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Abstract

We study the explicit Euler scheme to approximate the solutions of rough differential
equations under a bounded or linear diffusion term, where the drift term satisfies a local
Lipschitz continuity and an one-sided linear growth condition. The Euler scheme is then
proved to converge for a given solution, where the convergence rate is independent of the
initial condition. For a dissipative drift term with linear growth condition and a bounded
diffusion term, the numerical solution under a regular grid generates a random dynamical
system which admits a random pullback attractor. We also prove that for bounded drift
and diffusion terms and under a centered Gaussian noise with stationary increments, the
numerical pullback attractor then converges upper semi-continuously to the continuous-
time pullback attractor as the time step goes to zero.

Keywords: rough differential equations (SDE), rough path theory, rough integrals, ran-
dom dynamical systems, random attractors, Euler numerical scheme.

1 Introduction

The theory of rough paths proposed by Lyons [19, 20] allows one to formulate and investigate
stochastic differential equations of the form

dyt = f(yt)dt+ g(yt)dXt, (1.1)

where f : Rd → Rd, g : Rd → L(Rm,Rd), d,m ∈ N have sufficient regularity and Xt ∈ Rm is
a stochastic process with stationary increments, such that almost surely all realizations are
ν-Hölder continuous for some ν ∈ (1

3 , 1), e.g., fractional Brownian motions [21] with Hurst
indices H ∈ (1

3 , 1)). Using this theory one attempts to solve the controlled differential equation

dyt = f(yt)dt+ g(yt)dxt (1.2)

with the driving path x as a realization of X in the space Cν(R,Rm) of continuous paths with
finite ν-Hölder norm on any finite time interval, such that x can be lifted to a rough path
x = (x,X), where X and x are related to each other by Chen’s relation.

The solution of (1.2) in the sense of either Lyons-Davie [19, 20] or Friz-Victoir [11, 22]
does not need rough path integrals to be specified. Alternatively, rough path integrals can be
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defined using fractional calculus, and the solution of (1.2) can be understood in couple with
its Levy area, see e.g. [12, 16].

Another approach is to interpret equation (1.2) in the integral equation form

yt = y0 +

∫ t

0
f(ys)ds+

∫ t

0
g(ys)dxs, (1.3)

where the second integral is a rough integral for controlled rough paths in the sense of Gu-
binelli [14]. This approach facilitates the derivation of estimates of solutions and is more
convenient for investigating their asymptotical behaviour and their approximation under nu-
merical discretization.

It was recently proved in Duc [8] that the system (1.3) has a unique pathwise solution for
a given initial condition under a Lipschitz continuity of the drift, which will be relaxed in this
paper (Theorem 2.4 and Corollary 2.5) to a local Lipschitz continuity and an one-sided linear
growth condition of the drift. A direct consequence gives an estimate of solution supremum
norm, which is then used to prove the convergence of the explicit Euler numerical scheme
(Theorem 3.1).

In this paper, we propose an analytic approach to study the numerical attractors of the
explicit Euler numerical scheme from the rough differential equations (1.1) and (1.2). To do
that, we follow a probabilistic setting in Bailleu et al [2] and Duc [7] for the rough noise to
prove that system (1.1), understood in the pathwise sense as (1.2) with pathwise solutions
in the Gubinelli sense, generates a continuous-time random dynamical system [1], while the
discrete-time Euler scheme generates a discrete-time random dynamical system.

Moreover, we go a step further by proving that under the dissipativity of the drift term
and with the bounded or linear diffusion term, there exists not only a pullback attractor for
the continuous-time RDS generated from (1.1) (see Duc [7, Theorem 3.1] and Theorem 5.1),
but also a pullback attractor for the discrete-time RDS generated from the explicit Euler
numerical scheme with the regular grid and a sufficiently small step size, although the latter
requires additional conditions on the linear growth of the drift term and the boundedness of
the diffusion term (see Theorem 5.2).

Finally, we prove in Theorem 5.5 that, under restricted assumptions that the drift term
f and diffusion term g are bounded and globally Lipschitz continuous and the driving noise
X is a centered Gaussian process, the numerical pullback attractor converges upper semi-
continuously and almost surely to the continuous attractor as the step size tends to zero. The
same questions on existence of numerical attractor and its upper semi-continuous convergence
in case of a linear diffusion term is still open for future work.

2 Rough path theory and rough differential equations

2.1 Rough paths

Let us briefly present the concept of rough paths in the simplest form, following and Friz &
Hairer [10] and Lyons [19].

For any finite dimensional vector space W , denote by C([a, b],W ) the space of all con-
tinuous paths y : [a, b] → W equipped with the sup norm ‖ · ‖∞,[a,b] given by ‖y‖∞,[a,b] =
supt∈[a,b] ‖yt‖, where ‖ · ‖ is the norm in W . We write ys,t := yt − ys. For p ≥ 1, denote by
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Cp−var([a, b],W ) ⊂ C([a, b],W ) the space of all continuous paths y : [a, b] → W of finite p-

variation |||y|||p−var,[a,b] :=
(

supΠ([a,b])

∑n
i=1 ‖yti,ti+1‖p

)1/p
< ∞, where the supremum is taken

over the whole class of finite partitions of [a, b].
Also for each 0 < α < 1, we denote by Cα([a, b],W ) the space of Hölder continuous

functions with exponent α on [a, b] equipped with the norm

‖y‖α,[a,b] := ‖ya‖+ |||y|||α,[a,b] , where |||y|||α,[a,b] := sup
s,t∈[a,b], s<t

‖ys,t‖
(t− s)α

<∞. (2.1)

For α ∈ (1
3 ,

1
2), a couple x = (x,X) ∈ Rm ⊕ (Rm ⊗ Rm), where x ∈ Cα([a, b],Rm) and

X ∈ C2α([a, b]2,Rm ⊗ Rm) :=

{
X ∈ C([a, b]2,Rm ⊗ Rm) : sup

s,t∈[a,b], s<t

‖Xs,t‖
|t− s|2α

<∞

}
,

is called a rough path if it satisfies Chen’s relation

Xs,t − Xs,u − Xu,t = xs,u ⊗ xu,t, ∀a ≤ s ≤ u ≤ t ≤ b. (2.2)

We introduce the rough path semi-norm

|||x|||α,[a,b] := |||x|||α,[a,b] + |||X|||
1
2

2α,[a,b]2
, where |||X|||2α,[a,b]2 := sup

s,t∈[a,b];s<t

‖Xs,t‖
|t− s|2α

<∞. (2.3)

Throughout this paper, we will fix parameters 1
3 < α < ν < 1

2 and p = 1
α so that Cα([a, b],W ) ⊂

Cp−var([a, b],W ). We also set q = p
2 and consider the p−var semi-norm

|||x|||p−var,[a,b] :=
(
|||x|||pp−var,[a,b] + |||X|||q

q−var,[a,b]2

) 1
p
,

|||X|||q−var,[a,b]2 :=

(
sup

Π([a,b])

n∑
i=1

‖Xti,ti+1‖q
)1/q

,

(2.4)

where the supremum is taken over the whole class of finite partitions Π([a, b]) of [a, b].

2.2 Gubinelli’s rough path integrals

Following Gubinelli [14], a rough path integral can be defined for a continuous path y ∈
Cα([a, b],W ) which is controlled by x ∈ Cα([a, b],Rm) in the sense that, there exists a couple
(y′, Ry) with y′ ∈ Cα([a, b],L(Rm,W )), Ry ∈ C2α([a, b]2,W ) such that

ys,t = y′sxs,t +Rys,t, ∀a ≤ s ≤ t ≤ b. (2.5)

y′ is called the Gubinelli derivative of y, which is uniquely defined as long as x is truly rough
[10, Definition 6.3 & Proposition 6.4], namely there exists a dense set of instants s of [a, b]
such that x is ”rough at time s”, i.e.

∀h∗ ∈ (Rm)∗ \ {0} : lim sup
t↓s

|〈h∗, xs,t〉|
|t− s|2α

=∞.
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For instance, almost all trajectories of a fractional Brownian motion BH with H > 1
3 is truly

rough [10, Section 6].
Denote by D2α

x ([a, b]) the space of all the couples (y, y′) controlled by x, then D2α
x ([a, b])

is a Banach space equipped with the norm

‖(y, y′)‖x,2α,[a,b] := ‖ya‖+‖y′a‖+
∣∣∣∣∣∣(y, y′)∣∣∣∣∣∣

x,2α,[a,b]
,
∣∣∣∣∣∣(y, y′)∣∣∣∣∣∣

x,2α,[a,b]
:=
∣∣∣∣∣∣y′∣∣∣∣∣∣

α,[a,b]
+|||Ry|||2α,[a,b]2 ,

Then for a fixed rough path x = (x,X) and any controlled rough path (y, y′) ∈ D2α
x ([a, b]),

the integral
∫ t
s yudxu can be defined as the limit of the Darboux sum∫ t

s
yudxu := lim

|Π|→0

∑
[u,v]∈Π

(
yu ⊗ xu,v + y′uXu,v

)
where the limit is taken on all finite partitions Π of [a, b] with |Π| := max

[u,v]∈Π
|v−u|. Moreover,

there exists a constant Cα = Cα,|b−a| > 1, such that∥∥∥∫ t

s
yudxu − ys ⊗ xs,t − y′sXs,t

∥∥∥
≤Cα|t− s|3α

(
|||x|||α,[s,t] |||R

y|||2α,[s,t]2 +
∣∣∣∣∣∣y′∣∣∣∣∣∣

α,[s,t]
|||X|||2α,[s,t]2

)
.

(2.6)

In our paper, we often use a similar version to (2.6) under p−variation semi-norm as follows∥∥∥∫ t

s
yudxu − ys ⊗ xs,t − y′sXs,t

∥∥∥
≤Cp

(
|||x|||p−var,[s,t] |||R

y|||q−var,[s,t]2 +
∣∣∣∣∣∣y′∣∣∣∣∣∣

p−var,[s,t]
|||X|||q−var,[s,t]2

)
,

(2.7)

with constant Cp > 1 independent of x and (y, y′).

2.3 Rough differential equations and solution estimates

The existence and uniqueness theorem for system (1.2) is first proved by Riedel & Scheutzow
[22], where the solution is understood in the sense of Friz &Victoir [11]. Using rough path
integrals, we interpret the rough differential equation (1.2) by writing it in the integral form

yt = ya +

∫ t

a
f(ys)ds+

∫ t

a
g(ys)dxs, ∀t ∈ [a, b], (2.8)

for any interval [a, b] and an initial value ya ∈ Rd. Then we search for a solution in the
Gubinelli sense, and solve for (y, y′) ∈ D2α

x ([a, b],Rd). This is possible because for g : Rd →
L(Rm,Rd) satisfying (Hb

g) or (Hl
g) below, it is easy to check (see e.g., [14]) that

(y, y′) ∈ D2α
x ([a, b],Rd) ⇒ (g(y), [g(y)]′) ∈ D2α

x ([a, b],L(Rm,Rd)),
with [g(y)]′s = Dg(ys)y

′
s ∈ L(Rm,L(Rm,Rd)),

thus the second integral in (2.8) is well defined.
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Throughout the paper, we will assume that.

(Hf ) f is locally Lipschitz continuous and of one-sided linear growth

∃C > 0 : 〈y, f(y)〉 ≤ C(1 + ‖y‖2), ∀y ∈ Rd; (2.9)

in addition f is of linear growth in the perpendicular direction, i.e. there exists Cf > 0 such
that ∥∥∥f(y)− 〈f(y), y〉

‖y‖2
y
∥∥∥ ≤ Cf(1 + ‖y‖

)
, ∀y 6= 0; (2.10)

either
(Hb

g) g belongs to C3
b (Rd,L(Rm,Rd)) such that

Cg := max
{
‖g‖∞, ‖Dg‖∞, ‖D2

g‖∞, ‖D3
g‖∞

}
<∞; (2.11)

or
(Hl

g) g(y) = Cy for C ∈ L(L(Rm,Rd),Rd) such that

Cg := ‖C‖ <∞; (2.12)

(HX) for a given ν ∈ (1
3 ,

1
2), x belongs to the space Cν(R,Rm) of all continuous paths

which are of finite ν-Hölder norm on any interval [s, t]. In particular, x is a realization of a
stochastic process Xt(ω) with stationary increments, such that x can be lifted into a realized
component x = (x,X) of a stochastic process (x·(ω),X·,·(ω)) with stationary increments, and
the estimate

E
(
‖xs,t‖p + ‖Xs,t‖q

)
≤ CT,ν |t− s|pν , ∀s, t ∈ [0, T ] (2.13)

holds for any [0, T ], with pν ≥ 1, q = p
2 and some constant CT,ν .

Assumptions (Hf ), (Hb
g) or (Hl

g), (HX) are sufficient to prove the existence and uniqueness
of the solution of (1.2), as well as the continuity of the solution semi-flow and the generation
of a continuous random dynamical system, see e.g., Bailleul et al [2] and Riedel & Scheutzow
[22, Theorem 4.3].

Here we prove another version of the solution estimate of (1.2), under the definition of
solution in the Gubinelli sense, which extends the diffusion coefficient g to both the bounded
case (Hb

g) and the linear case (Hl
g). We first modify assumption (2.9) by another equivalent

one as below.

Lemma 2.1 Condition (2.9) is equivalent to the following condition

∃C̄ > 0 : 〈y, f(y)〉 ≤ C̄‖y‖(1 + ‖y‖), ∀y ∈ Rd; (2.14)

Proof: Condition (2.14) follows (2.9) automatically due to Cauchy inequality. For the
other direction, one can easily show that

〈y, f(y)〉 ≤ (C ∨ 1)‖y‖
(

sup
‖y‖≤1

‖f(y)‖+ 1 + ‖y‖
)
,∀y ∈ Rd.
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Indeed, if ‖y‖ ≤ 1, then

〈y, f(y)〉 ≤ ‖y‖ sup
‖y‖≤1

‖f(y)‖ ≤ (C ∨ 1)‖y‖
(

sup
‖y‖≤1

‖f(y)‖+ 1 + ‖y‖
)
.

On the other hand, if ‖y‖ ≥ 1 then by (2.14)

〈y, f(y)〉 ≤ C(1 + ‖y‖2) ≤ C(‖y‖+ ‖y‖2) ≤ (C ∨ 1)‖y‖
(

sup
‖y‖≤1

‖f(y)‖+ 1 + ‖y‖
)
.

Hence (2.14) is followed by choosing C̄ := (C ∨ 1)
(

sup‖y‖≤1 ‖f(y)‖+ 1
)

.

Due to Lemma 2.1, from now on we can work with the following assumption for f .

(H′f ) f is a locally Lipschitz continuous function which satisfies (2.14) and (2.10).

The techniques to be used are the Doss-Sussmann technique [23] and the so-called greedy
sequence of stopping times in Cass et al [3]. Namely, for any fixed γ ∈ (0, 1) the sequence of
greedy times {τi(γ,x, I)}i∈N is defined by

τ0 = min I, τi+1 := inf
{
t > τi : |||x|||p−var,[τi,t]

= γ
}
∧max I. (2.15)

Define N(γ,x, I) := sup{i ∈ N : τi ≤ max I}, then it is easy to show a rough estimate

N(γ,x, I) ≤ 1 + γ−p |||x|||pp−var,I . (2.16)

In fact, it is proved in Cass et al [3] that eN(γ,x,I) is integrable. Other studies on continuity
and properties of stopping times can also be found in Duc et al [9, Section 4].

Note that from Duc [8, Theorem 3.4], the solution φ·(x, φa) of the pure rough differential
equation

dφu = g(φu)dxu, u ∈ [a, b], φa ∈ Rd (2.17)

is C1 w.r.t. φa, and ∂φ
∂φa

(·,x, φa) is the solution of the linearized system

dξu = Dg(φu(x, φs))ξudxu, u ∈ [a, b], ξa = Id, (2.18)

where Id ∈ Rd×d denotes the identity matrix.
The idea is then to prove the existence and uniqueness of the solution on each small

interval [τk, τk+1] between two consecutive stopping times, and then concatenate to obtain
the conclusion on any interval. The Doss-Sussmann technique used in Duc [8, Theorem 3.7]
and Riedel & Scheutzow [22] ensures that, by a transformation yt = φt(x, zt) there is an one-
to-one correspondence between a solution yt of (1.2) on a certain interval [0, τ ] and a solution
zt of the associate ordinary differential equation

żt =
[∂φ
∂z

(t,x, zt)
]−1

f(φt(x, zt)), t ∈ [0, τ ], z0 = y0. (2.19)

To estimate the solution norm growth, assign

γt := yt − zt, and ψt :=
[∂φ
∂z

(t,x, zt)
]−1
− Id, ∀t ∈ [0, τ ],
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where τ > 0 is chosen such that 16CpCg |||x|||p−var,[0,τ ] ≤ λ for some λ ∈ (0, 1) small enough.
The following result from Duc [7, Proposition 2.1] shows solution norm estimates for

equation (2.17).

Proposition 2.2 Assume that φt is the solutions of (2.17). Introduce the semi-norm

|||κ,Rκ|||p−var,[s,t] := |||κ|||p−var,[s,t] + |||Rκ|||q−var,[s,t]2 .

Then for any interval [a, b] such that 16CpCg |||x|||p−var,[a,b] ≤ 1, the following estimates hold

i)
∣∣∣∣∣∣∣∣∣φ,Rφ∣∣∣∣∣∣∣∣∣

p−var,[a,b]
≤ 8CpCg |||x|||p−var,[a,b] ; (2.20)

ii)
∥∥∥ ∂φ
∂φa

(t,x, φa)− Id
∥∥∥,∥∥∥[ ∂φ

∂φa
(t,x, φa)

]−1
− Id

∥∥∥ ≤ 16CpCg |||x|||p−var,[a,b] . (2.21)

A similar result for the linear case g(y) = Cy is formulated as follows.

Proposition 2.3 Assume that φ(·,x, φa) is the solution of the rough differential equation

dφt = Cφtdxt, t ∈ [a, b], φa ∈ Rd. (2.22)

Then for any interval [a, b] such that 4CpCg |||x|||p−var,[a,b] ≤ 1, the following estimates hold

i)
∣∣∣∣∣∣∣∣∣φ,Rφ∣∣∣∣∣∣∣∣∣

p−var,[a,b]
≤ 8Cg |||x|||p−var,[a,b] ‖φa‖; (2.23)

ii)
∥∥∥ ∂φ
∂φa

(t,x, φa)− Id
∥∥∥,∥∥∥[ ∂φ

∂φa
(t,x, φa)

]−1
− Id

∥∥∥ ≤ 8Cg |||x|||p−var,[a,b] . (2.24)

Proof: The existence and uniqueness theorem for equation (2.22) is proved in [8]. To
estimate the solution norms, one uses (2.7) to obtain that

‖φs,t‖ ≤Cg‖φs‖‖xs,t‖+ C2
g‖φs‖‖Xs,t‖

+ Cp

{
|||x|||p−var,[s,t]

∣∣∣∣∣∣∣∣∣RCφ∣∣∣∣∣∣∣∣∣
q−var,[s,t]

+ |||X|||q−var,[s,t] |||C ⊗ Cφ|||p−var,[s,t]

}
≤
(
Cg |||x|||p−var,[s,t] + C2

g |||x|||
2
p−var,[s,t]

)[
‖φs‖+ Cp

∣∣∣∣∣∣∣∣∣φ,Rφ∣∣∣∣∣∣∣∣∣
p−var,[s,t]

]
≤2Cg |||x|||p−var,[s,t] ‖φs‖+ 2CpCg |||x|||p−var,[s,t]

∣∣∣∣∣∣∣∣∣φ,Rφ∣∣∣∣∣∣∣∣∣
p−var,[s,t]

whenever Cg |||x|||p−var,[s,t] ≤ 1. As a result

|||φ|||p−var,[s,t] ≤ 2Cg |||x|||p−var,[s,t] ‖φs‖+ 2CpCg |||x|||p−var,[s,t]

∣∣∣∣∣∣∣∣∣φ,Rφ∣∣∣∣∣∣∣∣∣
p−var,[s,t]

whenever Cg |||x|||p−var,[s,t] ≤ 1. The similar estimate for
∣∣∣∣∣∣Rφ∣∣∣∣∣∣

p−var,[s,t]
is already included in

the above estimate, hence∣∣∣∣∣∣∣∣∣φ,Rφ∣∣∣∣∣∣∣∣∣
p−var,[s,t]

≤ 4Cg |||x|||p−var,[s,t] ‖φs‖+ 4CpCg |||x|||p−var,[s,t]

∣∣∣∣∣∣∣∣∣φ,Rφ∣∣∣∣∣∣∣∣∣
p−var,[s,t]
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whenever Cg |||x|||p−var,[s,t] ≤ 1. Taking the term
∣∣∣∣∣∣φ,Rφ∣∣∣∣∣∣

p−var,[s,t]
from the right hand side to

the left hand side, we obtain∣∣∣∣∣∣∣∣∣φ,Rφ∣∣∣∣∣∣∣∣∣
p−var,[s,t]

≤ 8Cg |||x|||p−var,[s,t] ‖φs‖

whenever 4CpCg |||x|||p−var,[s,t] ≤
1
2 , which proves (2.23).

To prove (2.24), observe that the solution φ(t,x, φa) is linear w.r.t. φa, i.e.

φ(t,x, φa + h)− φ(t,x, φa) = φ(t,x, h) =
∂φ

∂φa
(t,x, φa)h.

Hence one deduces from (2.23) that

‖φ(t,x, h)− h‖ ≤ |||φ(·,x, h)|||p−var,[a,b] ≤ 8Cg |||x|||p−var,[a,b] ‖h‖,

which implies that

‖ ∂φ
∂φa

(t,x, φa)− Id‖ = sup
h∈Rd

‖ ∂φ∂φa (t,x, φa)h− h‖
‖h‖

≤ 8Cg |||x|||p−var,[a,b] , ∀t ∈ [a, b].

The estimate for
∥∥∥[ ∂φ∂φa (t,x, φa)

]−1
− Id

∥∥∥ is similar.

We now state below the existence and uniqueness theorem as well as the solution norm
estimate for rough differential equation (1.2) under bounded diffusion coefficient g.

Theorem 2.4 Under the assumptions (H′f ), (Hb
g), (HX), there exists a unique solution of

(1.2) on any interval [0, T ]. In addition, for each λ ∈ (0, 1) small enough, there exist some
generic constants C(λ), δ(λ) such that the solution satisfies the following estimates

‖y‖∞,[0,T ] ≤ eδ(λ)T
(
‖y0‖+ C(λ)T +

λ

2
N
( λ

16CpCg
,x, [0, T ]

))
=: R. (2.25)

Proof: The existence and uniqueness of the solution of the equations (1.2) as well as
(2.19) on some small interval [0, τlocal], thus we only need to prove that the solution can be
extended into whole interval [0, τ ]. Indeed, with such τ , it then follows from (2.20) and (2.21)
that

‖γt‖ = ‖φt(x, zt)− zt‖ ≤
λ

2
and ‖ψt‖ ≤ λ, ∀t ∈ [0, τ ]. (2.26)

To estimate ‖zt‖, we rewrite (2.19) as

żt = (Id+ ψt)f(zt + γt). (2.27)

The additional technical condition (2.10) is equivalent to the following: for y ∈ Rd and y 6= 0,
f(y) is decomposed in the unique form

f(y) =
〈f(y), y〉
‖y‖2

y + π⊥y (f(y)), where π⊥y = 1− πy and ‖π⊥y (f(y))‖ ≤ Cf (1 + ‖y‖).

(2.28)
Consider two cases.
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Case 1: zt + γt 6= 0. From (2.14) and condition (2.28), we can check that

d

2dt
‖zt‖2 =

〈
zt, (Id+ ψt)

[〈zt + γt, f(zt + γt)〉
‖zt + γt‖2

(zt + γt) + π⊥zt+γt(f(zt + γt))
]〉

=
〈
zt, (Id+ ψt)

(zt + γt)

‖zt + γt‖

〉〈 zt + γt
‖zt + γt‖

, f(zt + γt)
〉

+
〈
zt + γt, π

⊥
zt+γt(f(zt + γt))

〉
−
〈
γt, π

⊥
zt+γt(f(zt + γt))

〉
+
〈
zt, ψtπ

⊥
zt+γt(f(zt + γt))

〉
≤ (1 + λ)‖zt‖C̄(1 + ‖zt‖) +

(
‖γt‖+ ‖ψt‖‖zt‖

)
‖π⊥zt+γt(f(zt + γt))‖

≤ (1 + λ)‖zt‖C̄(1 + ‖zt‖) + λ(
1

2
+ ‖zt‖)Cf

(
1 + ‖zt‖+

λ

2

)
. (2.29)

Case 2: zt + γt = 0. Then the same arguments with the Cauchy inequality show that

d

2dt
‖zt‖2 = 〈zt, (Id+ ψt)f(0)〉 ≤ (1 + λ)‖f(0)‖‖zt‖. (2.30)

By applying the Cauchy inequality to the right hand side of (2.29) and (2.30), we can show
that there exist generic constants C(λ) and δ(λ) such that

d

dt
‖zt‖2 ≤ C(λ) + δ(λ)‖zt‖2, ∀t ∈ [0, τ ], (2.31)

which, together with Gronwall lemma, yields

‖zt‖ ≤ eδ(λ)t
(
‖z0‖+

C(λ)

δ(λ)

)
− C(λ)

δ(λ)
≤ eδ(λ)τ‖y0‖+

C(λ)

δ(λ)

(
eδ(λ)τ − 1

)
, ∀t ∈ [0, τ ].

In particular

‖y‖∞,[0,τ ] ≤ ‖z‖∞,[0,τ ] + ‖γ‖∞,[0,τ ] ≤ eδ(λ)τ‖y0‖+
C(λ)

δ(λ)

(
eδ(λ)τ − 1

)
+
λ

2
. (2.32)

(2.32) implies that ‖zt‖ is bounded as long as t ∈ [0, τ ], thereby proving the existence and
uniqueness of the solution zt of equation (2.19) on [0, τ ], and so is the solution yt of (1.2) on
[0, τ ].

Next, with such a λ > 0, construct a greedy sequence of stopping times {τi( λ
16CpCg

,x, [0, T ])}.
On each interval [τi, τi+1] it is similar to prove the existence and uniqueness of the solution of
the two differential equations (1.2) and (2.19) with the shifted time

dyt+τi = f(yt+τi)dt+ g(yt+τi)dxt+τi , ∀t ∈ [0, τi+1 − τi];

żt+τi =
[∂φ
∂z

(t,x·+τi , zt+τi)
]−1

f(φt(x·+τi , zt+τi)), ∀t ∈ [0, τi+1 − τi], zτi = yτi .

As a result, the existence and uniqueness of the solution of the two systems (1.2) and (2.19)
on [0, T ] is proved by concatenation. To estimate the solution norm, observe from (2.32) that

‖yτk+1
‖ ≤ eδ(λ)(τk+1−τk)‖yτk‖+

C(λ)

δ(λ)

(
eδ(λ)(τk+1−τk) − 1

)
+
λ

2
, 0 ≤ k ≤ N − 1,
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which implies that

e−δ(λ)τk+1‖yτk+1
‖ ≤ e−δ(λ)τk‖yτk‖+

C(λ)

δ(λ)

(
e−δ(λ)τk − e−δ(λ)τk+1

)
+
λ

2
e−δ(λ)τk+1 .

Hence by induction, one can easily show that

e−δ(λ)τk+1‖yτk+1
‖ ≤ ‖y0‖+

C(λ)

δ(λ)

(
1− e−δ(λ)τk+1

)
+
λ

2

k+1∑
j=1

e−δ(λ)τj ,

hence ‖yτk+1
‖ ≤ eδ(λ)τk+1‖y0‖+

C(λ)

δ(λ)

(
eδ(λ)τk+1 − 1

)
+
λ

2
(k + 1)eδ(λ)τk+1

≤ eδ(λ)τk+1

(
‖z0‖+ C(λ)τk+1 +

λ

2
(k + 1)

)
, 0 ≤ k ≤ N − 1.

That together with (2.32) yields

‖y‖∞,[τk,τk+1] ≤ eδ(λ)(τk+1−τk)‖yτk‖+
C(λ)

δ(λ)

(
eδ(λ)(τk+1−τk) − 1

)
+
λ

2

≤ eδ(λ)τk+1

(
‖z0‖+ C(λ)τk+1 +

λ

2
(k + 1)

)
, 0 ≤ k ≤ N − 1.

By the definition of stopping times (2.15), τN = T , which yields (2.25).

A similar result for the linear case is formulated as follows.

Corollary 2.5 Under the assumptions (H′f ), (Hl
g), (HX), there exists a unique solution of

(1.2) on any interval [0, T ]. In addition, for each λ ∈ (0, 1) small enough, there exist some
generic constants C(λ), δ(λ) such that the solution satisfies

‖y‖∞,[0,T ] ≤ exp{δ(λ)T + λN(
λ

16CpCg
,x, [0, T ])}

(
‖y0‖+

C(λ)

δ(λ)

)
− C(λ)

δ(λ)
=: R. (2.33)

Proof: The proof follows the proof of Theorem 2.4 line by line, except for a minor
change. Specifically, due to Proposition 2.3, (2.26) has the form

‖γt‖ = ‖φt(x, zt)− zt‖ ≤
λ

2
‖zt‖ and ‖ψt‖ ≤ λ, ∀t ∈ [0, τ ]. (2.34)

This change does not change (2.30) while it modifies the estimate (2.29) to

d

2dt
‖zt‖2 ≤ (1 + λ)‖zt‖C̄(1 + ‖zt‖) + 2λ‖zt‖Cf

(
1 + (1 + λ)‖zt‖

)
. (2.35)

Therefore one can still prove (2.31), which makes (2.32) have the form

‖y‖∞,[0,τ ] ≤ (1 + λ)‖z‖∞,[0,τ ]

≤ (1 + λ)
[
eδ(λ)τ‖z0‖+

C(λ)

δ(λ)

(
eδ(λ)τ − 1

)]
≤ eδ(λ)τ+λ‖y0‖+

C(λ)

δ(λ)

(
eδ(λ)τ+λ − 1

)
.

(2.36)

Therefore the existence and uniqueness of the solution on each small interval [τi, τi+1] is proved
and also on the whole interval [0, T ] by concatenation. The solution estimate (2.33) is then
followed by induction.
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Proposition 2.6 Assume that ‖f‖∞ := supy∈Rd ‖f(y)‖ < ∞. Then under the assumptions

(Hb
g) and (HX) there exists a generic constant C1 = C1(‖f‖∞, Cg, |||x|||ν,[0,T ] , T ) independent

of the initial condition, such that any solution y· of (1.2) satisfies

|||y|||p−var,[a,b] ≤ C1(b− a)ν and |||Ry|||p−var,[a,b] ≤ C1(b− a)2ν , ∀0 ≤ a ≤ b ≤ T. (2.37)

If in addition f is globally Lipschitz continuous w.r.t. a constant Cf then there exists a generic
constant C2 = C2(‖f‖∞, Cf , Cg, |||x|||ν,[0,T ] , T ) independent of the initial conditions such that

any two solutions yi· (x, y
i
0), i = 1, 2, of equation (1.2) satisfy

‖y2 − y1‖∞,[a,b] ≤ C2‖y2
a − y1

a‖, ∀0 ≤ a ≤ b ≤ T. (2.38)

Proof: The proof follows similar arguments and estimates in Duc [7, Proposition 2.1]
and Duc [8, Proposition 3.1], thus we only sketch the arguments here. First, observe that
y′s = g(ys) and [g(y)]′s = Dg(ys)g(ys) with∣∣∣∣∣∣∣∣∣Rg(y)

∣∣∣∣∣∣∣∣∣
q−var,[a,b]2

≤ Cg |||Ry|||q−var,[a,b]2 +
1

2
C2
g |||y|||p−var,[a,b] |||x|||p−var,[a,b] .

It then follows from the fact ‖f‖∞, ‖g‖∞ <∞ and the estimate (2.7) that

‖ys,t‖ ≤
∫ t

s
‖f(yu)‖du+

∥∥∥∫ t

s
g(yu)dxu

∥∥∥
≤ ‖f‖∞(t− s) + ‖g‖∞‖xs,t‖+ ‖Dg(y)g(y)‖∞‖Xs,t‖

+Cp

{
|||Dg(y)g(y)|||p−var,[a,b] |||X|||q−var,[a,b]2 +

∣∣∣∣∣∣∣∣∣Rg(y)
∣∣∣∣∣∣∣∣∣
q−var,[a,b]2

|||x|||p−var,[a,b]

}
≤ ‖f‖∞(t− s) + Cg |||x|||p−var,[s,t] + C2

g |||x|||
2
p−var,[s,t]

+3Cp

{
C2
g |||x|||

2
p−var,[s,t] |||y|||p−var,[s,t] + Cg |||x|||p−var,[s,t] |||R

y|||q−var,[s,t]2

}
.

As a result,

|||y|||p−var,[s,t] ≤‖f‖∞(t− s) + Cg |||x|||p−var,[s,t] + C2
g |||x|||

2
p−var,[s,t]

+ 3Cp

{
C2
g |||x|||

2
p−var,[s,t] |||y|||p−var,[s,t] + Cg |||x|||p−var,[s,t] |||R

y|||q−var,[s,t]2

}
. (2.39)

A similar estimate for Ry then shows that

|||Ry|||q−var,[s,t] ≤‖f‖∞(t− s) + C2
g |||x|||

2
p−var,[s,t] (2.40)

+ 3Cp

{
C2
g |||x|||

2
p−var,[s,t] |||y|||p−var,[s,t] + Cg |||x|||p−var,[s,t] |||R

y|||q−var,[s,t]2

}
.

Hence, provided that 16CpCg |||x|||p−var,[s,t] ≤ 1, one takes 3CpC
2
g |||x|||

2
p−var,[s,t] |||y|||p−var,[s,t],

which is smaller that 1
2 |||y|||p−var,[s,t], from the right hand side to the left hand side of (2.39)

to obtain
|||y|||p−var,[s,t] ≤ 2‖f‖∞(t− s) + 2Cg |||x|||p−var,[s,t] + |||Ry|||q−var,[s,t]2 . (2.41)

Replacing (2.41) to the right hand side of (2.40) and then taking all terms of |||Ry|||q−var,[s,t]2

from the right hand side to the left hand side of (2.40) yields

|||Ry|||q−var,[s,t]2 ≤ 3‖f‖∞(t− s) + 3C2
g |||x|||

2
p−var,[s,t] . (2.42)
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Now replacing (2.42) to (2.41), one deduces

|||y|||p−var,[s,t] ≤ 5‖f‖∞(t− s) + 5Cg |||x|||p−var,[s,t] . (2.43)

Note that (2.43) and (2.42) hold whenever 16CpCg |||x|||p−var,[s,t] ≤ 1. Next, by constructing a

greedy sequence of time {τi( 1
16CpCg

,x, [a, b])}i∈N as in (2.15) and using (2.16), one can easily
show that

|||y|||p−var,[a,b]

≤N
( 1

16CpCg
,x, [a, b]

) p−1
p

N

(
1

16CpCg
,x,[a,b]

)
−1∑

i=0

|||y|||p−var,[τi,τi+1]

≤5N
( 1

16CpCg
,x, [a, b]

) p−1
p

N

(
1

16CpCg
,x,[a,b]

)
−1∑

i=0

(
‖f‖∞(τi+1 − τi) + Cg |||x|||p−var,[τi,τi+1]

)
≤5N

( 1

16CpCg
,x, [0, T ]

) 2(p−1)
p
(
‖f‖∞(b− a) + Cg |||x|||p−var,[a,b]

)
(2.44)

≤5N
( 1

16CpCg
,x, [0, T ]

) 2(p−1)
p
(
‖f‖∞(b− a)1−ν + Cg |||x|||ν,[a,b]

)
(b− a)ν .

A similar estimate for |||Ry|||q−var,[a,b]2 shows that

|||Ry|||q−var,[a,b]2 ≤3N
( 1

16CpCg
,x, [0, T ]

) 2(p−1)
p
(
‖f‖∞(b− a) + C2

g |||x|||
2
p−var,[a,b]

)
(2.45)

≤3N
( 1

16CpCg
,x, [0, T ]

) 2(p−1)
p
(
‖f‖∞(b− a)1−2ν + C2

g |||x|||
2
ν,[a,b]

)
(b− a)2ν .

Therefore, (2.37) is proved by choosing

C1 := 5N
( 1

16CpCg
,x, [0, T ]

) 2(p−1)
p
[
‖f‖∞

(
T 1−2ν ∨ 1

)
+ Cg |||x|||ν,[0,T ] ∨

(
Cg |||x|||ν,[0,T ]

)2]
.

(2.46)
Finally, take any two solution yi· (x, y

i
0), write zt := y2

t −y1
t on [0, T ] and use the semi-norm

as in Proposition 2.2. If f is globally Lipschitz continuous w.r.t. constant Cf , one can apply
the following estimate in Duc [8, Theorem 3.9]

|||z,Rz|||p−var,[s,t] ≤2

∫ t

s
Cf‖zu‖du+ 4Cp

{
Cg |||x|||p−var,[s,t] ∨ C

2
g |||x|||

2
p−var,[s,t]

}
(2.47)

×
(

1 +
∣∣∣∣∣∣∣∣∣y1, Ry

1
∣∣∣∣∣∣∣∣∣
p−var,[s,t]

+
∣∣∣∣∣∣∣∣∣y2, Ry

2
∣∣∣∣∣∣∣∣∣
p−var,[s,t]

)(
‖zs‖+ |||z,Rz|||p−var,[s,t]

)
.

By (2.42) and (2.43), the term
(

1 +
∣∣∣∣∣∣∣∣∣y1, Ry

1
∣∣∣∣∣∣∣∣∣
p−var,[s,t]

+
∣∣∣∣∣∣∣∣∣y2, Ry

2
∣∣∣∣∣∣∣∣∣
p−var,[s,t]

)
are bounded by

1 + 16‖f‖∞(t− s) + 16Cg |||x|||p−var,[s,t] ≤ 2 + 16T‖f‖∞
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whenever 16CpCg |||x|||p−var,[s,t] ≤ 1. This and (2.47) leads to

‖zs‖+ |||z,Rz|||p−var,[s,t] ≤ ‖zs‖+ 2

∫ t

s
Cf‖zu‖du

+8CpCg |||x|||p−var,[s,t] (1 + 8T‖f‖∞)
(
‖zs‖+ |||z,Rz|||p−var,[s,t]

)
whenever 16CpCg |||x|||p−var,[s,t] ≤ 1. Hence, as long as 8CpCg |||x|||p−var,[s,t] (1 + 8T‖f‖∞) ≤ 1

2 ,
by taking the term ‖zs‖+ |||z,Rz|||p−var,[s,t] from the right hand side to the left hand side, one
obtains

‖zt‖ ≤ ‖zs‖+ |||z,Rz|||p−var,[s,t] ≤ 2‖zs‖+ 4

∫ t

s
Cf‖zu‖du. (2.48)

One can now apply Gronwall lemma for (2.48) to conclude that

‖zt‖ ≤ 2‖zs‖e4Cf (t−s) whenever 16CpCg |||x|||p−var,[s,t] (1 + 8T‖f‖∞) ≤ 1.

By the same arguments as in [8, Theorem 3.9] together with a construction of the greedy
sequence of time {τi( 1

16CpCg(1+8T‖f‖∞) ,x, [a, b])}i∈N, one can show that

‖z‖∞,[a,b] ≤ ‖za‖ exp
{

4CfT +N
( 1

16CpCg(1 + 8T‖f‖∞)
,x, [0, T ]

)
log 2

}
.

This proves (2.38) by choosing

C2 = exp
{

4CfT +N
( 1

16CpCg(1 + 8T‖f‖∞)
,x, [0, T ]

)}
. (2.49)

3 Explicit Euler scheme for rough differential equations

For any finite partition Π := {0 = t0 < t1 < t2 < . . . < tm−1 < tm = T} such that
|Π| = supk |tk+1− tk|, we consider the explicit Euler scheme of equation (1.2) to approximate
the fixed solution y(·, 0, y0), i.e.,

yΠ
0 = y0;

yΠ
k+1 = yΠ

k + f(yΠ
k )(tk+1 − tk) + g(yΠ

k )xtk,tk+1
+Dg(yΠ

k )g(yΠ
k )Xtk,tk+1

, 0 ≤ k ≤ m− 1.
(3.1)

Since the solution y(t, 0, y0) is fixed on [0, T ], its supremum norm is bounded by a fixed number
R following (2.25).

Our main result below in this section shows that the error between the continuous solution
y and the discrete solution of the explicit Euler numerical scheme (3.1) is small on the whole
interval [0, T ].

Theorem 3.1 Assume that y(t, 0, y0) is a solution of the rough differential equation (1.2) on
[0, T ], under assumption (H′f ) for f , assumption (Hb

g) or (Hl
g) for g, and assumption (HX)

for x. Then there exists a generic constant

C = C(f, g, |||x|||ν,[0,T ] , T, ‖y0‖) > 0
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for R defined in (2.25) such that for |Π| < δ small enough

sup
0≤k≤m

‖y(tk, 0, y0)− yk‖ ≤ C|Π|3ν−1. (3.2)

Proof: We first prove the conclusion for bounded g under assumption (Hb
g). To begin,

we follow Garrido-Attienza & Schmalfuss [13] to introduce a cutoff functions fR such that

• fR(y) = f(y) for all y ∈ B(0, R+ 1) and fR(y) = f(0) for all ‖y‖ ≥ R+ 2;

• fR is globally Lipschitz continuous w.r.t. constant CfR and is bounded by a constant
‖fR‖∞ on Rd.

Specifically, fR(y) := f(ζR(y)) for all y ∈ Rd, where ζR ∈ C2(Rd,Rd) is constructed with
ζR(y) = y if ‖y‖ ≤ R + 1 and ζR(y) = 0 if ‖y‖ ≥ R + 2, such that ζR is bounded by R + 1
and ‖DζR‖∞, ‖D2ζR‖∞ <∞.

Consider the truncated rough differential equation

dyt = fR(yt)dt+ g(yt)dx(t), t ∈ [0, T ]. (3.3)

It is easy to check that equation (3.3) also satisfies the existence and uniqueness theorem.
To differentiate the solutions of (1.2) and (3.3), one denotes by yR(t, s, ξ) the solution of
(3.3) that starts at time s at point ξ ∈ Rd. Since ‖y‖∞,[0,T ] ≤ R, the solution yt lies
entirely in the ball B(0, R + 1) and f(yt) = fR(yt) for all t ∈ [0, T ], which implies that
y· = y·(x, y0) is also the unique solution of (3.3) starting from y0, i.e. yR(·, 0, y0) ≡ y·(x, y0)
on [0, T ]. Since fR and g are bounded, by Proposition 2.6 there exist generic constants
C1(‖fR‖∞, Cg, |||x|||ν,[0,T ] , T ), C2(‖fR‖∞, CfR , Cg, |||x|||ν,[0,T ] , T ) which are independent of the
initial conditions, such that any two solutions of (3.3) satisfy (2.37) and (2.38).

Next, define for the finite partition Π := {0 = t0 < t1 < t2 < . . . < tm−1 < tm = T} the
explicit Euler scheme for the truncated rough differential equation (3.3) as follows

y∗0 = y0;

y∗k+1 = y∗k + fR(y∗k)(tk+1 − tk) + g(y∗k)xtk,tk+1
+Dg(y∗k)g(y∗k)Xtk,tk+1

, 0 ≤ k ≤ m− 1.
(3.4)

The proof applies traditional arguments from Friz & Victoir [11, Theorem 10.30]. Namely,
denote by zk the solution to (3.3) at time T that starts from y∗k at time tk, i.e. zk :=
yR(T, tk, y

∗
k). Then z0 = yR(T, 0, y∗0) = y(T, 0, y0) and zm = yR(T, tm, y

∗
m) = y∗m. Using

(2.38), we obtain

‖yR(T, 0, y∗0)− y∗m‖ ≤
m−1∑
k=0

‖zk − zk+1‖

≤
m−1∑
k=0

‖yR(T, tk, y
∗
k)− yR(T, tk+1, y

∗
k+1)‖

≤
m−1∑
k=0

‖yR(T, tk+1, yR(tk+1, tk, y
∗
k))− yR(T, tk+1, y

∗
k+1)‖

≤C2(‖fR‖∞, CfR , Cg, |||x|||ν,[0,T ] , T )
m−1∑
k=0

‖yR(tk+1, tk, y
∗
k)− y∗k+1‖. (3.5)
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On the other hand, from the definition of yR(tk+1, tk, y
∗
k) and y∗k+1, we apply (2.7) and (2.37)

to obtain, up to a generic constant

‖yR(tk+1, tk, y
∗
k)− y∗k+1‖

≤
∣∣∣ ∫ tk+1

tk

[fR(yR(u))− fR(y∗k)]du+

∫ tk+1

tk

[g(yR(u))− g(y∗k)]dxu

∣∣∣
≤CfR(tk+1 − tk) |||yR(·, tk, y∗k)|||p−var,[tk,tk+1]

+ Cp

(
|||x|||p−var,[tk,tk+1] |||R

yR |||q−var,[tk,tk+1]2 + |||X|||q−var,[tk,tk+1]2 |||yR(·, tk, y∗k)|||p−var,[τk,τk+1]

)
≤C1(‖fR‖∞, Cg, |||x|||ν,[0,T ] , T )

[
CfRT

1−2ν + Cp

(
|||x|||ν,[0,T ] + |||x|||2ν,[0,T ]

)]
(tk+1 − tk)3ν .

Therefore, one can estimate (3.5) with a constant

C3 = C2C1

[
CfRT

1−2ν + Cp

(
|||x|||ν,[0,T ] + |||x|||2ν,[0,T ]

)]
(3.6)

as follows

‖yR(T, 0, y∗0)− y∗m‖ ≤ C3

m−1∑
k=0

(tk+1 − tk)3ν ≤ C3|Π|3ν−1
m−1∑
k=0

(tk+1 − tk) = C3T |Π|3ν−1. (3.7)

The right hand side of (3.7) converges to zero as |Π| → 0. Similar arguments also hold if we
replace tm = T above by any ti and define zk := yR(ti, tk, y

∗
k) for all 0 ≤ k ≤ i. Hence one

obtains (3.2) for the Euler numerical scheme of the truncated equation (3.3) by assigning

C(f, g, |||x|||ν,[0,T ] , T, ‖y0‖) := C3T = C2C1

[
CfRT

1−2ν + Cp

(
|||x|||ν,[0,T ] + |||x|||2ν,[0,T ]

)]
T, (3.8)

which depends on f, g,x and R, thus also on ‖y0‖ due to (2.25). Note that yR(tk, 0, y0) =
y(tk, 0, y0), thus by choosing |Π| < δ for δ = δ(‖fR‖∞, CfR , Cg, |||x|||ν,[0,T ] , T ) small enough, we
deduce that

sup
0≤k≤m

‖y∗k‖ ≤ ‖y‖∞,[0,T ] + Cδ3ν−1 ≤ R+ 1.

As a result, fR(y∗k) = f(y∗k) for 0 ≤ k ≤ m, hence the Euler scheme (3.4) for the truncated
equation (3.3) coincides with the actual Euler scheme (3.1) in the ball B(0, R + 1), which
proves (3.2).

The conclusion still holds for the linear diffusion function g under assumption (Hl
g), since

one can introduce a bounded function gR in a similar way to fR, where R is given by (2.33).
Since similar arguments are invovled, we skip the proof for this case here.

4 Generation of random dynamical systems

4.1 Probabilistic settings

The generation of a random dynamical system from rough differential equations (1.1) and
(1.2) is proved in Bailleul et al [2], where the solution of rough equation is understood in the
Lyons-Davie as well as the Friz-Victoir sense. In this section we follow Duc [7] to present a
similar version for Hölder spaces, where the solution is understood in the Gubinelli sense.
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Let (Ω,F ,P) be a probability space equipped with a so-called measurable metric dynamical
system θ : R × Ω → Ω such that θt : Ω → Ω is P− preserving, i.e., P(B) = P(θ−1

t (B)) for all
B ∈ F , t ∈ R, and θt+s = θt ◦ θs for all t, s ∈ R. Recall that a continuous random dynamical
system ϕ : R×Ω×Rd → Rd, (t, ω, y0) 7→ ϕ(t, ω)y0 is defined as a measurable mapping which
is also continuous in t and y0 such that the cocycle property

ϕ(t+ s, ω)y0 = ϕ(t, θsω) ◦ ϕ(s, ω)y0, ∀t, s ∈ R, ω ∈ Ω, y0 ∈ Rd (4.1)

is satisfied, see Arnold [1].
In our setting, denote by T 2

1 (Rm) = 1⊕Rm ⊕ (Rm ⊗Rm) the set with the tensor product

(1, g1, g2)⊗ (1, h1, h2) = (1, g1 + h1, g1 ⊗ h1 + g2 + h2),

for all g = (1, g1, g2),h = (1, h1, h2) ∈ T 2
1 (Rm). Then it can be shown that (T 2

1 (Rm),⊗) is a
topological group with unit element 1 = (1, 0, 0) and g−1 = (1,−g1, g1 ⊗ g1 − g2).

Given α ∈ (1
3 , ν), denote by C 0,α(I, T 2

1 (Rm)) the closure of C∞(I, T 2
1 (Rm)) in the Hölder

space C α(I, T 2
1 (Rm)), and by C 0,α

0 (R, T 2
1 (Rm)) the space of all paths g : R → T 2

1 (Rm))
such that g|I ∈ C 0,α(I, T 2

1 (Rm)) for each compact interval I ⊂ R containing 0. Then
C 0,α

0 (R, T 2
1 (Rm)) is equipped with the compact open topology given by the α-Hölder norm

(2.1), i.e the topology generated by the metric

dα(g,h) :=
∑
k≥1

1

2k
(‖g − h‖α,[−k,k] ∧ 1).

As a result, it is separable and thus a Polish space.
Let us consider a stochastic process X̄ defined on a probability space (Ω̄, F̄ , P̄) with real-

izations in (C 0,α
0 (R, T 2

1 (Rm)),F). Assume further that X̄ has stationary increments. Assign

Ω := C 0,α
0 (R, T 2

1 (Rm)) and equip it with the Borel σ-algebra F and let P be the law of X̄.
Denote by θ the Wiener-type shift

(θtω)· = ω−1
t ⊗ ωt+·, ∀t ∈ R, ω ∈ C 0,α

0 (R, T 2
1 (Rm)), (4.2)

and define the so-called diagonal process X : R×Ω→ T 2
1 (Rm),Xt(ω) = ωt for all t ∈ R, ω ∈ Ω.

Due to the stationarity of X̄, it can be proved that θ is invariant under P, then forming a
continuous (and thus measurable) dynamical system on (Ω,F ,P) [2, Theorem 5]. Moreover,
X forms an α-rough path cocycle, namely, X·(ω) ∈ C 0,α

0 (R, T 2
1 (Rm)) for every ω ∈ Ω, which

satisfies the cocyle relation:

Xt+s(ω) = Xs(ω)⊗Xt(θsω),∀ω ∈ Ω, t, s ∈ R,

in the sense that Xs,s+t = Xt(θsω) with the increment notation Xs,s+t := X−1
s ⊗Xs+t. It is

important to note that the two-parameter flow property

Xs,u ⊗Xu,t = Xs,t,∀s, t ∈ R

is equivalent to the fact that Xt(ω) = (1,xt(ω)) = (1, xt(ω),X0,t(ω)), where x·(ω) : R → Rm
and X·,·(ω) : I2 → Rm ⊗ Rm are random funtions satisfying Chen’s relation relation (2.2).

To fulfill the Hölder continuity of almost all realizations, it follows from condition (2.13)
and the Kolmogorov criterion for rough paths [11, Appendix A.3] that for any α ∈ (1

3 , ν) and
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p = 1
α , there exists a version of ω-wise (x,X) and random variables Kβ ∈ Lp,Kβ ∈ Lq, such

that speaking ω-wise and with an abuse of notation, ‖xs,t‖ ≤ Kα|t−s|α, ‖Xs,t‖ ≤ Kα|t−s|2α,
for all s, t ∈ [0, T ], so that x = (x,X) ∈ C α(I). Moreover, we could modify α such that

x ∈ C0,α(I) := {x ∈ Cα(I) : lim
∆→0

sup
0<t−s<∆

‖xs,t‖
|t− s|α

= 0},

X ∈ C0,2α(I2) := {X ∈ C2α(I2) : lim
∆→0

sup
0<t−s<∆

‖Xs,t‖
|t− s|2α

= 0},

thus C α(I) ⊂ C0,α(I)⊕C0,2α(I2) is separable due to the separability of C0,α(I) and C0,2α(I2).
As pointed out in [7, Remark 1] and due to [2, Corollary 9], the above construction is

possible for Xt to be a continuous, centered Gaussian process with stationary increments and
independent components, satisfying: there exists for any T > 0 a constant CT such that for
all p ≥ 1

ν̄ , E‖Xt − Xs‖p ≤ CT |t − s|pν for all s, t ∈ [0, T ]. Then X can be chosen to be the
natural lift of X in the sense of Friz-Victoir [11, Chapter 15] with sample paths in the space
C0,α

0 (R, T 2
1 (Rm)), for a certain α ∈ (0, ν). In particular, the Wiener shift (4.2) implies that

|||x(θhω)|||p−var,[s,t] = |||x(ω)|||p−var,[s+h,t+h] , N[s,t](x(θhω)) = N[s+h,t+h](x(ω)). (4.3)

4.2 Continuous flows

Given the setting in Subsection 4.1, we are going to generate a random dynamical system for
stochastic rough differential equation (1.1). The first step is to study the properties of rough
path integrals. Given each realization ω of the diagonal process Xt(ω) = ωt = (1,xt(ω)) =
(1, xt(ω),X0,t(ω)), we can define the stochastic integral in the pathwise sense as a rough path
integral introduced in Subsection 2.2, i.e.∫ b

a
yudωu := lim

|Π|→0

∑
Π

(
yu ⊗ xu,v(ω) + y′uXu,v(ω)

)
.

The expression of the Darboux sum in the right hand side can be rewritten as

yu ⊗ xu,v(ω) + y′uXu,v(ω) =: (yu, y
′
u)⊗̄

(
1, xu,v(ω),Xu,v(ω)

)
, (4.4)

where the operator ⊗̄ in the right hand side of (4.4) is defined as the left hand side. Since ω
is the realization of X, it follows from Chen’s relation (2.2) that(

1, xs,u(ω),Xs,u(ω)
)
⊗
(

1, xu,v(ω),Xu,v(ω)
)

=
(

1, xs,v(ω),Xs,v(ω)
)

hence the shift property (4.2) yields(
1, xu,v(ω),Xu,v(ω)

)
= ω−1

u ⊗ ωv = (θuω)v−u, ∀0 ≤ s ≤ t. (4.5)

We therefore can rewrite the definition of the above rough integral as∫ b

a
yudωu := lim

|Π|→0

∑
Π

(yu, y
′
u)⊗̄(θuω)v−u. (4.6)
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Since θu+rω = θu◦θrω, it is easy to check that the rough integral in (4.6) satisfies the additivity
and the shift properties, i.e.∫ c

a
yudωu =

∫ b

a
yudωu +

∫ c

b
yudωu, ∀a ≤ b ≤ c; (4.7)∫ b+r

a+r
yudωu =

∫ b

a
yu+rd(θrω)u, ∀a ≤ b, r ∈ R. (4.8)

These two properties (4.7), (4.8) and the existence and uniqueness theorem 2.4 then suffice to
prove the cocycle property (4.1) of the generated random dynamical system from stochastic
rough differential equation (1.1). We quote a result from Duc [7, Proposition 2] as follows.

Proposition 4.1 Given the measurable metric dynamical system (Ω,F ,P, θ) and the p-rough
cocycle X : R × Ω → T 2

1 (Rm) as above, the system (1.1) generates a continuous random
dynamical system ϕ over (Ω,F ,P, θ), such that for any [0, T ] and all ω ∈ Ω, ϕ(t, ω)y0 is the
unique solution (in the Gubinelli sense) of (1.2), which is understood in the pathwise integral
form (2.8) on [0,T], where x = (x,X) is the projection of X·(ω) on Rm ⊕ (Rm ⊗ Rm).

4.3 Discrete flows

Given the probabilistic setting in Subsection 4.2, for a realization ωt = (1, xt(ω),X0,t(ω)) of
the diagonal process Xt(ω), we consider the explicit Euler scheme for the regular grid with
step size h > 0, i.e. Π = {kh}k∈N and

yh0 ∈ Rd,
yhk+1 = yhk + f(yhk )h+ g(yhk )xkh,(k+1)h(ω) +Dg(yhk )g(yhk )Xkh,(k+1)h(ω), k ∈ N.

(4.9)

Such a scheme is well defined. Using (4.4) and (4.5), we rewrite (4.9) as

yhk+1 =
(
yhk + f(yhk )h

)
︸ ︷︷ ︸

=:F (h,yhk )

+
〈(

g(yhk ), Dg(yhk )g(yhk )
)

︸ ︷︷ ︸
=:G(yhk )

,
(
xkh,(k+1)h(ω),Xkh,(k+1)h(ω)

)〉

= F (h, yhk ) +G(yhk )⊗̄
(

1, xkh,(k+1)h(ω),Xkh,(k+1)h(ω)
)

= F (h, yhk ) +G(yhk )⊗̄
(
θkhω

)
h

= H(h, θkhω)yhk , (4.10)

where we introduce the generator function

H(h, ω)y := F (y) +G(y)⊗̄ωh. (4.11)

Hence similar to Proposition 4.1, we can easily prove that the Euler numerical scheme (4.10)
generates a discrete-time random dynamical system ϕh : Nh×Ω×Rd → Rd over Nh := {kh}k∈N
and (Ω,F ,P, θ) such that for any ω ∈ Ω and yh0 ∈ Rd, ϕh(k, ω)yh0 is defined from (4.10) by

ϕh(0, ω)yh0 ≡ yh0 ,
ϕh(kh, ω)yh0 := yhk = H(h, θ(k−1)hω) ◦ . . . ◦H(h, ω)yh0 , ∀k ≥ 1.

(4.12)
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5 Random pullback attractors

Given the random dynamical systems ϕ and ϕh on the phase space Rd, we follow Crauel
& Flandoli [5] (see also Arnold [1, Chapter 9] and Crauel & Kloeden[6] and the references
therein) to briefly present the notion of random pullback attractors.

In the probabilistic setting, recall that a set M̂ := {M(ω)}ω∈Ω is called a random set, if
ω 7→ d(y|M(ω)) := inf{d(y, z)|z ∈ M(ω)} is F -measurable for each y ∈ Rd. A universe D
is a family of random sets which is closed w.r.t. inclusions (i.e. if D̂1 ∈ D and D̂2 ⊂ D̂1

then D̂2 ∈ D). In our situation, we define the universe D to be a family of tempered random
sets D(ω), that is, D(ω) is contained in a ball B(0, ρ(ω)) a.s., where the radius ρ(ω) > 0 is a
tempered random variable (i.e. lim

t→±∞
1
t log+ ρ(θtω) = 0 a.s., see e.g., Arnold [1, pp. 164, 386]

and Imkeller & Schmalfuss [17, p. 220]).
A random set A is said to be invariant if ϕ(t, ω)A(ω) = A(θtω) for all t ∈ R, ω ∈ Ω. An

invariant random compact set A ∈ D is called a pullback attractor in D , if A attracts any
closed random set D̂ ∈ D in the pullback sense, i.e.

lim
t→∞

dH(ϕ(t, θ−tω)D̂(θ−tω)|A(ω)) = 0, (5.1)

where dH(·|·) is the Hausdorff semi-distance, i.e. dH(D|A) := supd∈D infa∈A ‖d− a‖.
The existence of a pullback attractor follows from the existence of a pullback absorbing set

(see [6, Theorem 3]), namely a random set B ∈ D is called pullback absorbing in the universe
D if B absorbs all closed random sets in D , i.e. for any closed random set D̂ ∈ D , there exists
a time t0 = t0(ω, D̂) such that

ϕ(t, θ−tω)D̂(θ−tω) ⊂ B(ω), for all t ≥ t0. (5.2)

Then given the universe D and a compact pullback absorbing set B ∈ D , there exists a unique
pullback attractor A(ω) in D , given by

A(ω) =
⋂
t≥0

⋃
s≥t

ϕ(s, θ−sω)B(θ−sω). (5.3)

As proved in Duc [7, Theorem 3.1], under the assumptions (H′f ), (Hb
g), (HX) and the

dissipativity condition

∃D1 ≥ 0, D2 > 0 : 〈y, f(y)〉 ≤ ‖y‖(D1 −D2‖y‖), ∀y ∈ Rd, (5.4)

there exists a pullback attractor A(ω) for the generated random dynamical system of the
stochastic system (1.1) such that |A(·)| ∈ Lρ for any ρ ≥ 1. It is important to note that
assumption (5.4) is equivalent to the dissipativity condition: there exist constants d1 ≥ 0, d2 >
0 such that

〈y, f(y)〉 ≤ d1 − d2‖y‖2, ∀y ∈ Rd; (5.5)

see Duc [7, Lemma 1.1].
We show below the same conclusion for the linear g, but require further that the stochastic

process X is Gaussian and Cg = ‖C‖ is small enough.
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Theorem 5.1 Let the assumptions (H′f ), (Hl
g), (HX) hold and further that X is a centered

Gaussian process. Then for sufficiently small Cg, there exists a pullback attractor A(ω) for
the generated random dynamical system of the stochastic system (1.1) such that |A(·)| ∈ Lρ
for any ρ ≥ 1.

Proof: We will follow the arguments in Duc [7, Theorem 2.1] line by line to prove that
for any λ > 0 small enough, there exist constants δλ, Cλ > 0 such that the following estimates
hold

‖yt‖ ≤ exp
{
λN
( λ

16CpCg
,x, [0, t]

)}[
‖y0‖e−δλt + CλN

( λ

16CpCg
,x, [0, t]

)]
, ∀t ∈ [0, T ].

(5.6)
To do this, the main task is prove that there exists constants C̄λ, δλ > 0 such that

1

2

d

dt
‖zt‖2 ≤ C̄λ − δλ‖zt‖2. (5.7)

To prove (5.7), one follows the notation in (2.34) and (2.28) to estimate

1

2

d

dt
‖zt‖2 =〈zt, (Id+ ψt)f(zt + γt)〉

=
〈
zt, (Id+ ψt)

[〈zt + γt, f(zt + γt)〉
‖zt + γt‖2

(zt + γt) + π⊥zt+γt(f(zt + γt))
]〉

=
〈
zt, (Id+ ψt)

(zt + γt)

‖zt + γt‖

〉
︸ ︷︷ ︸

=:M1

〈 zt + γt
‖zt + γt‖

, f(zt + γt)
〉

︸ ︷︷ ︸
=:M2

+
〈
zt, (Id+ ψt)π

⊥
zt+γt(f(zt + γt))

〉
︸ ︷︷ ︸

=:M3

. (5.8)

The estimates for M1 and M2 look the same as in the proof of [7, Theorem 2.1], thus there
exists a generic constant C̄λ such that

M1M2 ≤ C̄λ −
D2

2
(1− λ)‖zt‖2.

With g satisfying (Hl
g), there is a small change with M3, which according to (2.35) looks like

M3 ≤ 2λ‖zt‖Cf
(

1 + (1 + λ)‖zt‖
)

= 2Cfλ(1 + λ)‖zt‖2 + Cfλ(‖zt‖2 + 1).

The coefficient of ‖zt‖2 in M3 is then can be controlled by choosing sufficiently small λ ∈ (0, 1).
As a result, one can always find generic constants C̄λ, δλ such that δ0 > 0 and

1

2

d

dt
‖zt‖2 = M1M2 +M3 ≤ C̄λ − δλ‖zt‖2, ∀t ∈ [0, τ ].

Hence by Gronwall lemma and Cauchy inequality, one obtains

‖zτ‖ ≤ ‖z0‖e−δλτ +
C̄λ
δλ
,
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which deduces that

‖yτ‖ ≤ (1 + λ)‖zτ‖ ≤ ‖y0‖eλ−δλτ + (1 + λ)
C̄λ
δλ
.

Assign Cλ := (1 + λ) C̄λδλ , then for each t ∈ [0, 1], by constructing the sequence of greedy times

{τ( λ
16CpCg

,x), [0, t]}, one can easily prove by induction that

‖yτi‖ ≤ ‖y0‖eiλ−δτi + iCλe
iλ, i = 0, . . . , N(

λ

16CpCg
,x, [0, t]).

In particular, (5.6) holds. For t = 1, one obtains

‖y1‖ ≤‖y0‖ exp{λN(
λ

16CpCg
,x, [0, 1])− δλ}︸ ︷︷ ︸

=:η(x(ω),[0,1])

+ CλN(
λ

16CpCg
,x, [0, 1]) exp{λN(

λ

16CpCg
,x, [0, 1])}︸ ︷︷ ︸

=:ξ(x(ω),[0,1])

.

(5.9)

By replacing ω by θ−nω and applying the discrete Gronwall lemma [4, Lemma 5.4], one can
prove that

‖yn(θ−nω, y0)‖ ≤‖y0‖
n−1∏
i=0

η(x(θ−nω), [i, i+ 1])

+
n∑
i=0

ξ(x(θ−nω), [i, i+ 1])
n−1∏
j=i+1

η(x(θ−nω), [j, j + 1]).

Since X is Gaussian, it can be lifted to a Gaussian rough path, from which one can prove
the integrability of exp{λN( λ

16CpCg
,x, [0, 1])} (see Cass et al [3]). Hence ξ(x(ω), [0, 1]) is an

integrable random variable and tempered. On the other hand, by using (4.3) and applying
Birkhorf’s ergodic theorem, one can show that

lim sup
n→∞

1

n

n−1∑
i=0

log η(x(θ−nω), [i, i+ 1]) = lim sup
n→∞

1

n

n∑
i=1

log η(x(θ−iω), [0, 1])

= EλN(
λ

16CpCg
,x(·), [0, 1])− δλ. (5.10)

Similar to the arguments in Duc [7, Theorem 3.3], one can choose λ := Cg for sufficiently
small Cg so that the right hand side of (5.10) is negative. One then follows the arguments in
Cong et al [4, Theorem 4.5 & Lemma 5.2] to conclude that there exists a random pullback
attractor.
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5.1 Random pullback attractors for the explicit Euler scheme

We now consider a similar result on the existence of a pullback attractor for the discrete-time
RDS generated by the Euler numerical scheme (4.10) for sufficiently small step size h > 0.
The difference is that condition (2.10) is not enough, thus we need f to be of linear growth
and g is bounded. We formulate the result as follows.

Theorem 5.2 Under the hypotheses (H′f ),(Hb
g) and (HX), assume further that f is dissipa-

tive with (5.4) and of linear growth, i.e. there exists Cf such that

‖f(y)‖ ≤ Cf (1 + ‖y‖). (5.11)

Then there exists a h0 > 0 such that for all h < h0, the generated discrete-time random
dynamical system ϕh from (4.10) admits a global random pullback attractor A h(ω).

Proof: It suffices to prove that there exists an absorbing set for the generated RDS
ϕh. Consider the Lyapunov function ‖yhk‖ then by applying Cauchy inequality and using
assumptions (Hf ), (Hg) and (5.11) we obtain

‖yhk+1‖2 =‖yhk + f(yhk )h+ g(yhk )xkh,(k+1)h +Dg(yhk )g(yhk )Xkh,(k+1)h‖2

≤‖yhk‖2 + 2〈yhk , f(yhk )〉h+ ‖f(yhk )‖2h2

+ 2
〈
yhk + f(yhk )h, g(yhk )xkh,(k+1)h +Dg(yhk )g(yhk )Xkh,(k+1)h

〉
+ 2‖g(yhk )xkh,(k+1)h‖2 + 2‖Dg(yhk )g(yhk )Xkh,(k+1)h‖2

≤‖yhk‖2 + 2h‖yhk‖(D1 −D2‖yhk‖) + 2C2
fh

2(1 + ‖yhk‖2)

+ χh
(
‖yhk‖+ Cfh(1 + ‖yhk‖)

)2
+

1

χh
(Cg‖xkh,(k+1)h‖+ C2

g‖Xkh,(k+1)h‖)2

+ 2C2
g‖xkh,(k+1)h‖2 + 2C4

g‖Xkh,(k+1)h‖2

≤‖yhk‖2
(

1−D2h+ 2C2
fh

2
)

+
D2

1

D2
h+ 2C2

fh
2 + 4χh(1 + C2

fh
2)‖yhk‖2 + 2χC2

fh
3

+ 2(1 +
1

χh
)
(
C2
g‖xkh,(k+1)h‖2 + C4

g‖Xkh,(k+1)h‖2
)

≤‖yhk‖2
(

1−D2h+ 2C2
fh

2 + 4χh(1 + C2
fh

2)
)

+ ξh0

(
|||x(ω)|||p−var,[kh,(k+1)h]

)
(5.12)

where

ξh0 (A) :=
D2

1

D2
h+ 2C2

fh
2 + 2χC2

fh
3 + 2(1 +

1

χh
)
(
C2
gA

2 + C4
gA

4
)
, (5.13)

and we can choose χ := D2
8 so that

1−D2h+ 2C2
fh

2 + 4χh(1 + C2
fh

2) = 1− D2

2
h+ 2C2

fh
2 +

D2

2
C2
fh

3 < 1− D2

4
h (5.14)
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whenever

h <
D2

4C2
f (2 +D2)

∧ 1 =: h0. (5.15)

Note that from (4.3), ξh0 (|||x(ω)|||p−var,[kh,(k+1)h]) = ξh0 (|||x(θkhω)|||p−var,[0,h]) which can be writ-

ten as ξh0 (θkhω), where ξh0 ∈ L1 is an integrable random variable. Replacing (5.14) into (5.12)
we show that for h < h0 in (5.15)

‖yhk+1‖2 ≤
(

1− D2

4
h
)
‖yhk‖2 + ξh0 (θkhω) < e−

D2
4
h‖yhk‖2 + ξh0 (θkhω).

Hence by induction we can prove that

‖yhk‖2 ≤ e−
D2
4
hk‖yh0‖2 +

k−1∑
i=0

e−
D2
4
ihξh0 (θk−iω), ∀k ≥ 1.

By applying similar arguments to the ones in [7, Theorem 3.3] we conclude that there exists
a random pullback absorbing set Bh(ω) = B(0, Rh(ω)) where

Rh(ω) :=
∞∑
k=0

e−
D2
4
khξh0 (θ−khω). (5.16)

Since ξh0 ∈ L1, so is log+ ξh0 , which implies that 1
t log+ ξh0 (θ−tω) → 0 as t → ∞. Hence ξh0 is

tempered, and it follows from Cong et al [4, Lemma 5.2] that Rh(ω) is finite and also tempered
a.s. This proves the existence of a random pullback attractor A h(ω) defined by (5.3).

Remark 5.3 When g is linear, the question on existence of a numerical attractor for the
discrete RDS ϕh generated by the Euler scheme is still open.

Remark 5.4 Although ξh1 is integrable random variable, it follows from (5.13) and (5.16)
that

ERh =
1

1− e−
D2
4
h
Eξh1 ≈

4

D2h
Eξh1

which diverges to infinity as h tends to zero, since ξh0 (ω) contains element 1
h |||x(ω)|||2p−var,[0,h] ≈

h2ν−1 |||x(ω)|||2ν,[0,1]. This implies that the absorbing set Bh might blow up as h tends to zero,
which makes it difficult to prove the upper semi-continuous convergence of the numerical
attractor in the next section.

5.2 Upper semi-continuous convergence of the numerical attractor

The upper semi-continuous convergence of the numerical attractor to the attractor of an
autonomous ordinary differential equation is now a classical result in numerical dynamics,
see e.g., Han & Kloeden [15]. Similar results have been established for many other types of
differential equations including random ordinary differential equations [18]. It is well known
that the stronger continuous convergence in the Hausdorff metric holds only in very special
cases.

For the rough differential equation (1.3) in the sense of Gubinelli, where the stochastic
process X with stationary increments, we can only prove an analogous result for bounded f
and g, i.e., that A h → A in the Hausdorff semi-distance as h → 0+, i.e., converges upper
semi-continuously. We formulate the result as follows.
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Theorem 5.5 Assume (Hb
g) and (HX) with a centered Gaussian process X. Assume further

that f is globally Lipschitz continuous and bounded, such that the dissipativity condition (5.4)
is satisfied. Then ϕh admits a numerical pullback attractor Ah which converges to the attractor
A a.s. in the Hausdorf semi-distance, i.e.,

lim
h→0

dH(Ah|A) = 0 a.s. (5.17)

Proof: For any time step h < 1
2 , assign l := b 1

hc ∈ N. Then h ∈ ( 1
l+1 ,

1
l ] with 1 − h <

lh ≤ 1. It implies from the proof of Theorem (3.1) that in case f is bounded, we obtain from
(2.37) and (3.7) for T := 1 that there exist constants

C3(ω) = C(ω) =C2C1

[
Cf + Cp

(
|||x|||ν,[0,1] + |||x|||2ν,[0,1]

)]
=5N

( 1

16CpCg
,x, [0, 1]

) 2(p−1)
p
[
‖f‖∞ + Cg |||x|||ν,[0,1] ∨

(
Cg |||x|||ν,[0,1]

)2]
× exp

{
4Cf +N

( 1

16CpCg(1 + 8‖f‖∞)
,x, [0, 1]

)}
×
[
Cf + Cp

(
|||x|||ν,[0,1] + |||x|||2ν,[0,1]

)]
(5.18)

as in (2.46), (2.49) and (3.8) such that

‖ϕh(lh, ω)y0 − ϕ(1, ω)y0‖ ≤‖ϕh(lh, ω)y0 − ϕ(lh, ω)y0‖+ ‖ϕ(lh, ω)y0 − ϕ(1, ω)y0‖

≤ sup
0≤i≤l

‖ϕh(ih, ω)y0 − ϕ(ih, ω)y0‖+ |||ϕ(·, ω)y0|||p−var,[lh,1]

≤C(ω)h3ν−1 + C3(ω)(1− lh)ν

≤C(ω)(h3ν−1 + hν)

≤C(ω)h3ν−1.

As a result, there exists a constant C(ω) independent of the initial condition y0 such that

‖ϕh(lh, ω)y0‖ ≤ ‖ϕ(1, ω)y0‖+ C(ω)h3ν−1, ∀y0 ∈ Rd. (5.19)

Observe that in the last formula in (5.18), C(ω) is the product of 3 terms, where the first
and third terms are integrable due to the fact that |||x|||ν,[0,1] is integrable of any order, and so
is the second term due to Cass et al [3, Theorem 6.3]. Hence by Cauchy inequality, C(ω) is
also integrable. Now applying Duc [7, Theorem 3.3] for dissipative function f , there exists a
constant η ∈ (0, 1) and an integrable random variable ξ0(ω) = ξ0(|||x(ω)|||ν,[0,1]) such that

‖ϕ(1, ω)y0‖ ≤ η‖y0‖+ ξ0(ω), ∀y0 ∈ Rd.

Hence
‖ϕh(lh, ω)y0‖ ≤ η‖y0‖+ ξ0(ω) + C(ω)h3ν−1,

which, by similar arguments to [7, Theorem 3.3] proves the existence of a pullback absorbing
set Bh(ω) = B(0, Rh(ω)), where

Rh(ω) =

∞∑
k=0

ηk
(
ξ0(θ−klhω) + C(θ−klhω)h3ν−1

)
.
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We are going to find an upper bound for Rh. To do that, we use (4.3) to rewrite Rh as

Rh(ω) =
∞∑
k=0

ηk
[
ξ0(|||x(θ−klhω)|||ν,[0,1]) + C(|||x(θ−klhω)|||ν,[0,1])h

3ν−1
]

=
∞∑
k=0

ηk
[
ξ0(|||x(ω)|||ν,[−klh,−klh+1]) + C(|||x(ω)|||ν,[−klh,−klh+1])h

3ν−1
]
.

It is easy to check that bklhc ≥ −klh > −(bklhc+ 1), and

[−klh,−klh+ 1] ⊂
[
− bklhc − 1,−bklhc+ 1

]
, ∀k ∈ N.

On the other hand, it follows from lh > 1
2 that

bklhc ≤ b(k + 1)lhc ≤ bklhc+ 1, and bklhc < b(k + 2)lhc. (5.20)

Hence (5.20) implies that the sequence {bklhc}k∈N covers the set N of natural numbers and
every number in the sequence only appears at most twice. By writing j := bklhc we can easily
prove that

Rh(ω) ≤
∞∑
k=0

ηbklhc
[
ξ0

(
|||x(ω)|||ν,[−bklhc−1,−bklhc+1]

)
+ C

(
|||x(ω)|||ν,[−bklhc−1,−bklhc+1]

)
h3ν−1

]
≤ 2

∞∑
j=0

ηj
[
ξ0

(
|||x(ω)|||ν,[−j−1,−j+1]

)
+ C

(
|||x(ω)|||ν,[−j−1,−j+1]

)
h3ν−1

]
≤ 2

∞∑
j=0

ηj
[
ξ0

(
|||x(θ−jω)|||ν,[−1,1]

)
+ C

(
|||x(θ−jω)|||ν,[−1,1]

)]
=: 2R̄(ω). (5.21)

Similar to the argument in proof of Theorem 5.2, since ξ0(|||x(ω)|||ν,[−1,1]) and C(|||x(ω)|||ν,[−1,1])

are integrable, it follows that log+ ξ0(|||x(ω)|||ν,[−1,1]) and log+C(|||x(ω)|||ν,[−1,1]) are also inte-
grable. Thus ξ0(|||x(ω)|||ν,[−1,1]), C(|||x(ω)|||ν,[−1,1]) are tempered random variables which, to-

gether with [4, Lemma 5.2], shows that R̄(ω) is well defined and also tempered. That means
Ah(ω) ⊂ Bh(ω) = B(0, Rh(ω)) for h < 1

2 are entirely contained in a tempered set B(0, 2R̄(ω)),
hence they are uniformly attracted to A (ω) in the pullback sense under the flow ϕ. Hence
for any ε > 0 small enough, there exists a M(ε, ω) such that

dH

(
ϕ(k, θ−kω)A h(θ−kω)|A (ω)

)
< ε, ∀k ≥M(ε, ω), ∀h < 1

2
. (5.22)

With such fixed M(ε, ω), there exists a constant C(ω,M) such that for all h < δ(ω,M) ∧ 1
2

and all yh ∈ A h in the ω-wise sense

‖ϕh(M, θ−Mω)yh(θ−Mω)− ϕ(M, θ−Mω)yh(θ−Mω)‖ ≤ C(ω,M)h3ν−1 < ε.

Since the above inequality holds for all yh ∈ A h, it yields

dH

(
ϕh(M, θ−Mω)A h(θ−Mω)|ϕ(M, θ−Mω)A h(θ−Mω)

)
≤ ε. (5.23)

From (5.22) and (5.23), it follows from the invariance of A h under ϕh and the triangular
inequality that

dH(A h(ω)|A (ω)) < 2ε, ∀h < δ(ω,M) ∧ 1

2
.

This proves that (5.17) hold almost surely.
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