. Con-
cretely, it was shown in [15], [6] and [7] that both for discrete time and continuous
time systems with bounded time-varying coefficients, considered both on the half-line
and on the whole line, the dichotomy spectrum is assignable if and only if the system
is uniformly completely controllable.

The concept of the dichotomy spectrum comes in a natural way from the concept
of exponential dichotomy which plays an important role in many aspect of linear
systems, see [24, 25] and [13]. Based on the notion of exponential dichotomy, in
[31] the authors developed a spectral theory for linear differential equations over a
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compact base. Later, this spectrum, which is now called dichotomy spectrum, has
been extended to a linear systems over non-compact base, see [34], [22] and [27].

Now dichotomy spectrum is an important tool in the qualitative theory of time-
varying dynamical systems which has steadily growing interest in the last thirty years
due to its applicability in modelling many real world phenomena in biology, econ-
omy, climate change,..., see [21, 22]. The more reasons for importance and usefulness
of dichotomy spectrum are as follows. This spectrum describes uniform exponential
stability as follows: if the dichotomy spectrum lies left of zero, then the uniform ex-
ponential stability of nonlinearly perturbed systems is guaranteed [10]. This concept
may be also used to discuss the existence and the smoothness of invariant manifolds
for time-varying differential and difference equations [2, 29], to obtain a version of the
Hartman–Grobman theorem for non-autonomous systems [26, 12], to characterize the
existence of center manifolds [32] and in the theory of Lyapunov regularity [11]. The
dichotomy spectrum together with the spectral manifolds completely describe the dy-
namical skeleton of a linear system. Using the resonance of the dichotomy spectrum to
study the normal forms of non-autonomous system, in [35] a finite order normal form
were obtained, and in [39] analytic normal forms of a class of analytic non-autonomous
differential systems were presented. Finally, information on the fine structure of the
dichotomy spectrum allows to classify various types of non-autonomous bifurcations
[30, 27].

In this paper, we consider a local version of the assignability of dichotomy spec-
trum for linear discrete time-varying systems, whereas in [15], [6] and [7] a global
version was investigated. Our aim is to obtain sufficient conditions to place the
dichotomy spectrum of the closed-loop system in an arbitrary position within some
neighborhood of the dichotomy spectrum of the free system using some non-stationary
linear feedback. Moreover, we assume that the norm of the feedback matrix should
be bounded from above by the Hausdorff distance between these two spectra, with
some constant coefficients. We say that the dichotomy spectrum is proportionally
locally assignable if all these assumptions are valid. The main result (Theorem 2.8)
states that uniform complete controllability is a sufficient condition for this type of
assignability.

The paper is organized as follows. In the first part of the next section (Subsection
2.1), we collect some basic definitions and theorems connecting to the concept of
exponential dichotomy and dichotomy spectrum. The problem and the main result of
this paper are formulated and stated in Subsection 2.2. The result of assignability of
the dichotomy spectrum by multiplicative perturbation is stated and proved in Section
3. We continue this consideration in Section 4 and show the result of proportional
local assignability of dichotomy spectrum by multiplicative perturbation under the
assumption that this spectrum consist of only one interval. Section 5 is devoted to
the proofs of the main results. We provide an example in Section 6 to illustrate the
obtained theoretical results. The last section contains conclusions.

The following notations will be used throughout this paper: Let K denote the set
of all compact subsets of R. For U, V ∈ K, the Hausdorff distance dH is defined as

dH(U, V ) := max

{
max
x∈U

min
y∈V
|x− y|,max

y∈V
min
x∈U
|x− y|

}
.

For matrices M1 ∈ Rd1×d1 , . . . ,Mk ∈ Rdk×dk , let diag(M1, . . . ,Mk) denote the square
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matrix of dimension d1 + · · ·+ dk of the form

diag(M1, . . . ,Mk) =

 M1 · · · 0
...

. . .
...

0 · · · Mk

 .

Let Rd be endowed with the standard Euclidean norm. For s, d ∈ N, let L∞(N,Rs×d)
be the set of all sequences M : N→ Rs×d such that

‖M‖∞ := sup
n∈N
‖M(n)‖ <∞.

Denote by LLya(N,Rd×d) the set of invertible matrices M : N→ Rd×d satisfying that

‖M‖Lya := max

(
sup
n∈N
‖M(n)‖, sup

n∈N
‖M(n)−1‖

)
<∞.

On the set LLya(N,Rd×d), the sets of elements near identity are particularly important
in our further study. For any δ > 0 let Iδ(d) denote the set of all sequences R =(
R(n)

)
n∈N ∈ L

Lya(N,Rd×d) satisfying that ‖R− I‖∞ ≤ δ.

2. Preliminaries and the statement of the main results.

2.1. Dichotomy spectra and reducibility for linear discrete time - vary-
ing systems. Consider a one-sided discrete time-varying linear system

(2.1) x (n+ 1) = M(n)x(n) for n ∈ N,

where M := (M(n))n∈N ∈ LLya(N,Rd×d). Let ΦM (·, ·) : N × N → Rd×d denote the
evolution operator generated by (2.1), i.e.

ΦM (m,n) :=


M(m− 1) . . .M(n), if m > n,

I, if m = n,

M−1(m) . . .M−1(n− 1), if m < n.

Next, we introduce the notion of dichotomy spectrum of (2.1). This notion is defined
in terms of exponential dichotomy. Recall that system (2.1) is said to admit an expo-
nential dichotomy (ED) if there exist K, α > 0 and a family of invariant projections
P (·) : N → Rd×d, i.e. P (n + 1)M(n) = M(n)P (n) for all n ∈ N, such that for all
m,n ∈ N) we have

‖ΦM (m,n)P (n)‖ ≤ Ke−α(m−n) for m ≥ n,

‖ΦM (m,n)(I − P (n))‖ ≤ Keα(m−n) for m ≤ n,

see [28]. The dichotomy spectrum of (2.1) is defined by

ΣED(M) :=
{
γ ∈ R : x(n+ 1) = e−γM(n)x(n) has no ED

}
.

Our aim is now to state the result on the structure of the dichotomy spectrum of (2.1)
and the result on reducing (2.1) to a system of block diagonal form corresponding
to the dichotomy spectral intervals. For this purpose, we first recall the notion of
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dynamical equivalence between two discrete time-varying linear systems. System (2.1)
is said to be dynamically equivalent1 to

y(n+ 1) = N(n)y(n) for n ∈ N,

where (N(n))n∈N ∈ LLya(N,Rd×d) if there exists (L(n))n∈N ∈ LLya(N,Rd×d) satisfy-
ing that

L(n+ 1)M(n) = N(n)L(n) for all n ∈ N.
Theorem 2.1. The dichotomy spectrum ΣED(M) consists of k disjoint closed

intervals, k ≤ d. Furthermore, let ΣED(M) =
⋃k
i=1[αi, βi], where α1 ≤ β1 < α2 ≤

β2 < · · · < αk ≤ βk. Then, there exist (Mi(n))n∈N ∈ LLya(N,Rdi×di), i = 1, . . . , k,
such that (2.1) is dynamically equivalent to the following system

(2.2) y(n+ 1) = diag(M1(n), . . . ,Mk(n))y(n) for n ∈ N,

and for i = 1, . . . , k the dichotomy spectrum ΣED(Mi) of the subsystem

z(n+ 1) = Mi(n)z(n)

is ΣED(Mi) = [αi, βi]. The dimensions d1, . . . , dk are independent on the choice of
reducing system (2.2).

Proof. See Appendix.

When we also want to emphasize the information of dimension of subspaces cor-
responding to the dichotomy spectral intervals, we arrive at the following definition of
the repeated dichotomy spectrum. We refer the readers to [14] for a similar manner
in defining repeated Lyapunov spectrum.

Definition 2.2. The repeated dichotomy spectrum ΣrED(A) of (2.1) is defined by

(2.3) ΣrED(M) =
{

[α1, β1], . . . , [α1, β1]︸ ︷︷ ︸
d1times

, . . . , [αk, βk], . . . , [αk, βk]︸ ︷︷ ︸
dktimes

}
,

where d1, . . . , dk are the dimension of subsystems corresponding to the spectral inter-
vals [α1, β1], . . . , [αk, βk], respectively.

Remark 2.3. From Definition 2.2, two spectral intervals of a repeated dichotomy
spectrum are either disjoint or the same. Then, a collection of d closed intervals
[α1, β1], . . . , [αd, βd] is said to be admissible for repeated dichotomy spectrum of a
linear discrete time-varying system on Rd (for short admissible closed intervals) if

[αi, βi] = [αj , βj ] or [αi, βi] ∩ [αj , βj ] = ∅ for i 6= j.

2.2. Problem formulation and the statement of the main results. Con-
sider a discrete time-varying linear control system

(2.4) x(n+ 1) = A(n)x(n) +B(n)u(n) for n ∈ N,

where A = (A(n))n∈N ∈ LLya(N,Rd×d), B = (B(n))n∈N ∈ L∞(N,Rd×s) and
(u(n))n∈N ∈ L∞(N,Rs). Let x(·, k0, ξ, u) denote the solution of (2.4) satisfying that
x(k0) = ξ. We will also consider the free system associated with (2.4) of the form

(2.5) x(n+ 1) = A(n)x(n) for n ∈ N.

1This notion is known as Lyapunov equivalence, kinematical equivalence.
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Now, we recall the notion of uniform complete controllability of (2.4), see e.g. [18]
and also [37].

Definition 2.4 (Uniform complete controllability). System (2.4) is called uni-
formly completely controllable if there exist α > 0 and K ∈ N such that for all ξ ∈ Rd
and k0 ∈ N there exists a control sequence u(n), n = k0, k0 + 1, . . . , k0 +K − 1 such
that x(k0 +K, k0, 0, u) = ξ and

‖u(n)‖ ≤ α‖ξ‖ for all n = k0, k0 + 1, . . . , k0 +K − 1.

Remark 2.5. To verify condition of uniform complete controllability of discrete
time-varying systems we can use Kalman controllability matrix

W (k, n) =

n∑
j=k

ΦA(k, j + 1)B(j)BT (j)ΦTA(k, j + 1)

where n > k, n, k ∈ N (see [4, 18, 37]). Under the assumption that A is a Lyapunov
sequence and B is bounded, the condition uniformly completely controllable of (2.4)
is equivalent to the condition of existing a positive γ and a natural K such that

W (k0, k0 +K) ≥ γI.

For systems with a large number of parameters, numerical calculations using the
Matlab environment can be used [16].

For a sequence U = (U(n))n∈N ∈ L∞(N,Rs×d) we consider a linear feedback control
for system (2.4)

u(n) = U(n)x(n) for n ∈ N.

Definition 2.6. A bounded sequence U ∈ L∞(N,Rs×d) is said to be an admissi-
ble feedback control for system (2.4) if (A (n) +B (n)U (n))n∈N ∈ LLya(N,Rd×d).

Let U = (U(n))n∈N be any admissible feedback control for system (2.4). Then
for a closed-loop system

(2.6) x(n+ 1) = (A(n) +B(n)U(n))x(n) for n ∈ N,

its dichotomy spectrum and its repeated dichotomy spectrum are denoted by ΣED(A+
BU) and ΣrED(A + BU), respectively. Now, we introduce the notion of proportional
local assignability of repeated dichotomy spectrum.

Definition 2.7. Denote the repeated dichotomy spectrum of the system (2.5) by

ΣrED(A) =
{

[a1, b1], . . . , [ad, bd]
}

, where [a1, b1], . . . , [ad, bd] are admissible closed in-

tervals. The repeated dichotomy spectrum of (2.6) is called proportionally locally as-
signable if there exist δ, ` > 0 such that for arbitrary admissible closed intervals
[â1, b̂1], . . . , [âd, b̂d] with max1≤i≤d dH([âi, b̂i], [ai, bi])) ≤ δ there exists an admissible
feedback control U = (U(n))n∈N satisfying that

‖U‖∞ ≤ ` max
1≤i≤d

dH([âi, b̂i], [ai, bi])), ΣrED(A+BU) =
{

[âi, b̂i]
}d
i=1

.

We now state the main result of this paper about the fact that uniform com-
plete controllability implies proportional local assignability of repeated dichotomy
spectrum.
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Theorem 2.8 (Proportional local assignability of repeated dichotomy spectrum).
Suppose that system (2.4) is uniformly completely controllable. Then, the repeated

dichotomy spectrum of (2.6) is proportionally locally assignable.

Remark 2.9. The proceeding result leads to several natural questions about ana-
log results for non-invertible linear control systems and continuous time-varying linear
control systems. Concerning the first class of systems, we can use the result in [3]
to formulate properly the problem of assigning dichotomy spectrum. However, an
immediate difficulty arising is that due to non-invertibility, there has been no result
in transforming the systems to block-diagonal form based on the structure of the
dichotomy spectrum (cf. Theorem 2.1). Concerning the generalization to continuous-
time varying linear control systems, the authors believe that it is doable. The technical
issue one might need to consider is the regularity of the linear control term to ensure
that an analogous result of multiplicative perturbation (cf. Theorem 3.1) holds and
we refer the reader to [23, 7] and the references therein for more details. We leave
these open questions for future research.

3. Assignability of dichotomy spectrum by multiplicative perturbation.
In this section, we discuss the problem of assignability of dichotomy spectrum by
multiplicative perturbation. The main motivation for studying this problem comes
from the fact that given an uniformly completely controllable system there exists
a set of admissible multiplicative perturbation such that the perturbed system is
dynamically equivalent to the closed-loop linear system (Theorem 3.1). The main
result of this section is about a relation between proportional local assignability of
repeated dichotomy spectrum by multiplicative perturbation and proportional local
assignability of the control systems (Theorem 3.4).

3.1. Multiplicative perturbation. Together with system (2.5), we will con-
sider the perturbed system

(3.1) z(n+ 1) = A(n)R(n)z(n) for n ∈ N.

The perturbation
(
R(n)

)
n∈N will be called a multiplicative perturbation of the sys-

tem (2.5). Let ΦAR(n, k) be the evolution operator of system (3.1). The following
theorem will play an important role in our further consideration.

Theorem 3.1. If system (2.4) is uniformly completely controllable, then there
exist δ, ` > 0 such that for each R =

(
R(n)

)
n∈N ∈ Iδ(d) there exists an admissible

feedback control U =
(
U(n)

)
n∈N for system (2.6) such that ‖U‖∞ ≤ `‖R − I‖∞ and

system (2.6) is dynamically equivalent to system (3.1).

Proof. See [4].

3.2. Relation between assigning of dichotomy spectrum by multiplica-
tive perturbation and proportional local assignability. Thanks to Theorem
3.1, it is natural to study the assigning of dichotomy spectrum by multiplicative per-
turbation. Let us introduce a concept of assignability of dichotomy spectrum of a
linear system by multiplicative perturbation. To do this, we study an arbitrary linear
discrete time-varying system (2.1). Let

ΣrED(M) =
{

[α1, β1], . . . , [αd, βd]
}
,

where [α1, β1], . . . [αd, βd] are admissible closed intervals.
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Definition 3.2 (Proportionally locally assignable spectrum by multiplicative
perturbation). The repeated dichotomy spectrum of (2.1) is called proportionally lo-
cally assignable by multiplicative perturbation if there exist δ, ` > 0 such that for arbi-
trary admissible closed intervals [α̂1, β̂1], . . . , [α̂d, β̂d] satisfying that

max1≤i≤d dH([α̂i, β̂i], [αi, βi])) ≤ δ there exists R = (R(n))n∈N ∈ LLya(N,Rd×d) such
that

(3.2) ‖R− I‖∞ ≤ ` max
1≤i≤d

dH([α̂i, β̂i], [αi, βi])), ΣrED(MR) =
{

[α̂i, β̂i]
}d
i=1

.

In the following lemma, we show the persistence of proportional local assignability
of repeated dichotomy spectrum by multiplicative perturbation via dynamical equiv-
alence.

Lemma 3.3. Proportional local assignability of repeated dichotomy spectrum by
multiplicative perturbation persists via dynamical equivalence.

Proof. Consider a system

y(n+ 1) = N(n)y(n) for n ∈ N

which is dynamically equivalent to (2.1) via the transformation L = (L(n))n∈N ∈
LLya(N,Rd×d), i.e. N(n) = L(n + 1)M(n)L−1(n). Suppose that the repeated di-
chotomy spectrum of (2.1) is proportionally locally assignable by multiplicative per-

turbation with respect to δ, ` as in Definition 3.2. Let [α̂1, β̂1], . . . , [α̂d, β̂d] be arbi-

trary admissible closed intervals satisfying max1≤i≤d dH([α̂i, β̂i], [αi, βi])) ≤ δ. Then,
by Definition 3.2 there exists R = (R(n))n∈N ∈ LLya(N,Rd×d) satisfying

(3.3) ‖R− I‖∞ ≤ ` max
1≤i≤d

dH([α̂i, β̂i], [αi, βi])), ΣrED(MR) =
{

[α̂i, β̂i]
}d
i=1

.

Let
R̂ =

(
R̂(n)

)
n∈N

=
(
L(n)R(n)L−1(n)

)
n∈N ∈ L

Lya(N,Rd×d).

Then, we have the following claims

‖R̂− I‖∞ ≤ `‖L‖2Lya max
1≤i≤d

dH([α̂i, β̂i], [αi, βi])), ΣrED(NR̂) =
{

[α̂i, β̂i]
}d
i=1

.

The first claim follows from the inequality

‖R̂(n)− I‖ = ‖L(n)R(n)L−1(n)− I‖

= ‖L(n) (R(n)− I)L−1(n)‖

≤ ‖L(n)‖ ‖R(n)− I‖
∥∥L−1(n)

∥∥
≤ `‖L‖2Lya max

1≤i≤d
dH([α̂i, β̂i], [αi, βi])).

The second one is deduced from (3.3) and the fact that (M(n)R(n))n∈N and(
N(n)R̂(n)

)
n∈N

are dynamically equivalent, since

L−1(n+ 1)N(n)R̂(n)L(n) = M(n)R(n) for n ∈ N.
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We now state and prove the main result of this section in which we describe a
relation between proportional local assignability of the dichotomy spectrum of (3.1)
by multiplicative perturbation and proportional local assignability of (2.6).

Theorem 3.4. Suppose that system (2.4) is uniformly completely controllable. If
the repeated dichotomy spectrum of the associated free system (2.5) is proportionally
locally assignable by multiplicative perturbation, then the dichotomy spectrum of (2.6)
is proportionally locally assignable.

Proof. From the proportional local assignability of the dichotomy spectrum of
(2.5) by multiplicative perturbation it follows that there exist δ1 > 0 and `1 > 0 such

that for any admissible closed intervals [â1, b̂1], . . . , [âd, b̂d] with

max1≤i≤d dH([âi, b̂i], [ai, bi])) ≤ δ1 there exists a sequence
R =

(
R(n)

)
n∈N ∈ L

Lya(N,Rd×d) satisfying the estimate

‖R− I‖∞ ≤ `1 max
1≤i≤d

dH([âi, b̂i], [ai, bi]))

and providing the validity of relation

(3.4) ΣrED(AR) =
{

[âi, b̂i]
}d
i=1

.

According to Theorem 3.1, there exist δ2 > 0 and `2 > 0 such that for each system
(3.1) with R ∈ Iδ2(d) there exists an admissible feedback control U = (U(n))n∈N ∈
LLya(N,Rd×d), such that ‖U‖∞ ≤ `2‖R − I‖∞ and the corresponding closed-loop
system (2.6) is dynamically equivalent to system (3.1). Let

(3.5) δ := min

{
δ2
`1
, δ1

}
, ` := `1`2.

To conclude the proof, choose and fix an arbitrary admissible closed intervals
[â1, b̂1], . . . , [âd, b̂d] such that

max
1≤i≤d

dH([âi, b̂i], [ai, bi])) ≤ δ.

By definition of δ and δ1, there exists a sequence R ∈ LLya(N,Rd×d) such that

‖R− I‖∞ ≤ `1 max
1≤i≤d

dH([âi, b̂i], [ai, bi])) ≤ `1δ ≤ δ2

and (3.4) is satisfied. For this sequence R and by definition of δ2 there exists an
admissible feedback control U for system (2.6) such that

‖U‖∞ ≤ `2‖R− I‖∞ ≤ `2`1 max
1≤i≤d

dH([âi, b̂i], [ai, bi]))

= ` max
1≤i≤d

dH([âi, b̂i], [ai, bi])),

and such that systems (3.1) and (2.6) are dynamically equivalent. Since equivalent
systems have the same dichotomy spectrum the proof is completed.

4. Proportional local assignability of one dichotomy spectral interval
by multiplicative perturbation. In this section, we pay attention to discrete time-
varying linear systems of the form (2.1) with the property that the dichotomy spec-
trum consists of only one interval, i.e.

(4.1) ΣED(M) = [α, β].
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Our main result is to show that for these systems the dichotomy spectra are propor-
tionally locally assignable by multiplicative perturbation:

• Theorem 4.8 (Subsection 4.2) for the case that the dichotomy spectrum is
singleton, i.e. α = β. The main ingredient in the proof of this result is the
existence of two sequences of time realizing the end points of the dichotomy
spectrum (Lemma 4.3 and Lemma 4.7).

• Theorem 4.9 (Subsection 4.3) for the case that the dichotomy spectrum is a
non-trivial interval, i.e. α < β. The main ingredient in the proof is an explicit
formula of dichotomy spectra for a special class of upper-triangular systems
(Lemma 4.10).

In addition to Subsection 4.2 and Subsection 4.3, we prove several preparatory
results for the properties of dichotomy spectra in Subsection 4.1.

4.1. Preparatory results. In the following lemma, we establish a presentation
of α and β. A proof of this formula for the scalar system can be found in [28,
Proposition 2.4] and [19, Proposition 3.3.14].

Lemma 4.1. Consider system (2.1) and suppose that ΣED(M) = [α, β]. Then,

β = lim
j→∞

1

j

(
sup
k∈N

ln

(∥∥∥∥∥
k+j−1∏
i=k

M(i)

∥∥∥∥∥
))

,

α = − lim
j→∞

1

j

sup
k∈N

ln

∥∥∥∥∥∥
(
k+j−1∏
i=k

M(i)

)−1
∥∥∥∥∥∥
 .

Proof. At first observe that by the Fekete Lemma (see [17]) the limits in the
statement of the theorem exist. By ΣED(M) = [α, β], the resolvent set ρ(M) =
(−∞, α)∪ (β,∞) consists of only two open intervals. Note that the projection associ-
ated with (β,∞) and (−∞, α) is, respectively, identity and zero, cf. [22, Lemma 5.4].
Thus, that for any ε > 0 there exists K > 1 such that

(4.2) ‖ΦM (m,n)‖ ≤ Ke(m−n)(β+ε) for all m ≥ n

and

(4.3) ‖ΦM (m,n)‖ ≤ Ke(m−n)(α−ε) for all m ≤ n.

By (4.2) we have that for any k ∈ N and j ∈ N we have

ln

(∥∥∥∥∥
k+j−1∏
i=k

M(i)

∥∥∥∥∥
)
≤ lnK + j (β + ε)

and therefore

(4.4) lim
j→∞

1

j

(
sup
k∈N

ln

(∥∥∥∥∥
k+j−1∏
i=k

M(i)

∥∥∥∥∥
))
≤ β.

Similarly from (4.3) we get

(4.5) lim
j→∞

1

j

sup
k∈N

ln

∥∥∥∥∥∥
(
k+j−1∏
i=k

M(i)

)−1
∥∥∥∥∥∥
 ≤ −α.
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Suppose that the inequality (4.4) is strict, i.e.

(4.6) τ := lim
j→∞

1

j

(
sup
k∈N

ln

(∥∥∥∥∥
k+j−1∏
i=k

M(i)

∥∥∥∥∥
))

< β.

Since ΣED(M) = [α, β], the scaled equation

(4.7) x(n+ 1) = e−βM(n)x(n) for n ∈ N,

does not have a ED. Denote by ΦM,β the evolution operator generated by (4.7).
Consider ε > 0 such that τ + ε < β. The definition of τ implies that there exists
K > 0 such that ∥∥∥∥∥

k+j−1∏
i=k

M(i)

∥∥∥∥∥ ≤ Ke(τ+ε)j for all k ∈ N, j ∈ N.

Thus, for all k ∈ N, j ∈ N we have

‖ΦM,β (k + j, k)‖ = e−jβ ‖ΦM (k + j, k)‖ ≤ Kej(τ+ε−β).

Since τ + ε − β < 0, then the last inequality means that (4.7) poses an ED. This
contradictions shows that τ = β. In the same way we may show that the inequality
(4.5) may not be strict.

Remark 4.2. When (2.1) is scalar then the dichotomy spectrum consists of one
interval ΣED(M) = [α, β], then Lemma 4.1 becomes

β = lim
j→∞

1

j

(
sup
k∈N

ln

(∣∣∣∣∣
k+j−1∏
i=k

M(i)

∣∣∣∣∣
))

,

α = lim
j→∞

1

j

(
inf
k∈N

ln

(∣∣∣∣∣
k+j−1∏
i=k

M(i)

∣∣∣∣∣
))

.

Next we show results about the sequence realizing the upper end points of the
dichotomy spectrum of a discrete-time linear system.

Lemma 4.3. Consider system (2.1) and suppose that ΣED(M) = [α, β]. Then,
there exists a pair of sequences of natural numbers (nk)k∈N, (mk)k∈N satisfying that
mk < nk < mk+1 for k ∈ N, limk→∞mk =∞ and limk→∞(nk −mk) =∞ and

β = lim
k→∞

1

nk −mk
ln

(∥∥∥∥∥
nk−1∏
i=mk

M(i)

∥∥∥∥∥
)
.

Proof. Each sequences (nk)k∈N, (mk)k∈N of integer such that limk→∞(nk−mk) =
∞ and

β = lim
k→∞

1

nk −mk
ln

(∥∥∥∥∥
nk−1∏
i=mk

M(i)

∥∥∥∥∥
)

will be called sequences realizing the maximal point of the dichotomy spectrum of
system (2.1). We first show that there exist realizing sequences (nk)k∈N, (mk)k∈N
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satisfying additionally that lim
k→∞

mk = ∞. By Lemma 4.1, there are two realizing

sequences (ñk)k∈N, (m̃k)k∈N such that lim
k→∞

(ñk − m̃k) =∞ and

(4.8) β = lim
k→∞

1

ñk − m̃k
ln

∥∥∥∥∥∥
ñk−1∏
i=m̃k

M(i)

∥∥∥∥∥∥
 .

If the sequence (m̃k)k∈N is unbounded, then it contains a subsequence (m̃kl)l∈N di-
vergent to ∞. In this case the sequences (ñkl)l∈N, (m̃kl)l∈N are the desired ones. If
(m̃k)k∈N is bounded, i.e. m̃k < c, then (ñk)k∈N contains a subsequence diverging to
∞. Taking a subsequence of (ñk)k∈N, if necessary, we may assume that ñk > 0 and
ñk+1 > ñk, k ∈ N. Denote mk =

⌈√
ñk
⌉
, where dxe means the smallest integer not

less than x. It is clear that mk → ∞ when k → ∞. Now we will show that (ñk)k∈N
and (mk)k∈N are realizing sequences. By the formula of β as in Lemma 4.1,

β ≥ lim sup
k→∞

1

ñk −mk
ln

(∥∥∥∥∥
ñk−1∏
i=mk

M(i)

∥∥∥∥∥
)
.

Then, it is sufficient to show that

β̃ := lim inf
k→∞

1

ñk −mk
ln

(∥∥∥∥∥
ñk−1∏
i=mk

M(i)

∥∥∥∥∥
)
≥ β.

Using the fact that

∥∥∥∥∥ñk−1∏
i=mk

M(i)

∥∥∥∥∥ ≥
∥∥∥∥∥ñk−1∏
i=m̃k

M(i)

∥∥∥∥∥∥∥∥∥∥mk−1∏
i=m̃k

M(i)

∥∥∥∥∥
, we obtain that

ln

(∥∥∥∥∥
ñk−1∏
i=mk

M(i)

∥∥∥∥∥
)
≥ ln

∥∥∥∥∥∥
ñk−1∏
i=m̃k

M(i)

∥∥∥∥∥∥
− ln

∥∥∥∥∥∥
mk−1∏
i=m̃k

M(i)

∥∥∥∥∥∥
 .

This together with the definition of β̃ implies that

(4.9) β̃ ≥ lim inf
k→∞

ln

(∥∥∥∥∥ñk−1∏
i=m̃k

M(i)

∥∥∥∥∥
)

ñk −mk
− lim sup

k→∞

ln

(∥∥∥∥∥mk−1∏
i=m̃k

M(i)

∥∥∥∥∥
)

ñk −mk
.

Since m̃k ≤ c for all k it follows that

lim
k→∞

ñk −mk

ñk − m̃k
= lim
k→∞

ñk −
⌈√

ñk
⌉

ñk

ñk
ñk − m̃k

= 1.

Consequently, by (4.8) we arrive at

(4.10) lim inf
k→∞

ln

(∥∥∥∥∥ñk−1∏
i=m̃k

M(i)

∥∥∥∥∥
)

ñk −mk
= lim inf

k→∞

ln

(∥∥∥∥∥ñk−1∏
i=m̃k

M(i)

∥∥∥∥∥
)

ñk − m̃k
= β.
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From (M(n))n∈N ∈ LLya(N,Rd×d), there exists M ≥ 1 such that ‖M(n)‖ ≤M for all
n ∈ N. Thus,

lim sup
k→∞

ln

(∥∥∥∥∥mk−1∏
i=m̃k

M(i)

∥∥∥∥∥
)

ñk −mk
≤ lim sup

k→∞

(mk − m̃k)

ñk −mk
lnM

≤ lim sup
k→∞

⌈√
ñk
⌉

ñk −
⌈√

ñk
⌉ lnM = 0.

This together with (4.9) and (4.10) implies that β̃ ≥ β and therefore β̃ = β. Finally,
we start with realizing sequences (nk)k∈N, (mk)k∈N such that lim

k→∞
mk = ∞. Taking

the subsequences of (nk)k∈N and (mk)k∈N, if necessary, we can assume that (nk)k∈N
and (mk)k∈N are strictly increasing and satisfy

mk < nk < mk+1 < nk+1.

The proof is complete.

Being similar to the preceding lemma, we have the following result about the
realizing sequences for the lower end point of the dichotomy spectrum of (2.1).

Lemma 4.4. Consider system (2.1) and suppose that ΣED(M) = [α, β]. Then,
there exists a pair of sequences of natural numbers (qk)k∈N, (pk)k∈N satisfying that
pk < qk < pk+1 for k ∈ N, limk→∞ pk =∞ and limk→∞(qk − pk) =∞ and

α = − lim
k→∞

1

qk − pk
ln


∥∥∥∥∥∥∥
qk−1∏
i=pk

M(i)

−1
∥∥∥∥∥∥∥
 .

Now, we recall a result from [28] about a relation between dichotomy spectra of
block upper-triangular systems and the dichotomy spectra of subsystems correspond-
ing to entries on the diagonal.

Proposition 4.5. Consider a system

(4.11) x(n+ 1) = N(n)x(n) =

 P (n) S(n)

0 Q(n)

x(n),

where (P (n))n∈N ∈ LLya(N,Rp×p), (Q(n))n∈N ∈ LLya(N,Rq×q) and (S(n))n∈N ∈
L∞(N,Rp×q). Denote the dichotomy spectra of subsystems

y(n+ 1) = P (n)y(n), z(n+ 1) = Q(n)z(n) for n ∈ N,

by ΣED(P ) and ΣED(Q), respectively. Then, the dichotomy spectrum ΣED(N) of
(4.11) is given by

ΣED(N) = ΣED(P ) ∪ ΣED(Q).

Proof. See [28, Theorem 4.8, Corollary 4.4].
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4.2. Proof of proportional local assignability by multiplicative pertur-
bation for systems with one trivial dichotomy spectra. Throughout this sub-
section, we consider a linear discrete time-varying system (2.1) and suppose addition-
ally that the dichotomy spectrum [α, β] of (2.1) is singleton, i.e.

(4.12) ΣED(M) = {α}.

First, we show that under the preceding assumption system (2.1) is dynamically
equivalent to an upper-triangular linear system.

Lemma 4.6. There exists a sequence of upper-triangular matrices (N(n))n∈N =
(Nij(n))n∈N ∈ LLya(N,Rd×d), i.e. Nij(n) = 0 for i > j such that (2.1) is dynamically
equivalent to

(4.13) y(n+ 1) = N(n)y(n) for n ∈ N

and for i = 1, . . . , d the dichotomy spectrum ΣED(Nii) of subsystem

(4.14) z(n+ 1) = Nii(n)z(n) for n ∈ N,

satisfies ΣED(Nii) = {α}.
Proof. It is well known that there exists an upper-triangular system (4.13) which

is dynamically equivalent to (2.1) (see e.g. Algorithm 5.1 in [28]). Since the spectrum
of ED is preserved under kinematic similarity, then ΣED(N) = {α}. We will prove by
induction with respect to the d that for each upper-triangular system (4.13) such that
ΣED(Nii) = {α} for the diagonal elements Nii the equality (4.14) holds. For d = 1 it
is nothing to prove. Suppose that the statement holds for certain d ∈ N and consider
a d+ 1 upper-triangular system (4.13). Let

P (n) = (Nij(n))1≤i,j≤d and Q(n) = Nd+1,d+1(n) for n ∈ N.

By Proposition 4.5 and the fact that ΣED(N) = {α}, we have

ΣED(P ) ∪ ΣED(Q) = {α}.

Thus, ΣED(Nd+1,d+1) = ΣED(P ) = {α}. This together with the induction assumption
completes the proof.

Next, we show that the dichotomy spectrum of each subsystem (4.14) is propor-
tionally locally assignable by multiplicative perturbation.

Lemma 4.7. For each i = 1, . . . , d, the dichotomy spectrum of each scalar subsys-
tem (4.14) is proportionally locally assignable by multiplicative perturbation. More pre-
cisely, for an arbitrary interval [a, b] with dH([a, b], {α}) < 1 there exists (r(n))n∈N ∈
LLya(N,R1×1) satisfying that

(4.15) sup
n∈Z
|r(n)− 1| ≤ e dH ([a, b], {α}) and ΣED(Niir) = [a, b].

Proof. Choose and fix an arbitrary interval [a, b] satisfying dH([a, b], {α}) < 1. By
Lemma 4.3, there exist sequences (nk)k∈N, (mk)k∈N satisfying that mk < nk < mk+1,
lim
k→∞

mk =∞, limk→∞(nk −mk) =∞ and

(4.16) α = lim
k→∞

1

nk −mk
ln

∣∣∣∣∣∣
nk−1∏
j=mk

Nii(j)

∣∣∣∣∣∣
 .
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Define the sequence r = (r(n))n∈N as follows

r(n) =


eb−α for n ∈ [n2k,m2k) , k ∈ N,
ea−α for n ∈ [n2k+1,m2k+1) , k ∈ N,

e
a+b
2 −α otherwise .

Obviously, r ∈ LLya(N,R1×1). Define [â, b̂] := ΣED(Niir) and we will verify that

[â, b̂] = [a, b]. In fact, we only show that b = b̂ and use analogous arguments to obtain
a = â. Firstly, by Remark 4.2 we have

b̂ = lim
j→∞

1

j

(
sup
k∈N

ln

(∣∣∣∣∣
k+j−1∏
n=k

r(n)Nii(n)

∣∣∣∣∣
))

≥ lim sup
k→∞

ln

(
n2k−1∏
j=m2k

|r(j)Nii(j)|

)
n2k −m2k

= b− α+ lim
k→∞

ln

(
n2k−1∏
j=m2k

|Nii(j)|

)
n2k −m2k

= b,

where we use (4.16) to obtain the last equality. Finally, by definition of r we have
|Nii(n)r(n)| ≤ eb−α |Nii(n)|. Thus,

b̂ = lim
j→∞

1

j

(
sup
k∈N

ln

(∣∣∣∣∣
k+j−1∏
n=k

r(n)Nii(n)

∣∣∣∣∣
))

≤ lim
j→∞

1

j

(
sup
k∈N

ln

(∣∣∣∣∣
k+j−1∏
n=k

eb−αNii(n)

∣∣∣∣∣
))

= b− α+ lim
j→∞

1

j

(
sup
k∈N

ln

(∣∣∣∣∣
k+j−1∏
n=k

Nii(n)

∣∣∣∣∣
))

= b,

which implies that b = b̂. To conclude the proof, it remains to estimate supn∈N |r(n)−
1|. By definition of r and inequality |et − 1| ≤ e|t| − 1 for all t ∈ R we have that

|r(n)− 1| ≤ max
{
e|a−α| − 1, e|

a+b
2 −α| − 1, e|b−α| − 1

}
.

By Mean Value Theorem, we obtain that e|a−α| − 1 ≤ e |a− α| , e|
a+b
2 −α| − 1 ≤

e
∣∣a+b

2 − α
∣∣ , e|b−α|− 1 ≤ e |b− α|. Thus, |r(n)− 1| ≤ emax {|a− α| , |b− α|} and the

proof is complete.

Theorem 4.8. Consider a linear discrete time-varying system (2.1). Suppose
additionally that the dichotomy spectrum [α, β] of (2.1) is singleton, i.e. α = β.
Then, the repeated dichotomy spectrum of (2.1) is proportionally locally assignable by
multiplicative perturbation.

Proof. By Lemma 4.6, system (2.1) is dynamically equivalent to

(4.17) x(n+ 1) = N(n)x(n) for n ∈ N,
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where (N(n))n∈N = (Nij(n))n∈N ∈ LLya(N,Rd×d) satisfying Nij(n) = 0 for i > j and
for i = 1, . . . , d the dichotomy spectrum of the subsystem

(4.18) z(n+ 1) = Nii(n)z(n) for n ∈ N,

is ΣED(Nii) = {α}. By virtue of Lemma 3.3, it is sufficient to show that the repeated
dichotomy spectrum of (4.17) is proportionally locally assignable by multiplicative

perturbation. For this purpose, let [α̂1, β̂1], . . . , [α̂d, β̂d] be an arbitrary admissible
closed intervals of the form{

[a1, b1], . . . , [a1, b1]︸ ︷︷ ︸
d1times

, . . . , [ak, bk], . . . , [ak, bk]︸ ︷︷ ︸
dktimes

}

satisfying that max1≤j≤k dH([aj , bj ], {α})) ≤ 1 and a1 > b2, . . . , ak−1 > bk. Let
j ∈ {1, . . . , k} be arbitrary. In view of Lemma 4.7, for arbitrary i ∈ {d1 + · · ·+dj−1 +
1, d1 + · · ·+ dj} there exists (ri(n))n∈Z ∈ LLya(N,R1×1) satisfying that

(4.19) sup
n∈Z
|ri(n)− 1| ≤ e dH ([aj , bj ], {α}) and ΣED(Niiri) = [aj , bj ].

Let R(n) = diag(r1(n), . . . , rd(n)). Then, on one hand by (4.19) we have

sup
n∈Z
‖R(n)− I‖ ≤ e max

1≤j≤k
dH ([aj , bj ], {α}) .

On the other hand, by Proposition 4.5

ΣrED(NR) =
{

[a1, b1], . . . , [a1, b1]︸ ︷︷ ︸
d1times

, . . . , [ak, bk], . . . , [ak, bk]︸ ︷︷ ︸
dktimes

}
.

The proof is complete.

4.3. Proof of proportional local assignability by multiplicative pertur-
bation for systems with one non-trivial dichotomy spectral interval. We
now state the main result of this subsection about proportional local assignability by
multiplicative perturbation for systems with only one non-trivial dichotomy spectral
interval.

Theorem 4.9. Suppose that the dichotomy spectrum [α, β] of (2.1) is not single-
ton, i.e. α < β. Then, the repeated dichotomy spectrum of (2.1) is proportionally
locally assignable by multiplicative perturbation.

Before proving the preceding theorem, we need the following preparatory result.

Proposition 4.10. Consider a upper-triangular time-varying linear system

(4.20) x(n+ 1) = N(n)x(n), N(n) =


N11(n) N12(n) · · · N1d(n)

0 N22(n) · · · N2d(n)
...

...
. . .

...
0 0 · · · Ndd(n)

 .

Suppose that (N(n))n∈N ∈ LLya(N,Rd×d) and the dichotomy spectrum ΣED(N) of
(4.20) consists of only one interval denoted by [α, β]. Let ζ, η ∈ R be arbitrary. Define
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Nζ,η(n) = (Nζ,η
ij (n))1≤i,j≤d by

Nζ,η
ij (n) :=

{
Nij(n), if i 6= j,

e−ζ |Nij(n)|ηNij(n), if i = j.

Then, the dichotomy spectrum of the system

(4.21) x(n+ 1) = Nζ,η(n)x(n) for n ∈ N,

is given by ΣED(Nζ,η) = [(1 + η)α− ζ, (1 + η)β − ζ].

Proof. Let ` ∈ {1, . . . , d} be arbitrary. Let [α`, β`] be the dichotomy spectrum of
the scalar system

z(n+ 1) = N``(n)z(n) for n ∈ N.
We now verify that the dichotomy spectrum of the following system

z(n+ 1) = Nζ,η
`` (n)z(n) for n ∈ N.

is given by [(1 + η)α` − ζ, (1 + η)β` − ζ]. For this purpose, using the fact that

sup
k∈N

ln

(∣∣∣∣∣
k+j−1∏
i=k

Nζ,η
`` (i)

∣∣∣∣∣
)

= sup
k∈N

ln

(∣∣∣∣∣
k+j−1∏
i=k

e−ζ |N``(i)|ηN``(i)

∣∣∣∣∣
)

= −ζj + (1 + η) sup
k∈N

ln

(∣∣∣∣∣
k+j−1∏
i=k

N``(i)

∣∣∣∣∣
)
,

we obtain that

lim
j→∞

1

j
sup
k∈N

ln

(∣∣∣∣∣
k+j−1∏
i=k

Nζ,η
`` (i)

∣∣∣∣∣
)

= −ζ + (1 + η) lim
j→∞

1

j
sup
k∈N

ln

(∣∣∣∣∣
k+j−1∏
i=k

N``(i)

∣∣∣∣∣
)
.

Then, by Lemma 4.1 we have

lim
j→∞

1

j
sup
k∈N

ln

(∣∣∣∣∣
k+j−1∏
i=k

Nζ,η
`` (i)

∣∣∣∣∣
)

= −ζ + (1 + η)β`.

Similarly, we have

− lim
j→∞

1

j
sup
k∈N

ln

∣∣∣∣∣∣
(
k+j−1∏
i=k

Nζ,η
`` (i)

)−1
∣∣∣∣∣∣
 = −ζ + (1 + η)α`.

Consequently, using Lemma 4.1, we obtain ΣED(Nζ,η
`` ) = [(1 +η)α`− ζ, (1 +η)β`− ζ].

Thus, by virtue of Proposition 4.5 we arrive at

(4.22) ΣED(Nζ,η) =

d⋃
`=1

ΣED(Nζ,η
`` ) =

d⋃
`=1

[(1 + η)α` − ζ, (1 + η)β` − ζ].

On the other hand, since ΣED(N) = [α, β] it follows that

[α, β] =

d⋃
`=1

ΣED(N``) =

d⋃
`=1

[α`, β`]
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which together with (4.22) implies that ΣED(Nζ,η) = [(1 + η)α− ζ, (1 + η)β− ζ]. The
proof is complete.

We are now in the position to prove the main result of this subsection.

Proof of Theorem 4.9. Due to the fact that there exists an upper-triangular sys-
tem (4.13) which is dynamically equivalent to (2.1) (see e.g. Algorithm 5.1 in [28])
and proportional local assignability of repeated dichotomy spectrum by multiplicative
perturbation persists via dynamical equivalence (Lemma 3.3), it is sufficient to prove
this theorem under the assumption that M(n) is an upper-triangular matrix for all
n ∈ N. Let

(4.23) δ :=
b− a

3 + |a|+ |b|
and ` :=

e
(
1 + ‖M‖2Lya

)
(2 + |a|+ |b|)

b− a
.

Now, let [α̂1, β̂1], . . . , [α̂d, β̂d] be arbitrary admissible closed intervals satisfying that

max1≤i≤d dH([α̂i, β̂i], [a, b])) ≤ δ. By (4.23) and dH([α̂i, β̂i], [a, b])) ≤ δ, we have

[ 2a+b
3 , a+2b

3 ] ⊂ [α̂i, β̂i] for all i = 1, . . . , d. Thus, by virtue of Remark 2.3 all intervals

[α̂1, β̂1], . . . , [α̂d, β̂d] coincide and let α̂ := α̂i and β̂ := β̂i. Let

(4.24) η :=
(β̂ − b)− (α̂− a)

b− a
, ζ :=

aβ̂ − α̂b
b− a

.

Then, a direct computation yields that

(4.25) (1 + η)a− ζ = α̂, (1 + η)b− ζ = β̂

and

|η| ≤ 2

b− a
max{|α̂− a|, |β̂ − b|}, |ζ| ≤ |a|+ |b|

b− a
max{|α̂− a|, |β̂ − b|}.

Thus,

(4.26) max(|η|, |ζ|) ≤ max(2, |a|+ |b|)
b− a

dH([a, b], [α̂, β̂]) ≤ 1.

By Definition 3.2, to complete the proof it is sufficient to findR = (R(n))n∈N satisfying

(4.27) ‖R− I‖∞ ≤ `max{|α̂− a|, |β̂ − b|}, ΣED(MR) = [α̂, β̂].

For this purpose, let

R(n) := e−ζdiag(|M11(n)|η, . . . , |Mdd(n)|η) for all n ∈ N,

where ζ and η are defined as in (4.24). Thus, by virtue of Proposition 4.10 and (4.25)
we have

ΣED(MR) = [(1 + η)a− ζ, (1 + η)b− ζ] = [α̂, β̂].

Furthermore, by definition of R(n) we have

(4.28) ‖R(n)− I‖ = max
1≤`≤d

∣∣e−ζ |M``(n)|η − 1
∣∣ .
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For each ` ∈ {1, . . . , d} by the Mean Value Theorem2, there exists ζ̂ and η̂ with

|ζ̂| ≤ |ζ|, |η̂| ≤ |η| and∣∣e−ζ |M``(n)|η − 1
∣∣ =

〈(
−e−ζ̂ |M``(n)|η̂, η̂e−ζ̂ |M``(n)|η̂−1

)
, (−ζ, η)

〉
,

which together with (4.26) implies that∣∣e−ζ |M``(n)|η − 1
∣∣ ≤ max

(
e−ζ̂ |M``(n)|η̂, |η̂|e−ζ̂ |M``(n)|η̂−1

)
max(|η|, |ζ|)

≤ emax(|M``(n)|η̂, |M``(n)|η̂−1) max(|η|, |ζ|)

≤ e(1 + ‖M‖2Lya) max(|η|, |ζ|)

≤
e
(
1 + ‖M‖2Lya

)
(2 + |a|+ |b|)

b− a
dH([a, b], [α̂, β̂]).

Thus, by (4.23) and (4.28) R satisfies all properties in (4.27). The proof is complete.

5. Proof of the main results.

Proof of Theorem 2.8. Thanks to Theorem 3.4, to show the proportional local
assignability of the dichotomy spectrum of (2.6) it is sufficient to verify the propor-
tional local assignability of the dichotomy spectrum by multiplicative perturbation of
system (2.5). Let the repeated dichotomy spectrum ΣrED(A) be of the following form

ΣrED(A) =
{

[a1, b1], . . . , [ad, bd]
}

=
{

[a∗1, b
∗
1], . . . , [a∗1, b

∗
1]︸ ︷︷ ︸

d1times

, . . . , [a∗k, b
∗
k], . . . , [a∗k, b

∗
k]︸ ︷︷ ︸

dktimes

}
,

where

ad ≤ bd ≤ ad−1 ≤ bd−1 ≤ · · · ≤ a1 ≤ b1

and

b∗k ≤ a∗k < a∗k−1 ≤ b∗k−1 · · · < a∗1 ≤ b∗1.

Then, we have for all i = 1, . . . , k

(5.1) [a∗i , b
∗
i ] = [aj , bj ] for d1 + · · ·+ di−1 + 1 ≤ j ≤ d1 + · · ·+ di.

In light of Theorem 2.1, system (2.5) is dynamically equivalent to a block-diagonal
system

(5.2) y(n+ 1) = diag(M1(n), . . . ,Mk(n))y(n) for n ∈ N,

where (Mi(n))n∈N ∈ LLya(N,Rdi×di) for i = 1, . . . , k satisfies that

ΣED(Mi) = [a∗i , b
∗
i ] for i = 1, . . . , k.

By Remark 3.3, to conclude the proof we verify proportional local assignability of the
dichotomy spectrum by multiplicative perturbation of (5.2). Note that by virtue of

2Let f : R2 → R be a C2 function. Then, for any ζ, η there exist ζ̂, η̂ with |ζ̂| ≤ |ζ|, |η̂| ≤ |η| and

f(ζ, η) = f(0, 0) + 〈∇f(ζ̂, η̂), (ζ, η)〉.
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Theorem 4.8 and Theorem 4.9, for i = 1, . . . , k the repeated dichotomy spectrum of
each subsystem

(5.3) yi(n+ 1) = Mi(n)yi(n) for n ∈ N,

is proportionally locally assignable by multiplicative perturbation. This implies that
for each i = 1, . . . , k there exist δi and `i such that for each admissible intervals
[ai1, b

i
1], . . . , [aidi , b

i
di

] satisfying sup1≤j≤di dH([aij , b
i
j ], [a

∗
i , b
∗
i ]) ≤ δi there exists

Ri = (Ri(n))n∈N such that

‖Ri − I‖∞ ≤ `i max
1≤j≤di

dH([aij , b
i
j ], [a

∗
i , b
∗
i ])), ΣrED(MiRi) =

{
[aij , b

i
j ]
}di
j=1

.

Define

(5.4) δ := min

{
min

1≤i≤k
δi, min

1≤i≤k−1

(a∗i − b∗i+1)

3

}
, ` := max

1≤i≤k
`i.

To complete the proof, let [â1, b̂1], . . . , [âd, b̂d] be arbitrary admissible closed inter-

vals satisfying that max1≤i≤d dH([âi, b̂i], [ai, bi])) ≤ δ. Using the fact that δ ≤
min1≤i≤k−1

(a∗i−b
∗
i+1)

3 , for i = 1, . . . , k there exist exact di intervals [â1, b̂1], . . . , [âd, b̂d]
whose Hausdorff distance to [a∗i , b

∗
i ] is smaller than δ. More precisely, for i = 1 . . . , k

we have

dH([âj , b̂j ]
d1+...di
j=d1+...di−1+1, [a

∗
i , b
∗
i ]) ≤ δ.

Since δ ≤ δi it follows that there exists Ri(n) such that

(5.5) ‖Ri − I‖∞ ≤ `i max
d1+di−1+1≤j≤d1+···+di

dH([âj , b̂j ], [a
∗
i , b
∗
i ]))

and

(5.6) ΣrED(MiRi) =
{

[âj , b̂j ]
}d1+···+di

j=d1+···+di−1+1
.

Let R(n) = diag(R1(n), . . . , Rk(n)). Then, by (5.5) and (5.1) we have

‖R− I‖∞ ≤ max
1≤i≤k

sup
n∈N

`i max
d1+di−1+1≤j≤d1+···+di

dH([âj , b̂j ], [a
∗
i , b
∗
i ]))

≤ ` max
1≤j≤d

dH([âj , b̂j ], [aj , bj ]).

Furthermore, by (5.6) we have ΣrED(MR) =
⋃k
i=1 ΣrED(MiRi) =

{
[âj , b̂j ]

}d
j=1

. The

proof is complete.

6. Example. Consider the following discrete time-varying linear control system

(6.1) x(n+ 1) = A(n)x(n) +B(n)u(n) for n ∈ N,

where A(n) =

(
1 1

0 eαn+1−αn

)
and B(n) = I with αn := (n + 1) sin(ln(n + 1))

for n ∈ N. We will use the theoretical result in the preceding sections to construct
explicit linear state feedback for the proportional local assignability of the dichotomy
spectrum of the free system. For this purpose, we first establish several properties of
the sequence (αn).
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Lemma 6.1. We have

(6.2) lim
n→∞

|(αn+1 − αn)− (sin(ln(n+ 2)) + cos(ln(n+ 2)))| = 0.

Consequently,

(6.3) lim sup
n→∞

(αn+1 − αn) =
√

2, lim inf
n→∞

(αn+1 − αn) = −
√

2

and

(6.4) lim
n→∞

((αn+2 − αn+1)− (αn+1 − αn)) = 0.

Proof. By the Mean Value Theorem, for each n ∈ N there exists ξn ∈ (ln(n +
1), ln(n+ 2)) such that

αn+1 − αn = sin(ln(n+ 2)) + (n+ 1)(sin(ln(n+ 2))− sin(ln(n+ 1)))

= sin(ln(n+ 2)) + (n+ 1)(ln(n+ 2)− ln(n+ 1)) cos(ξn).(6.5)

Note that limn→∞(n+ 1) ln(n+2
n+1 ) = 1. Applying again the Mean Value Theorem, we

obtain that

| cos(ξn)− cos(ln(n+ 2))| = |ξn − ln(n+ 2)|| sin(ηn)| ≤ ln(n+ 2)− ln(n+ 1),

where ηn ∈ (ξn, ln(n+ 2)). Consequently,

lim
n→∞

(n+ 1)(ln(n+ 2)− ln(n+ 1))(cos(ξn)− cos(ln(n+ 2))) = 0,

which together with (6.5) proves (6.2). Note that

lim sup
n→∞

sin(ln(n+ 2)) + cos(ln(n+ 2)) = lim sup
n→∞

√
2 sin

(
ln(n+ 2) +

π

4

)
=
√

2.

Thus, lim supn→∞(αn+1−αn) =
√

2 and analogously lim infn→∞(αn+1−αn) = −
√

2
and (6.3) is verified. Finally, by using (6.2) we have

lim sup
n→∞

|(αn+2 − αn+1)− (αn+1 − αn)|

= lim sup
n→∞

|(sin(ln(n+ 3))− sin(ln(n+ 2))) + (cos(ln(n+ 3))− cos(ln(n+ 2)))|.

Thus, by using the Mean Value Theorem we have

lim sup
n→∞

|(αn+2 − αn+1)− (αn+1 − αn)| ≤ 2 lim sup
n→∞

(ln(n+ 3)− ln(n+ 2)) = 0,

which proves (6.4). The proof is complete.

Next, we compute the dichotomy spectrum of the free system associated with (6.1).

Lemma 6.2. The following statements hold:
(i) The sequence A := (A(n))n∈N ∈ LLya(N,R2×2) and ‖A‖Lya ≤

√
1 + 2e4.

(ii) The dichotomy spectrum ΣED(A) of the free system is given by ΣED(A) =
[−
√

2,
√

2].
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Proof. (i) Using (6.3) in Lemma 6.1, we obtain that supn∈N |αn+1 − αn| < ∞
and therefore (A(n))n∈N ∈ LLya(N,R2×2). In fact, from (6.5) and the fact that
supn≥1 n ln(1 + 1

n ) = 1 we also have |αn+1 − αn| ≤ 2. Then, ‖A‖Lya ≤
√

1 + 2e4.
(ii) Obviously, the dichotomy spectrum associated with the first coordinate subsystem
y(n + 1) = y(n) is {0}. Then, to complete the proof, it is sufficient to compute the
dichotomy spectrum of the second coordinate subsystem

(6.6) y(n+ 1) = eαn+1−αny(n) for n ∈ N.

Denote the dichotomy spectrum of the preceding scalar system by [α, β]. Then, by
Proposition 4.5 we have ΣED(A) = [α, β] ∪ {0}. By property (6.4) in Lemma 6.1, for
any fixed j ∈ N, we have lim supk→∞(αk+j − αk) = j lim supk→∞(αk+1 − αk). Thus,

sup
k∈N

ln

(
k+j−1∏
i=k

eαi+1−αi

)
≥ lim sup

k→∞
j(αk+1 − αk).

Using (6.3) in Lemma 6.1, we obtain that

sup
k∈N

ln

(
k+j−1∏
i=k

eαi+1−αi

)
≥ j
√

2,

which together with Lemma 4.1 implies that

β = lim
j→∞

1

j
sup
k∈N

ln

(
k+j−1∏
i=k

eαi+1−αi

)
≥
√

2.

On the other hand, using Lemma 4.3 there exists a pair of sequences of natural
numbers (nk)k∈N, (mk)k∈N satisfying that mk < nk < mk+1 for k ∈ N, limk→∞mk =

∞ and limk→∞(nk −mk) =∞ and β = lim
k→∞

αnk
−αmk

nk−mk
. Thus,

β = lim
k→∞

αnk
− αmk

nk −mk
≤ lim sup

n→∞
(αn+1 − αn) =

√
2.

Similarly, we have α = −
√

2. Hence, ΣED(A) = [−
√

2,
√

2] and the proof is complete.

Coming back to the linear control system (6.1), the Kalman controllability matrix
W (n+ 1, n) = A(n)A(n)T satisfies that

〈ξ,W (n+ 1, n)ξ〉 = ‖A(n)ξ‖2 ≥ ‖ξ‖2

‖A(n)−1‖2
≥ ‖ξ‖2

‖A‖2Lya

.

Then, using the characterization of controllability in terms of the positivity of the
Kalman controllability matrix (see e.g. [18, 37]), the system (6.1) is uniformly com-
pletely controllable. Consequently, by Theorem 2.8 the dichotomy spectrum of the
associated free system of (6.1) is proportionally locally assignable. Furthermore, in
the following theorem, we follow the approach in the proof of Theorem 4.9 to provide
an explicit construction of the linear state feedback in the problem of proportional
local assignability of dichotomy spectrum of (6.1).

Theorem 6.3. Let δ := 2
√

2
3+2
√

2
and ` := (2 +

√
2)e(e4 + 1). Let [α̂, β̂] be an

arbitrary spectral interval with dH([α̂, β̂], [−
√

2,
√

2]) ≤ δ. Define

U(n) =

(
e−ζ − 1 e−ζeη(αn+1−αn) − 1

0 e−ζe(1+η)(αn+1−αn) − eαn+1−αn

)
,
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where η = β̂−α̂−2
√

2

2
√

2
, ζ = − α̂+β̂

2 . Then, [α̂, β̂] is the dichotomy spectrum of the closed-

loop system x(n+ 1) = (A(n) + U(n))x(n) and

(6.7) ‖U‖∞ ≤ (2 +
√

2)e
√

1 + 2e4(e4 + 1)dH([α̂, β̂], [−
√

2,
√

2]).

Proof. By η = β̂−α̂−2
√

2

2
√

2
, ζ = − α̂+β̂

2 (cf. (4.24)), it was proved in the proof of

Theorem 4.9 that [α̂, β̂] is the dichotomy spectrum of the multiplicative perturbation

x(n+ 1) = A(n)R(n)x(n), R(n) :=

(
e−ζ 0

0 e−ζeη(αn+1−αn)

)
.

Furthermore,

(6.8) sup
n∈N
‖R(n)− I‖ ≤ ` dH([α̂, β̂], [−

√
2,
√

2]).

Since U(n) = A(n)(R(n)− I) the closed-loop system

x(n+ 1) = (A(n) + U(n))x(n) = A(n)R(n)x(n)

has the dichotomy spectrum as [α̂, β̂]. Moreover, by (6.8) and Lemma 6.2(i), we have

‖U‖∞ ≤ ‖A‖∞ sup
n∈N
‖R(n)− I‖ ≤ (2 +

√
2)e
√

1 + 2e4(e4 + 1)dH([α̂, β̂], [−
√

2,
√

2]).

We end up this section by giving a remark on the open problem of proportional
local assignability of the Lyapunov spectrum for (6.1). This will help to describe
in more details the current results of this problem. Also, this will help us to see
the difference between the problem of proportional local assignability of Lyapunov
spectrum and dichotomy spectrum.

Remark 6.4. (i) We will show that the free linear system has unstable Lyapunov
spectrum consisting of two exponents, not regular and not diagonalizable. Note that

ΦA(n, 0) =

(
1
∑n−1
i=0 e

αi

0 eαn

)
. Thus, the Lyapunov exponents of the two solutions

ΦA(n, 0)e1 and ΦA(n, 0)e2 of the free system is given by

λ1 := lim sup
n→∞

1

n
ln ‖ΦA(n, 0)e1‖ = 0,

λ2 := lim sup
n→∞

1

n
ln ‖ΦA(n, 0)e2‖ = lim sup

n→∞

(n+ 1) sin(ln(n+ 1))

n
= 1.

Thus, the Lyapunov spectrum of the free system is {0, 1}. Also, in the formula for
λ2 the limit superior is not a limit and the system is not regular. Finally, recall that
from [9, Theorem 1] (cf. [1, Theorem 3.3.3]) the free system would be diagonalizable

if only if |det ΦA(n,0)|
‖ΦA(n,0)e1‖‖ΦA(n,0)e2‖ ≥ ρ for certain ρ > 0 and all n ∈ N. However, a direct

computation yields

lim inf
n→∞

|det ΦA(n, 0)|
‖ΦA(n, 0)e1‖‖ΦA(n, 0)e2‖

= lim inf
n→∞

eαn√(
n−1∑
i=0

eαi

)2

+ e2αn

= 0,
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since lim infn→∞ eαn = 0. Moreover, since the system (6.1) is not diagonalizable it
follows that it does not have the property of integral separateness (see [9, Theorem
2]). On the other hand it is known (see [9, Theorem 6], cf. [1, Theorem 5.4.7]) that
integral separateness is equivalent to the fact that the Lyapunov spectrum consists of
different numbers and is stable. Thus, the Lyapunov spectrum of (6.1) is unstable.
(ii) It has been proved in [4, Theorem 6.9], that the Lyapunov spectrum is proportion-
ally locally assignable provided that the free system is either regular or diagonalizable
or the Lyapunov spectrum is stable and the controled system is uniformly completely
controllable. Therefore, in the light of the known literature results, the problem of
proportional local assignability of the spectrum of (6.1) remains open.

Remark 6.5. Although we are successful to construct an explicit linear state feed-
back for local assignment of dichotomy spectrum of (6.1), it is undeniable that the
same result for high dimensional linear control systems will be a difficult task. The
main problem is that there is no explicit formula for the dichotomy spectrum of an ar-
bitrary linear systems. In fact, we might only hope to obtain the approximation of the
spectrum, see [?]. So, we might hope to establish a numerical scheme to approximate
the suitable linear state feedback. We leave this problem for future research.

7. Conclusions. In this paper we consider a version of the problem of assignabil-
ity of dichotomy spectrum, namely the proportional local assignability problem. We
show that uniform complete controllability is a sufficient condition for the solvability
of this problem. It should also be noted that the methods of proof used are construc-
tive, i.e. they enable the construction of a control that ensures the proper location
of the dichotomy spectrum, however, the methods used in the proof only give esti-
mates of the constants ` and δ from the definition of proportional local assignability
of the dichotomy spectrum. This issue is disscussed deeper together with the problem
of construction of the feedback, in the case of proportional local assignability of the
Lyapunov spectrum in the Section ”Discussion of the results” in [4].

8. Appendix. This section is devoted to prove Theorem 2.1. The content of
this theorem consists of two things. The first one is the structure of the dichotomy
spectrum of one-sided discrete time-varying linear systems and the proof of this result
can be seen in [3, Theorem 3.4]. The second one is about block diagonalization of
linear systems such that the subsystem of each block corresponds to one spectral
interval. The proof of this result for two-sided systems is given in [33]. In what
follows, we prove this result for one-sided systems.

Proof of Theorem 2.1. Denote the dichotomy spectrum ΣED(M) by ΣED(M) =⋃k
i=1[ai, bi],, where ak ≤ bk < ak−1 ≤ bk−1 < · · · < a1 ≤ b1. Let γ ∈ (b2, a1) be

arbitrary. Then, the shifted system

x(n+ 1) = e−γM(n)x(n)

exhibits an exponential dichotomy, i.e. there exist K, α > 0 and a family of invariant
projections P (·) : N→ Rd×d, P (n+ 1)M(n) = M(n)P (n) for all n ∈ N, such that for
all m,n ∈ N we have

(8.1)
‖ΦM (m,n)P (n)‖ ≤ Ke(γ−α)(m−n) for m ≥ n,

‖ΦM (m,n)(I − P (n))‖ ≤ Ke(γ+α)(m−n) for m ≤ n.

By invariance of P (n), the dimension of P (n) is independent of n and let d1 :=
dim im(I − P (n)). Let f1(n), . . . , fd1(n) be an orthornormal basis of the subspace
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im(I − P (n)) and fd1+1(n), . . . , fd(n) be an orthonormal basis of the subspace
im(P (n)). For each n ∈ N, define L(n) ∈ Rd×d by

L(n)ei = fi(n) for i = 1, . . . , d,

where e1, e2, . . . , ed is the standard Euclidean basis of Rd. Then,

‖L(n)‖ = sup
‖x1e1+···+xded‖=1

‖L(n)(x1e1 + · · ·+ xded)‖

≤ sup
x2
1+···+x2

d=1

|x1|‖L(n)e1‖+ · · ·+ |xd|‖L(n)ed‖ ≤ d

and

‖L−1(n)‖ = sup
‖x1f1(n)+···+xdfd(n)‖=1

‖L−1(n)(x1f1(n) + · · ·+ xdfd(n))‖

= sup
‖x1f1(n)+···+xdfd(n)‖=1

‖x1e1 + · · ·+ xded‖

= sup
‖x1f1(n)+···+xdfd(n)‖=1

√
x2

1 + · · ·+ x2
d.

Note that

‖(I − P (n))(x1f1(n) + · · ·+ xdfd(n))‖ = ‖x1f1(n) + · · ·+ xd1fd1(n)‖

=
√
x2

1 + · · ·+ x2
d1

which together with ‖I − P (n)‖ ≤ K implies that

sup
‖x1f1(n)+···+xdfd(n)‖=1

√
x2

1 + · · ·+ x2
d1
≤ K.

Similarly,

sup
‖x1f1(n)+···+xdfd(n)‖=1

√
x2
d1+1 + · · ·+ x2

d ≤ K.

Thus, by the inequality
√
a+ b ≤

√
a +
√
b we arrive at ‖L−1(n)‖ ≤ 2K. Hence,

(L(n))n∈N ∈ LLya(N,Rd×d). By invariance of P (n) the matrices L(n+1)−1M(n)L(n)
are of the diagonal form as follows

L(n+ 1)−1M(n)L(n) =

(
M1(n) 0

0 M̃(n)

)
,

where (M1(n))n∈N ∈ LLya(N,Rd1×d1) and (M̃(n))n∈N ∈ LLya(N,R(d−d1)×(d−d1)).

Furthermore, by (8.1) there exists K̂ > 0 such that

‖Φ
M̃

(m,n)‖ ≤ K̃e(γ−α)(m−n) for m ≥ n,

‖ΦM1
(m,n)‖ ≤ Ke(γ+α)(m−n) for m ≤ n.

Thus,

(8.2) ΣED(M̃) ⊂ (−∞, γ), ΣED(M1) ⊂ (γ,∞).
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On the other hand, by Proposition 4.5 ΣED(M̃) ∪ ΣED(M1) =
⋃k
i=1[ai, bi], which

together with (8.2) implies that

ΣED(M1) = [a1, b1], ΣED(M̃) =

k⋃
i=2

[ai, bi].

Also note that the way to reduce the original system is dimensionless due to the fact
that although P (n) might be not unique the imP (n) and hence dim imP (n) is unique.
Thanks to the proceeding procedure and reapplying this procedure to subsystems, we
complete the proof.
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