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Abstract

In this paper we provide an upper bound for the conjunction probability of smooth stationary

two-dimensional Gaussian fields. The key ingredient is the record method that is generalized from

the problem estimating the distribution of the maximum. The given upper bound also provides a

good asymptotic formula.
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1 Introduction

Let X be a real stationary centered Gaussian field with unit variance and almost surely smooth

sample paths. Assume more that it is defined on a compact set S ⊂ Rd. Consider n independent

copies {Xi(t); i = 1, 2, . . . , n} of X. For a given level u, the conjunction probability can be defined as

P
(
∃t ∈ S : Xi(t) ≥ u, ∀i ∈ 1, n

)
= P

(
max
t∈S

min
i=1,n

{Xi(t)} ≥ u
)
. (1)

This quantity is proposed by Friston and Worsley [19] with motivation in neurology. In particu-

lar, this quantity provides the critical value in statistical application to test whether the functional

organization of the brain for language differs according to sex. In this application, the index set is

the brain, n = 2 stands for two genders male and female, and the value of each field at each point

represents the intensity.

The conjunction probability can be seen as a generalization of the tail distribution of the maximum

of a smooth Gaussian field. Computing the tail of the maximum of random processes and random

fields is a classic topic that has drawn much of interest in probability theory, see three standard

monographs [1, 5, 14]. Many practical applications of this problem can be found in spatial statistics,

image processing, oceanography, genetics etc ..., see for example Cressie and Wikle [6]. Let us

summarize some celebrated methods to deal with this problem: double sum method (by Piterbarg

[12] and Hashorva et al [7]), tube method (by Sun [16] and Akimichi and Takemura [17]), Euler

characteristic method (by Adler and Taylor [1]), Rice method (by Azäıs and Delmas [2]), direct

method (by Azäıs and Wschebor [5]), record method (see Rychlik [15], Mercadier [9], and Azäıs and

Pham [3]).
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Recently many authors have been interested in the conjunction problem. They have managed to

exploit the methods mentioned above. By Euler characteristic method, Friston and Worsley [19] and

also Taylor [18] have provided a beautiful formula for the expectation of the Euler characteristic of

the conjunction set. By heuristic argument, they have argued that this expectation can be seen as

a good approximation for the considering conjunction probability. However, proving the validity of

this method is still an open, challenging and interesting (of course) question. By double-sum method,

Hashorva et al [8] have given a one-term asymptotic formula, but there appears an unknown constant

so-called the generalized Pickands constants. In [10], the Rice method has been applied successfully

to give an upper bound and also an asymptotic formula for the conjunction probability of smooth

processes, but it seems hard to deal with higher dimensions. For direct method, let us mention a

recent result by Pham [11]. In this result for the conjunction probability of two-dimensional Gaussian

fields, under some conditions, as the level u tends to infinity,

P

(
max
t∈S

min
1≤i≤n

Xi(t) ≥ u
)

= u2−nϕn(u)

[
λ2(S)

2π

(
n+

n(n− 1)π

4

)
+ o(1)

]
, (2)

where λ2 stands for the standard two-dimensional Lebesgue measure and ϕ(.) is the density of a

standard normal random variable. In fact, he provided a complicated asymptotic formula for any

dimension, and it is interesting that this formula coincides with the leading term of the heuristic

approximation given by Euler characteristic method in [19].

In this paper, we are interested in giving an explicit upper bound for the conjunction probability

of two-dimensional Gaussian fields. Such an explicit is very important in practical statistics test to

guaranty critical value α. Here we rely on the record method. As mentioned above, to estimate the

tail distribution of the maximum of Gaussian fields, this method has been introduced for random

processes by Rychlik [15] and has been later extended to two-dimensional random fields by Mercadier

[9]. In [3], the authors did refine the result of Mercadier by giving an explicit upper bound, and also

generalized to three-dimensional fields.

Throughout this paper, we assume the following condition on the considering field.

Assumption A: {X(t), t ∈ NS ⊂ R2} is a stationary Gaussian field, defined in a neighborhood

NS of S with C4 paths. Without loss of generality, we can assume more that

E(X(t)) = 0, Var(X(t)) = 1, Var(X ′(t)) = I2,

since these conditions can be obtained by a suitable scaling.

We assume more that Var(X ′′11(t)) > 1. This condition is mild in the sense that it is true for a

wide class of stationary Gaussian field, see [3].

Our main result is the following.

Theorem 1. Let X satisfy the Assumption A and suppose that S is the Hausdorff limit of a sequence

of connected polygons Sn. Consider n independent copies {Xi(t); i = 1, 2, . . . , n} of X. Then for each

given level u ∈ R,

P{MS ≥ u} ≤ Φ(u) +
lim infn σ1(∂Sn)ϕ(u)

2
√

2π
+
σ2(S)

2π
[cϕ(u/c) + uΦ(u/c)]ϕ(u), (3)

where c =
√

Var(X ′′11)− 1.

The detailed proof of the main result is provided in Section 2. As mentioned above, here we exploit

the record method given in [3] in a suitable definition of the record point. Therefore the readers can

see the similarity between our presenting proof and the one in [3]. We would like to emphasis that

in conjunction problem, the geometric configuration is more complicated, see Subsubsection 2.1.1.

In comparison with the asymptotic formula in (2), it is clear that our given bound in (3) is also

a good asymptotic.
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Notation

� For S ⊂ R2, ∂S is its boundary;
◦
S is its interior.

� σi is the surface measure of dimension i. It can be defined as a Hausdorff measure.

� ∂1X(t), ∂1X(t), ∂αX(t) and ∂2
11X(t) are corresponding the derivatives along the first, second

ordinate, along the direction α, and the second partial derivatives.

� dH is the Hausdorff distance between sets, defined by

dH(S, T ) = inf{ε : S ⊂ T+ε, T ⊂ S+ε}.

� ϕ(x) and Φ(x) are the density and distribution function of a standard normal variable.

Φ(x) = 1− Φ(x).

� pZ(.) stands for the density function of a random vector Z.

2 Proof of the main result

Let us first recall the definition of the “emptyable” property of the set S. This definition has been

proposed in [3].

Definition 1. The compact set S is emptyable if there exists a point O ∈ S which has minimal

ordinate, and such that for every point s ∈ S there exists a continuous path inside S from O to s with

non decreasing ordinate.

The meaning of the terminology “emptyable” is that if we make a small hole at O, then all the

water filled in S will empty out because of gravity. We also recall an example of a non-emptyable

set, see Figure 1.

Figure 1: Example of non-emptyable set. The non-emptyable part is displayed in black.

We need the following technical lemma. This is a high dimensional version of Lemma 2 in [10].

Lemma 1. Let X1(t), X2(t), . . . , Xd+1(t) be independent Gaussian fields with continuously differen-

tiable sample paths such that they are all defined on a same bounded set B ⊂ Rd. Then for a given

u1, . . . , ud+1,

P(∃t ∈ B : X1(t) = u1, . . . ,= Xd+1(t) = ud+1) = 0.

Proof. For each positive ε, we have

P(∃t ∈ S : X1(t) = u1, . . . ,= Xd+1(t) = ud+1)

≤P(∃t ∈ B : X1(t) = u1, . . . ,= Xd(t) = ud and |Xd+1(t)− ud+1| ≤ ε)

≤E (card{t ∈ B : X1(t) = u1, . . . ,= Xd(t) = ud and |Xd+1(t)− ud+1| ≤ ε}) .
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By the Rice formula (see [5]), the above expectation is equal to∫
B

E(|det(Z′(t))|I{|Xd+1(t)−ud+1|≤ε} | Z(t) = (u1, . . . , ud))pZ(t)(u1, . . . , ud)dt

=P(|Xd+1(t)− ud+1| ≤ ε)
∫
B

E(| det(Z′(t))| | Z(t) = (u1, . . . , ud))pZ(t)(u1, . . . , ud)dtt,

where at each point t ∈ S, Z(t) stands for the random vector (X1(t), X2(t), . . . , Xd(t)), and pZ(t)(.)

is its density function.

Let ε tend to 0, the result follows.

We are now ready to prove the main theorem. The proof consists of two steps: at first, we

prove for the base case when S is an emptyable polygon, then we generalize to general polygon. In

conclusion, by taking the limit of the upper bound for the sequence of polygons Sn, the bound for

the conjunction probability on S is direct.

2.1 Step 1: Emptyable polygon

Suppose now that S is an emptyable polygon. We have

P{max
t∈S

min
i=1,n

{Xi(t)} ≥ u} = P{min
i=1,n

{Xi(O)} ≥ u}+ P{∃i ∈ 1, n : Xi(O) < u,max
t∈S

min
i=1,n

{Xi(t)} ≥ u}

= Φ
n
(u) + P{∃i ∈ 1, n : Xi(O) < u,max

t∈S
min
i=1,n

{Xi(t)} ≥ u}. (4)

Consider the domain

Hu = {(x1, . . . , xn) ∈ Rn : xi ≥ u ∀i ∈ 1, n}.

Then the condition {min
i=1,n

{Xi(t)} ≥ u} implies that the conjunction set

C(u) = {t ∈ S : (X1(t), . . . , Xn(t)) ∈ Hu}

is not empty. Let us consider the record point T on C(u) with minimal ordinate. Since the fact

{∃i ∈ 1, n : Xi(O) < u} means that the point (X1(O), . . . , Xn(O)) lies outside the domain Hu and

the domain S is path-connected with non-decreasing ordinate (emptyable property), then under this

condition, at the record point T , the point (X1(T ), . . . , Xn(T )) must be on the boundary of Hu.

By considering two possibilities for the location of the record point T : in the interior or on the

boundary of S, we have

P{max
t∈S

min
i=1,n

{Xi(t)} ≥ u} ≤ Φ
n
(u) + P(T ∈

◦
S) + P(T ∈ ∂S). (5)

Now we will deal with the last two terms in the above inequality.

2.1.1 Record point in the interior of S

Suppose now that the record point T is in the interior of S. Since S is two-dimensional, then

applying Lemma 1 for the case d = 2 and ui = u, there are at most two indexes i 6= j such that

Xi(T ) = Xj(T ) = u. We have

P(T ∈
◦
S) ≤ P(T ∈

◦
S, ∃ only one index i ∈ 1, n : Xi(T ) = u)

+ P(T ∈
◦
S, ∃ two indexes i 6= j ∈ 1, n : Xi(T ) = Xj(T ) = u). (6)
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� Suppose that i is the unique index such that Xi(T ) = u. Then for j 6= i, it must be Xj(T ) > u.

Because of the minimal property of the record point, locally, for index i and all point s ∈ S
with smaller ordinate than T (s2 < T2, i.e, s is lower than T ), Xi(s) < u. It implies that

∂1Xi(T ) = 0, ∂2Xi(T ) ≥ 0, ∂2
11Xi(T ) ≤ 0 and Xj(T ) > u ∀j 6= i.

Therefore

P(T ∈
◦
S, ∃ only one index i ∈ 1, n : Xi(T ) = u)

≤
∑
i=1,n

P

(
T ∈

◦
S : ∂1Xi(T ) = 0, ∂2Xi(T ) ≥ 0, ∂2

11Xi(T ) ≤ 0 and Xj(T ) > u ∀j 6= i

)

≤
∑
i=1,n

E

(
card{t ∈

◦
S : ∂1Xi(t) = 0, ∂2Xi(t) ≥ 0, ∂2

11Xi(t) ≤ 0 and Xj(t) > u ∀j 6= i}
)

=
∑
i=1,n

∫
◦
S

E

| det(Z′i(t))|I∂2Xi(t)≥0I∂211Xi(t)≤0

∏
j 6=i

IXj(t)>u | Zi(t) = (u, 0)

 pZi(t)(u, 0) dt,

where the third line follows by Markov inequality, and the last line follows by Rice formula

applied to the field Zi(t) = (Xi(t), ∂1Xi(t)) from R2 to R2. Since the fields Xi’s are the

independent copies of X, we continue as

P(T ∈
◦
S, ∃ only one index i ∈ 1, n : Xi(T ) = u)

≤ n.Φ
n−1

(u)

∫
◦
S

E
(
|det(Z′(t))|I∂2X(t)≥0I∂211X(t)≤0 | Z(t) = (u, 0)

)
pZ(t)(u, 0) dt

= n.Φ
n−1

(u)σ2(S)
ϕ(u)√

2π
E
(
[∂2

11X(t)]−[∂2X(t)]+ | X(t) = u, ∂1X(t) = 0
)

= n.Φ
n−1

(u)σ2(S)
ϕ(u)√

2π
E
(
[∂2X(t)]+

)
E
(
[∂2

11X(t)]− | X(t) = u, ∂1X(t) = 0
)

= n.Φ
n−1

(u)σ2(S)
ϕ(u)

2π
[cϕ(u/c) + uΦ(u/c)] . (7)

where with abuse of notation Z(t) = (X(t), ∂1X(t)), c =
√

Var(∂2
11X)− 1 as introduced

in the statement of the main theorem. Here we use the fact that there random variables

(X(t), ∂1X(t), ∂2X(t)) are independent and under the condition {∂1X(t) = 0},

det(Z′(t)) = −∂2
11X(t)∂2X(t).

� Now we consider the case that there exist two indexes i 6= j such that Xi(T ) = Xj(T ) = u and

Xk(T ) > u for all k 6= i, j. Fixing these two indexes, by the minimal property of the record

point, we can eliminate the following cases

{∂1Xi(T ) < 0, ∂1Xj(T ) < 0},

{∂1Xi(T ) > 0, ∂1Xj(T ) > 0}},

and

{∂2Xi(T ) < 0, ∂2Xj(T ) < 0}}.

Note that by Lemma 1, the equality such as ∂1 (or 2)Xi(T ) = 0 almost surely never occurs,

since we have already have two equations Xi(T ) = u, Xj(T ) = u. The remaining cases will be

considered as follows.

5



Case 1: ∂1Xi(T ) > 0, ∂1Xj(T ) < 0, ∂2Xi(T ) > 0, ∂2Xj(T ) > 0. By Rice formula,

P(T ∈
◦
S,Xi(T ) = Xj(T ) = u, ∂1Xi(T ) > 0, ∂1Xj(T ) < 0, ∂2Xi(T ) > 0, ∂2Xj(T ) > 0, Xk(T ) > u∀k 6= i, j)

≤P(∃t ∈
◦
S : Xi(t) = Xj(t) = u, ∂1Xi(t)∂1Xi(T ) > 0, ∂1Xj(t) < 0, ∂2Xi(t) > 0, ∂2Xj(t) > 0, Xk(t) > u∀k 6= i, j)

≤E

(
card{t ∈

◦
S : Xi(t) = Xj(t) = u, ∂1Xi(t) > 0, ∂1Xj(t) < 0, ∂2Xi(t) > 0, ∂2Xj(t) > 0, Xk(t) > u∀k 6= i, j}

)
=

∫
◦
S

E
(
|∂1Xi.∂2Xj − ∂2Xi∂1Xj |I∂1Xi(t)>0I∂1Xj(t)<0I∂2Xi(t)>0I∂2Xj(t)>0

∏
k 6=i,j

IXk(t)>u | (Xi(t), Xj(t)) = (u, u)

 pXi(t),Xj(t)(u, u) dt

=σ2(S)Φ
n−2

(u)ϕ2(u)E
(
|∂1Xi.∂2Xj − ∂2Xi.∂1Xj |I∂1Xi(t)>0I∂1Xj(t)<0I∂2Xi(t)>0I∂2Xj(t)>0

)
.

(8)

Case 2: ∂1Xi(T ) < 0, ∂1Xj(T ) > 0, ∂2Xi(T ) > 0, ∂2Xj(T ) > 0. As in Case 1, we get the

upper bound

σ2(S)Φ
n−2

(u)ϕ2(u)E
(
|∂1Xi.∂2Xj − ∂2Xi.∂1Xj |I∂1Xi(t)<0I∂1Xj(t)>0I∂2Xi(t)>0I∂2Xj(t)>0

)
. (9)

Case 3: ∂1Xi(T ) < 0, ∂1Xj(T ) > 0, ∂2Xi(T ) > 0, ∂2Xj(T ) < 0. It is clear that there exists a

line li passing through T such that locally from T , if we go upward then the value of the field

Xi is decreasing, and meanwhile if we go downward then the value of the field Xi is increasing.

There exists also a line lj passing through T and reversing the monoticity of the value of the

field Xj in comparison with li to Xi, see Figure 2.

T

lj−
+

li
+
−αj

αi

Figure 2: Two lines li and lj in Case 3.

Let αi be the angle of the line li and the horizontal line (x-axis). For the vector −→e i =

(cosαi, sinαi), we have

0 = ∂eiXi(T ) = cosαi∂1Xi(T ) + sinαi∂2Xi(T ).

Therefore

tanαi =
sinαi
cosαi

=
−∂1Xi(T )

∂2Xi(T )
.

Similarly,

tanαj =
sinαj
cosαj

=
∂1Xj(T )

−∂2Xj(T )
.

The minimal property of the record point T implies that αj ≥ αi. Is is equivalent to tan(αj) ≥
tan(αi) and also to

∂1Xi(T )∂2Xj(T )− ∂2Xi(T )∂1Xj(T ) ≤ 0.
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As in Case 1, by Rice formula, we get the upper bound

σ2(S)Φ
n−2

(u)ϕ2(u)E
(
|∂1Xi.∂2Xj − ∂2Xi.∂1Xj |I∂1Xi(t)∂2Xj(t)−∂2Xi(t)∂1Xj(t)≤0

I∂1Xi(t)<0I∂1Xj(t)>0I∂2Xi(t)>0I∂2Xj(t)<0

)
. (10)

Case 4: ∂1Xi(T ) < 0, ∂1Xj(T ) > 0, ∂2Xi(T ) < 0, ∂2Xj(T ) > 0. Define two lines li and lj as

in Case 3. By the same argument, we also deduce that

∂1Xi(T )∂2Xj(T )− ∂2Xi(T )∂1Xj(T ) ≤ 0.

Then, as in Case 3, we get the upper bound

σ2(S)Φ
n−2

(u)ϕ2(u)E
(
|∂1Xi.∂2Xj − ∂2Xi.∂1Xj |I∂1Xi(t)∂2Xj(t)−∂2Xi(t)∂1Xj(t)≤0

I∂1Xi(t)<0I∂1Xj(t)>0I∂2Xi(t)<0I∂2Xj(t)>0

)
. (11)

Case 5: ∂1Xi(T ) > 0, ∂1Xj(T ) < 0, ∂2Xi(T ) > 0, ∂2Xj(T ) < 0. Similar to Case 4, we get

the upper bound

σ2(S)Φ
n−2

(u)ϕ2(u)E
(
|∂1Xi.∂2Xj − ∂2Xi.∂1Xj |I∂1Xi(t)∂2Xj(t)−∂2Xi(t)∂1Xj(t)≤0

I∂1Xi(t)>0I∂1Xj(t)<0I∂2Xi(t)>0I∂2Xj(t)<0

)
. (12)

Case 6: ∂1Xi(T ) > 0, ∂1Xj(T ) < 0, ∂2Xi(T ) < 0, ∂2Xj(T ) > 0. Similar to Case 5, we get

the upper bound

σ2(S)Φ
n−2

(u)ϕ2(u)E
(
|∂1Xi.∂2Xj − ∂2Xi.∂1Xj |I∂1Xi(t)∂2Xj(t)−∂2Xi(t)∂1Xj(t)≤0

I∂1Xi(t)>0I∂1Xj(t)<0I∂2Xi(t)<0I∂2Xj(t)>0

)
. (13)

Summing up the bounds (8)-(13),

P(T ∈
◦
S,Xi(T ) = Xj(T ) = u,Xk(T ) > u∀k 6= i, j)

≤σ2(S)Φ
n−2

(u)ϕ2(u)E (|∂1Xi.∂2Xj − ∂2Xi.∂1Xj |) /4 = σ2(S)Φ
n−2

(u)ϕ2(u)/4, (14)

Here the fact that

E (|∂1Xi.∂2Xj − ∂2Xi.∂1Xj |) = 1,

can be deduced from the fact that the four random variables are i.i.d. standard normal variables

and in such case

E|XT − Y Z| =
∫
R2

E(|X.t− Y.z| | T = t, Z = z) exp[−(t2 + z2)/2]dtdz

=

∫
R2

E(|N (0, t2 + z2)|) exp[−(t2 + z2)/2]dtdz

=

∫
R2

2
√
t2 + z2√

2π
exp[−(t2 + z2)/2]dtdz =

2√
2π

E
√
T 2 + Z2 = 1,

where
√
T 2 + Z2 has Rayleigh distribution with expectation

√
π/2.

Note that, one has

(
n

2

)
ways to choose two indexes i, j. Then substituting (7) and (14) into (6) ,

P(T ∈
◦
S) ≤ σ2(S)

[
n.Φ

n−1
(u)

ϕ(u)

2π
(cϕ(u/c) + uΦ(u/c)) +

(
n

2

)
Φ
n−2

(u)ϕ2(u)/4

]
. (15)
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2.1.2 Record point on the boundary of S

T is on the boundary of S consisting of the edges (F1, . . . , Fm). Almost surely, it is not located

at a vertex. Suppose that, without loss of generality, it belongs to F1. Again, by Lemma 1, there

is exactly one index i such that Xi(T ) = u and Xj(T ) > u for j 6= i, since F1 is a one-dimensional

edge. By the property of the record point, it is easy to see that

Xi(T ) = u, ∂αXi(T ) ≥ 0, ∂βXi(T ) ≤ 0, and Xj(T ) > u ∀j 6= i,

where −→α is the upward direction on F1 and
−→
β is the inward horizontal direction.

Then, apply the Markov inequality and Rice formula in the edge F1,

P{∃T ∈ F1 : T is the record point}
≤

∑
i=1,n

P{∃ t ∈ F1 : Xi(T ) = u, ∂αXi(T ) ≥ 0, ∂βXi(T ) ≤ 0, and Xj(T ) > u ∀j 6= i}

≤
∑
i=1,n

E (card{t ∈ F1 : Xi(T ) = u, ∂αXi(T ) ≥ 0, ∂βXi(T ) ≤ 0, and Xj(T ) > u ∀j 6= i})

=
∑
i=1,n

∫
F1

E

|∂αXi(t)|I∂αXi(t)≥0I∂βXi(t)≤0

∏
j 6=i

IXj(t)>u | Xi(t) = u

 pXi(t)(u) dt

= nσ1(F1)Φ
n−1

(u)ϕ(u) E
(

(∂αX(t))+ I∂βX(t)≤0

)
= nσ1(F1)Φ

n−1
(u)ϕ(u)

1− cos θ1

2
√

2π
,

where θ1 is the angle (−→α ,
−→
β ). Here the equality

E
(

(∂αX(t))+ I∂βX(t)≤0

)
=

1− cos θ1

2
√

2π

can be deduced from the expression ∂βX(t) = cos θ1 ∂αX(t) + sin θ1 Y , where Y is a standard normal

variable independent with ∂αX(t).

Summing up all the bounds corresponding to all the edges Fk, the probability that the record

point is on the boundary of S is at most equal to

nΦ
n−1

(u)ϕ(u)

m∑
k=1

(1− cos θk)σ1(Fk)

2
√

2π
=
nΦ

n−1
(u)ϕ(u)σ1(∂S)

2
√

2π
, (16)

since

n∑
i=1

σ1(Fi) cos θi = 0.

Hence, summing up (15), (16) and substituting into (5), we obtain the desired upper-bound in

our particular case.

2.2 Step 2: General polygon

In a more general case when S is a connected polygon, we will follow the idea as in [?]. The idea

is to decompose the original polygon S into smaller polygons with S1 the maximal emptyable subset

of S that contains O, and the complement S\S1 consisting of several polygons S1
2 , . . . , S

m
2 , see Figure

3.

We have

P{max
t∈S

min
i=1,n

{Xi(t)} ≥ u} ≤P{max min
i=1,n

{Xi(O)} ≥ u ≥ u}

+ P{max
t∈S1

min
i=1,n

{Xi(t)} ≥ u, maxmin
i=1,n

{Xi(O)} < u}

+

m∑
j=1

P{max
t∈S1

min
i=1,n

{Xi(t)} < u, max
t∈Sj2

min
i=1,n

{Xi(t)} ≥ u}. (17)
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Figure 3: Decomposition of S.

Suppose for the moment that all the Sj2, j = 1, . . . ,m are emptyable. Then, to give bounds to

the event

{max
t∈S1

min
i=1,n

{Xi(t)} < u, max
t∈Sj2

min
i=1,n

{Xi(t)} ≥ u},

we can apply the reasoning of the preceding part but inverting the direction: in Sj2, we search points

on the conjunction with maximum ordinate. We again consider two possibilities.

� The probability that the record point in the interior of Sj2 is at most equal to

σ2(Si2)

[
n.Φ

n−1
(u)

ϕ(u)

2π
(cϕ(u/c) + uΦ(u/c)) +

(
n

2

)
Φ
n−2

(u)ϕ2(u)/4

]
(18)

� T lies on some edges of Si2. Denote Ej the common horizontal edge between S1 and Sj2. Since

{max
t∈S1

min
i=1,n

{Xi(t)} < u}, then T is not on E. As in above part, we consider the event T is on

each edge of Sj2 and sum up the bounds to obtain

P

(
{∃T ∈ ∂Sj2 } ∩ {max

t∈S1

min
i=1,n

{Xi(t)} < u}
)

≤
nΦ

n−1
(u)ϕ(u)

[
σ1(∂Sj2)− 2σ1(Ej)

]
2
√

2π
.

(19)

From (18) and (19) we have

P{MS1 < u, MSi2
≥ u} ≤ ϕ(u)σ2(Si2)

2π
[cϕ(u/c) + uΦ(u/c)] +

ϕ(u)[σ1(∂Si2)− 2σ1(E)]

2
√

2π
. (20)

Considering all the upper bounds for Sj2’s as in (20), and using the bound for S1 that is obtained in

in Step 1 and substituting into (17), we can deduce the result.

In the general case, when some Si2 is not emptyable, we can decompose Sj2 as we did for S, and

search for the record point as above. Then the result follows.
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