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Abstract. The equilibrium problem defined by the Nikaidô-Isoda-Fan
inequality contains a number of problems such as optimization, varia-
tional inequality, Kakutani fixed point, Nash equilibria, and others as
special cases. This paper presents a picture for the relationship between
the fixed points of the Moreau proximal mapping and the solutions of
the equilibrium problem that satisfies some kinds of monotonicity and
Lipschitz-type condition.
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1. Introduction
In this paper we are concerned with the equilibrium problem stated as

Find x∗ ∈ C such that f(x∗, y) ≥ 0 for all y ∈ C, (EP)
in which C is a nonempty closed convex subset in a Hilbert space H endowed
with an inner product ⟨·, ·⟩ and the induced norm ∥ · ∥, and f : H × H →
R∪{+∞} is a bifunction such that f(x, x) = 0 for all x ∈ C and f(x, y) < +∞
for every x, y ∈ C. The inequality in Problem (EP) was first used in [36] for
convex noncooperative game theory. The first result on solution existence of
(EP) is due to Fan [16], where this problem was called a minimax inequality.
The name equilibria was first used in [33]. After the appearance of the paper
by Blum and Oettli [11], the problem (EP) has attracted much attention of
many authors and a lot of algorithms have been developed for solving the
problem where the bifunction f has monotonic properties. These algorithms
are based upon different methods such as penalty and gap functions [7, 8, 9,
23, 24, 25, 29, 33], regularization [3, 20, 28, 34, 35], extragradient methods
[10, 19, 26, 37, 39, 40, 41, 44, 46, 47, 48], splitting technique [2, 15, 32]. A
comprehensive reference-list on algorithms for the equilibrium problem can
be found in the interesting monograph [6].
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An interesting of this problem is that, despite its simple formulation,
it contains many problems such as optimization, reverse optimization, varia-
tional inequality, minimax, saddle point, Kakutani fixed point, Nash equilib-
rium problems, and some others as special cases (see the interesting mono-
graphs [6, 22] and the papers [11, 33]).

In what follows we always suppose that ϕ : C × C → R is a bifunction
such that ϕ(x, ·) is convex for any x ∈ C, and φ : C → R is a convex function
on C. For continuity (resp. lower and upper continuity) of ϕ and φ we mean
the continuity (reps. lower and upper continuity) with respect to the set C.
Then we consider Problem (EP) with f(x, y) := ϕ(x, y)+φ(y)−φ(x). In this
case Problem (EP) becomes a mixed equilibrium problem of the form

Find x∗ ∈ C such that f(x∗, y) := ϕ(x∗, y) + φ(y)− φ(x∗) ≥ 0 for all y ∈ C.
(MEP)

By considering this mixed form one can employ special structures of each ϕ
and φ in subgradient splitting algorithms, where the bifunction f(x, y) can
be expressed by the sum of two bifunctions f1(x, y)+f2(x, y) and the iterates
are defined by taking the proximal mappings of each f1 and f2 separately,
see [2, 3, 15, 32, 35].

The first fixed point approach to equilibrium problem (EP) was first
developed in 1972 by Fan in [16]. There, by using the KKM lemma, it has been
proved that if C is compact and f(x, ·) is quasiconvex on C, then Problem
(EP) admits a solution under a certain continuity property of f . Note that
in this result of Fan, it does not require any monotonicity of the bifunction
f .

A direct proof using the Kakutani fixed point theorem for the solution
existence of Problem (EP) is based upon the mapping K defined by taking,
for each x ∈ C,

K(x) := argmin{f(x, y) : y ∈ C}. (P1)
Clearly, if f(x, x) = 0 for every x ∈ C, then x∗ is a solution to (EP) if and
only if it is a fixed point of K, i.e., x∗ ∈ K(x∗). Thus, if C is convex, compact,
f(x, ·) is convex on C and K is upper semicontinuous on C, then by the well
known Kakutani fixed point theorem, the mapping K has a fixed point. It
can be noticed that the mapping K is set-valued in general.

In order to avoid multivalues of K, an auxiliary principle has been used
by defining the proximal mapping

Bλ(x) := argmin
{
λf(x, y) +

1

2
⟨y − x,G(y − x)⟩: y ∈ C

}
, (P2)

where λ > 0 and G is a self-adjoint positive linear bounded operator from H
into itself. In the sequel, for simplicity of the presentation, we always suppose
that G is the identity operator. It is well known [12] that if f(x, ·) is convex
and subdifferentiable on C, Problem (P2) is uniquely solvable even for the
case C is not compact. Moreover, a point x∗ ∈ C is a solution of Problem
(EP) if and only if x∗ is a fixed point of Bλ for any λ > 0. So the solution
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existence of (EP) can be proved by using the Brouwer fixed point theorem
whenever C is compact and Bλ is continuous on C.

These results suggest that one can apply the existing algorithms such
as ones based on the Scaft pivoting method [27] for computing a fixed point
of the mapping Bλ, thereby solving the equilibrium problem (EP). However,
the computational results [27, 45] show that the pivoting methods are effi-
cient only for problems with moderate size. Since in the fixed point theory,
iterative methods for computing a fixed point have been successfully applied
to contractive, generalized contractive, and nonexpansive mappings, a nat-
ural question arises that under which conditions, the mapping Bλ possesses
certain contraction or generalized nonexpansiveness properties.

This is a survey paper, but it also contains a new result on a fixed point
approach to equilibrium problem (MEP). Namely, first we outline from [4, 18]
results on quasicontraction and contraction of the Moreau proximal mapping
when the bifunction f is strongly monotone and satisfies a certain Lipschitz-
type condition. Next, in the case f is not necessarily strongly monotone,
but monotone, we present in Theorem 4 a new result on approximate non-
expansiveness of the proximal mapping for monotone equilibrium problems
satisfying a certain strongly Lipschitz-type condition. Finally, we recall from
[5] a result on quasinonexpansiveness of a composed proximal mapping de-
fined by the equilibrium problem. This relationship allows the equilibrium
problem can be solved by the existing methods in the fixed point theory (see
e.g. [13, 17, 21, 31, 42, 43] and the references theirein).

The paper is organized as follows. The next section contains prelimi-
naries on the equilibrium problem under consideration and on generalized
contractions in real Hilbert spaces. In Section 3 we present some results
on contraction, quasicontraction, nonexpansiveness, and approximate non-
expansiveness of the Moreau proximal mapping defined for the equilibrium
problem. We close the paper by some conclusions in Section 4.

2. Preliminaries
The following definitions for a bifunction is commonly used in the literature,
see e.g. [6].

Definition 1. A bifunction f : C × C → R is said to be
(i) strongly monotone with modulus γ > 0 (shortly γ-strongly monotone)

on S ⊆ C if
f(x, y) + f(y, x) ≤ −γ∥x− y∥2 ∀x, y ∈ S;

(ii) monotone on S ⊆ C if
f(x, y) + f(y, x) ≤ 0 ∀x, y ∈ S;

(iii) strongly pseudomonotone on S ⊆ C with modulus γ > 0 (shortly
γ-strongly pseudomonotone) if for all x, y ∈ S we have

f(x, y) ≥ 0 ⇒ f(y, x) ≤ −γ∥x− y∥2;
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(iv) pseudomonotone on S ⊆ C if for all x, y ∈ S we have
f(x, y) ≥ 0 ⇒ f(y, x) ≤ 0.

The notions on monotonicity properties of a bifunction are generalized
ones for operators. In fact, it is easy to see that when f(x, y) := ⟨F (x), y −
x⟩+φ(y)−φ(x), then f is γ-strongly monotone (resp. monotone, γ-strongly
pseudomonotone, pseudomonotone) if and only if F is γ-strongly monotone
(resp. monotone, γ-strongly pseudomonotone, pseudomonotone). The follow-
ing Lipschitz-type conditions has been introduced in [29] and commonly used
for Problem (EP).

Definition 2. A bifunction f : C × C → R is said to be of Lipschitz-type on
S ⊆ C if there exists constants L1, L2 > 0 such that

f(u, v) + f(v, w) ≥ f(u,w)− L1∥u− v∥2 − L2∥v − w∥2 ∀u, v, w ∈ S.

For a bifunction f of Lipschitz-type on S ⊆ C, by taking u = v = w in
the above formula we see that f(u, u) ≥ 0. In this case, if f is pseudomonotone
in addition, then f(u, u) = 0.

The following concepts are well-known in the fixed point theory (see e.g.
[1]).

Definition 3. Let T : H → C.
(i) T is said to be contractive on C if there exists 0 < ρ < 1 such that

∥T (x)− T (y)∥ ≤ ρ∥x− y∥ ∀x, y ∈ C.

If T satisfies this condition with ρ = 1, then it is said to be nonexpansive. It
is said to be quasicontractive on C if

∥T (x)− T (y)∥ ≤ ρ∥x− y∥ ∀x ∈ Fix(T ), y ∈ C,

where Fix(T ) stands for the set of fixed points of T . If this condition holds
for ρ = 1, then T is said to be quasinonexpansive.

(ii) T is said to be firmly nonexpansive on C if
∥T (x)− T (y)∥2 ≤ ∥x− y∥2 − ∥(I − T )(x)− (I − T )(y)∥2 ∀x, y ∈ C.

(iii) T is said to be ρ-strongly converse monotone or ρ-cocoercive on C
with ρ > 0, if

⟨T (x)− T (y), x− y⟩ ≥ ρ∥T (x)− T (y)∥2 ∀x, y ∈ C.

3. Contraction and generalized nonexpansive properties of the
proximal mapping

Let g : C → R be a convex function and λ > 0. The proximal mapping Pλ

with respect to C, g, λ (shortly proximal mapping) is defined as follows (see
e.g. Definition 1.22 [38]):

Pλ(x) := argmin
{
λg(y) +

1

2
∥y − x∥2 : y ∈ C

}
.
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For the bifunction f where f(x, ·) is convex and finite on C, the proximal
mapping Bλ is defined by taking

Bλ(x) := argmin
{
λf(x, y) +

1

2
∥y − x∥2 : y ∈ C

}
for each x ∈ C. Note that when either f(x, ·) is continuous on C or C has
an interior point, and f(x, x) = 0, then it is well known from [6] that x∗ is a
fixed point of Bλ if and only if it is a solution to Problem (EP).

The following theorem, which is an extension of Theorem 2.1 in [34]
to problem (MEP), says that when f is strongly monotone and satisfies the
Lipschitz-type on C, then one can choose a regularization parameter such
that the proximal mapping is quasicontractive on C. For applying optimality
condition for the problem defining the proximal mapping, we always assume
that either C has an interior point or, for any x ∈ C, ϕ(x, ·) is continuous
with respect to C at a point of C.

Theorem 1. Suppose that f is strongly monotone on C with modulus τ and
satisfies the Lipschitz-type condition with constants L1, L2 satisfying L1 +
L2 > τ . Then, the proximal mapping Bλ is quasicontractive on C, namely

∥Bλ(x)− x∗∥ ≤
√
α∥x− x∗∥ ∀x ∈ C, x∗ ∈ Fix(Bλ),

whenever λ ∈ (0, 1
2L2

), where α := 1− 2λ(τ − L1) > 0.

Proof. The following proof borrows some techniques from the one in [37]. For
simplicity of notation we let

fx(y) := λf(x, y) +
1

2
∥y − x∥2.

Since λ > 0 and f(x, ·) is convex on C by assumption, fx is strongly convex
with modulus 1. As defined, Bλ(x) is a minimizer of fx(·) over the closed
convex set C. Therefore, we have

fx(Bλ(x)) +
1

2
∥Bλ(x)− x∗∥2 ≤ fx(x

∗),

that is

λf(x,Bλ(x)) +
1

2
∥Bλ(x)− x∥2 + 1

2
∥Bλ(x)− x∗∥2 ≤ λf(x, x∗) +

1

2
∥x∗ − x∥2,

or equivalently
∥Bλ(x)−x∗∥2 ≤ 2λ (f(x, x∗)− f(x,Bλ(x)))+∥x−x∗∥2−∥Bλ(x)−x∥2. (1)

Since f is strongly monotone on C with modulus τ , it follows from (1) that
∥Bλ(x)− x∗∥2

≤ 2λ(−τ∥x− x∗∥2 − f(x∗, x)− f(x,Bλ(x))) + ∥x− x∗∥2 − ∥Bλ(x)− x∥2

≤ (1− 2λτ)∥x− x∗∥2 − 2λ (f(x∗, x) + f(x,Bλ(x)))− ∥Bλ(x)− x∥2. (2)
Since f satisfies Lipschitz-type condition, we have
f(x∗, x) + f(x,Bλ(x)) ≥ f(x∗, Bλ(x))− L1∥x∗ − x∥2 − L2∥x−Bλ(x)∥2.
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Therefore, it follows from (2) that
∥Bλ(x)− x∗∥2

≤ (1− 2λ(τ − L1))∥x− x∗∥2 − (1− 2λL2)∥x−Bλ(x)∥2 − 2λf(x∗, Bλ(x))

≤ (1− 2λ(τ − L1))∥x− x∗∥2.

The last inequality is due to the fact that f(x∗, Bλ(x)) ≥ 0 and the assump-
tion that 0 < λ < 1

2L2
. Since τ < L1 + L2, we see that if 0 < λ < 1

2L2
, then

1− 2λ(τ − L1) > 0 and hence Bλ is quasicontractive. �

By Theorem 1, the contraction iterative method can be used for solving
equilibrium problem (EP). A question arises here: under which condition,
the proximal mapping is contractive? The following result, which is stated in
Theorem 1 [18], gives an answer for this question.

For the statement of the theorem, first we recall from [18] that a bifunc-
tion f : C × C → R is said to be strongly Lipschitz-type on C if there exist
αi : C × C → C, βi : C → C, Ki, Li > 0 (with i = 1, . . . , p) such that

f(x, y) + f(y, z) ≥ f(x, z) +

p∑
j=1

⟨αi(x, y), βi(y − z)⟩ ∀x, y, z ∈ C,

where
∥βi(x)− βi(y)∥ ≤ Ki∥x− y∥ ∀x, y ∈ C, i = 1, . . . , p,

∥αi(x, y)∥ ≤ Li∥x− y∥ ∀x, y ∈ C, i = 1, . . . , p,

αi(x, y) + αi(y, x) = 0 ∀x, y ∈ C, i = 1, . . . , p.

As also remarked in [18], the following facts are not hard to see.
(i) If f is strongly Lipschitz-type on C, then it is Lipschitz-type on C

with both constants 1
2

∑p
i=1 KiLi.

(ii) If f(x, y) = ⟨F (x), y−x⟩+φ(y)−φ(x), then f is strongly Lipschitz-
type on C if and only if F is Lipschitz on C.

Theorem 2. Let C be a nonempty closed convex set, f : C × C → R. Sup-
pose that f(x, ·) is lower semicontinuous and convex on C, f is γ-strongly
monotone and strongly Lipschitz-type on C. Then the proximal mapping Bλ

is contractive on C whenever λ ∈ (0, 2γ
M ) with M =

∑p
i=1 KiLi.

In the case of mixed variational inequality, when f(x, y) := ⟨F (x), y −
x⟩+ φ(y)− φ(x) with F being Lipschitz continuous and strongly monotone
on C, the proximal mapping is contractive on C (see. e.g. [4]). This result
also follows from the above theorem due to the fact that f(x, y) := ⟨F (x), y−
x⟩+ φ(y)− φ(x) is strongly Lipschitz-type on C whenever F is Lipschitz on
C. In the case that F is cocoercive (strongly inverse monotone) on C, the
proximal mapping is nonexpansive on C as stated in the following theorem.

Theorem 3. Suppose that f(x, y) := ⟨F (x), y−x⟩+φ(y)−φ(x) with F being
δ-cocoercive on C and φ being convex on C. Then, whenever 0 < λ ≤ 2δ, the
proximal mapping Bλ is nonexpansive on C.
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Proof. By definition of Bλ we have

Bλ(x) = argmin
{
λ⟨F (x), z − x⟩+ λφ(z)− λφ(x) +

1

2
∥z − x∥2 : z ∈ C

}
.

Since φ is convex on C, this is a convex programming problem. The optimality
condition for this convex program gives

⟨λF (x) + λvx +Bλ(x)− x, z −Bλ(x)⟩ ≥ 0 ∀z ∈ C, (3)
in which vx is a subgradient of φ at Bλ(x), i.e., vx ∈ ∂φ(Bλ(x)). Similarly,
for Bλ(y) we have

⟨λF (y) + λvy +Bλ(y)− y, z −Bλ(y)⟩ ≥ 0 ∀z ∈ C, (4)
in which vy ∈ ∂φ(Bλ(y)). Now, in (3) we replace z = Bλ(y), in (4) we replace
z = Bλ(x), then adding side by side the obtained inequalities, we have
⟨λF (x)+λvx+Bλ(x)−x− (λF (y) + λvy +Bλ(y)− y) , Bλ(y)−Bλ(x)⟩ ≥ 0.

This is equivalent to
⟨λ(F (x)−F (y))+λ(vx − vy)− (x− y), Bλ(y)−Bλ(x)⟩ ≥ ∥Bλ(y)−Bλ(x)∥2.

Since vx ∈ ∂φ(Bλ(x)) and vy ∈ ∂φ(Bλ(y)), by monotonicity of subgradient
of convex function φ, we have

⟨vx − vy, Bλ(x)−Bλ(y)⟩ ≥ 0.

From the last two inequalities we obtain
⟨λ(F (x)− F (y))− (x− y), Bλ(y)−Bλ(x)⟩ ≥ ∥Bλ(y)−Bλ(x)∥2.

Since
⟨λ(F (x)− F (y))− (x− y), Bλ(y)−Bλ(x)⟩

≤ ∥λ(F (x)− F (y))− (x− y)∥∥Bλ(y)−Bλ(x)∥,

we come up with
∥λ(F (x)− F (y))− (x− y)∥ ≥ ∥Bλ(y)−Bλ(x)∥. (5)

Furthermore, for x, y ∈ C we have
∥λ(F (x)− F (y))− (x− y)∥2

= ∥x− y∥2 + λ2∥F (x)− F (y)∥2 − 2λ⟨x− y, F (x)− F (y)⟩
≤ ∥x− y∥2 + λ2∥F (x)− F (y)∥2 − 2λδ∥F (x)− F (y)∥2 (6)
= ∥x− y∥2 + λ(λ− 2δ)∥F (x)− F (y)∥2

≤∥x− y∥2. (7)

Inequality (6) is due to the cocoerciveness of F on C, while inequality (7) is
due to 0 < λ ≤ 2δ by the assumption. It follows from (5) and (7) that

∥Bλ(x)−Bλ(y)∥ ≤ ∥x− y∥,

which means nonexpansiveness of Bλ on C. �
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In relation to Theorem 3, one may think that the proximal mapping
Bλ is nonexpansive when f is monotone. In the following we give a counter-
example for this argument.

Let us consider the linear variational inequality problem
Find x ∈ R2 such that f(x, y) := ⟨Ax, y − x⟩ ≥ 0 for all y ∈ R2, (VI)

where
A =

[
0 1
−1 0

]
.

For all x, y ∈ R2 we have
f(x, y) + f(y, x) = ⟨A(x− y), y − x⟩

= (x2 − y2)(y1 − x1)− (x1 − y1)(y2 − x2)

= 0,

therefore f is monotone on R2. It is easy to see that x∗ = (0, 0)t is a solution to
the variational inequality (VI), since f(x∗, y) = 0 for all y ∈ R2. Furthermore,
x∗ is the unique solution to (VI). Indeed, if x = (x1, x2)

t is a solution to (VI),
then

⟨Ax, y − x⟩ ≥ 0 ∀y ∈ R2.

By taking y = y = (x1 − x2, x1 + x2)
t, we have

0 ≤ ⟨Ax, y − x⟩ =
⟨[

x2

−x1

]
,

[
−x2

x1

]⟩
= −(x2

1 + x2
2) ≤ 0,

which implies x = (0, 0)t = x∗. Now we see that

λ⟨Ax, y − x⟩+ 1

2
∥y − x∥2

=λ

⟨[
x2

−x1

]
,

[
y1 − x1

y2 − x2

]⟩
+

1

2

(
(y1 − x1)

2 + (y2 − x2)
2
)

=λ(x2y1 − x1y2) +
1

2

(
(y1 − x1)

2 + (y2 − x2)
2
)

=
1

2

(
y21 − 2(x1 − λx2)y1 + y22 − 2(x2 + λx1)y2 + x2

1 + x2
2

)
=
1

2

(
(y1 − x1 + λx2)

2 + (y2 − x2 − λx1)
2 − λ2(x2

1 + x2
2)
)

which attains its minimum at (y1, y2) = (x1 − λx2, x2 + λx1). We obtain the
following explicit formula for the proximal mapping of (VI):

Bλ(x) = argmin{λ⟨Ax, y − x⟩+ 1

2
∥y − x∥2 | y ∈ R2} =

[
x1 − λx2

x2 + λx1

]
.

Therefore, for any λ > 0 we have

∥Bλ(x)−Bλ(x
∗)∥ =

∥∥∥∥[x1 − λx2

x2 + λx1

]
−
[
0
0

]∥∥∥∥ =
√
1 + λ2

√
x2
1 + x2

2 > ∥x− x∗∥,

which proves that Bλ is not nonexpansive for any λ > 0.
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So in general the proximal mapping may not be nonexpansive even for
the variational inequality when f(x, y) = ⟨F (x), y−x⟩ with F being Lipschitz
and monotone. However, it is well known from [14, 42] that if f is monotone,
f(x, ·) is convex, lower semicontinuous, and f(·, y) is hemicontinuous, then
the regularization proximal mapping Rλ is defined everywhere, single valued,
and firmly nonexpansive for any λ > 0. Here, for each x ∈ C, Rλ(x) is defined
as the unique solution of the strongly monotone equilibrium problem

Find z ∈ C such that f(z, y) +
1

2λ
⟨y − z, z − x⟩ ≥ 0 for all y ∈ C.

Moreover, the solution set of (EP) coincides with the fixed point set of the
proximal mapping Rλ.

The main difference between the proximal mapping and the regulariza-
tion proximal mapping is that the former is defined as the unique solution of
a strongly convex program, while the latter is defined by the unique solution
of a strongly monotone equilibrium problem.

We adopt the following definition.

Definition 4. For given ϵ > 0, the proximal mapping Bλ is said to be ϵ-
nonexpansive on C if

∥Bλ(x)−Bλ(y)∥2 ≤ (1 + ϵ)∥x− y∥2 ∀x, y ∈ C.

The following theorem says that for monotone equilibrium problem, the
proximal mapping is ϵ-nonexpansive.

Theorem 4. Suppose that the bifunction ϕ is monotone and satisfies the
strongly Lipschitz-type condition on C. Then for any ϵ > 0, there exists λ > 0
such that the proximal mapping Bλ for Problem (MEP) is ϵ-nonexpansive.

Proof. As before we see that if ϕ is monotone, strongly Lipschitz-type, then
so is f(x, y) := ϕ(x, y) + φ(y) − φ(x) for any function φ : C → R. It is well
known (see e.g. [30]) that

⟨Bλ(x)− x,Bλ(x)− z⟩ ≤ λ (f(x, z)− f(x,Bλ(x))) ∀x, z ∈ C.

Applying this inequality with z := Bλ(y) we obtain
⟨Bλ(x)− x,Bλ(x)−Bλ(y)⟩ ≤ λ (f(x,Bλ(y))− f(x,Bλ(x))) ∀x, y ∈ C.

Similarly with Bλ(y), we have
⟨Bλ(y)− y,Bλ(y)−Bλ(x)⟩ ≤ λ (f(y,Bλ(x))− f(y,Bλ(y))) ∀x, y ∈ C.

Adding the two obtained inequalities we get
⟨Bλ(x)−Bλ(y) + y − x,Bλ(x)−Bλ(y)⟩

≤ λ (f(x,Bλ(y))− f(x,Bλ(x)) + f(y,Bλ(x))− f(y,Bλ(y))) .

By simple arrangements we obtain
∥Bλ(x)−Bλ(y)∥2

+ 2λ (f(x,Bλ(y))− f(x,Bλ(x)) + f(y,Bλ(x))− f(y,Bλ(y)))

≤ ∥x− y∥2.
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Now using the strongly Lipschitz-type condition, by the same argument as
in the proof of Theorem 3.7 in [18] we arrive at the following inequality

∥Bλ(x)−Bλ(y)∥2 ≤ (1 + λ2M)∥x− y∥2,

where M =
∑p

j=1 KiLi, with Kj and Lj being the Lipschitz constants defined
in the strongly Litschitz-type. Hence, with 0 < λ2 < ϵ

M , we obtain

∥Bλ(x)−Bλ(y)∥2 ≤ (1 + ϵ)∥x− y∥2 ∀x, y ∈ C.

�

Corollary 1. Consider the mixed variational inequality
Find x∗ ∈ C such that ⟨F (x∗), y − x∗⟩+ φ(y)− φ(x∗) ≥ 0 for all y ∈ C.

(MVI)
Suppose that F is monotone and Lipschitz on C. Then for any ϵ > 0 there
exists λ > 0 such that the proximal mapping Bλ defined by the bifunction
⟨F (x), y − x⟩+ φ(y)− φ(x) is ϵ-nonexpansive.

Proof. Since F is monotone and Lipschitz on C, the bifunction f(x, y) :=
⟨F (x), y − x⟩ + φ(y) − φ(x) is strongly Lipschitz and monotone. Thus the
corollary follows directly from Theorem 4. However, one can prove this result
simply as follows.

From the definition of Bλ, by the same arguments as proof of (5) we
have

∥Bλ(x)−Bλ(y)∥ ≤ ∥x− y − λ(F (x)− F (y))∥ ∀x, y ∈ C. (8)
We observe that

∥x− y − λ(F (x)− F (y))∥2

= ∥x− y∥2 − 2λ⟨x− y, F (x)− F (y)⟩+ λ2∥F (x)− F (y)∥2

≤ ∥x− y∥2 + λ2∥F (x)− F (y)∥2.

The last inequality is due to ⟨x− y, F (x)− F (y)⟩ ≥ 0 by monotonicity of F
on C. By (8) we can write

∥Bλ(x)−Bλ(y)∥2 ≤ ∥x− y∥2 + λ2∥F (x)− F (y)∥2,

from which, by Lipschitz continuity of F , it follows that
∥Bλ(x)−Bλ(y)∥2 ≤ (1 + L2λ2)∥x− y∥2.

Hence the mapping Bλ is ϵ-nonexpansive on C whenever λ2L2 ≤ ϵ. �

Now a natural question may arise: how to modify the proximal mapping
for monotone equilibrium problems such that it has a generalized nonexpan-
siveness property? In order to answer this question, let us define the mapping
Tλ from C to itself by taking, for every x ∈ C,

Tλ(x) := argmin
{
λf(Bλ(x), y) +

1

2
∥y − x∥2 : y ∈ C

}
where λ is a fixed positive number.



On fixed point approach to equilibrium problem 11

Theorem 5. ([5]). Let f : C × C → R be a bifunction such that f(x, ·) is
subdifferentiable, pseudomonotone and Lipschitz-type on C. Suppose that the
following conditions are satisfied:

(A1) f is jointly weakly continuous on C × C in the sense that, if
x, y ∈ C and {xn}, {yn} ⊂ C converge weakly to x and y, respectively, then
f(xn, yn) → f(x, y) as n → ∞.

(A2) The solution set of Problem (EP) is nonempty.

Then the mapping Tλ is quasi-nonexpansive on C if 0 < λ < min

{
1

2L1
,

1

2L2

}
.

In addition, it is demiclosed at zero, in the sense that for every sequence
{xn} contained in C weakly converging to x and ∥T (xn) − xn∥ → 0, then
x ∈ Fix(T ).

By this theorem, the algorithms for finding a fixed point of quasi-
nonexpansive mappings (see e.g. [17, 21]) can be used for solving pseudomono-
tone equilibrium problems.

A disadvantage of the composite proximal mapping Tλ is that for eval-
uating it at a point, it requires solving two strongly convex programming
problems. An open question is that how to define a nonexpansive or ϵ-
nonexpansive mapping with any ϵ > 0 for pseudomotone equilibrium prob-
lems, which requires solving only one strongly convex program.

As we have seen from the definition of the proximal mapping that when
applying the iterative fixed point methods for solving mixed equilibrium prob-
lem (MEP), at an iterative point xk ∈ C, we have to solve a strongly convex
program of the form

min

{
f(xk, y) := ϕ(xk, y) + φ(y)− φ(xk) +

1

2λ
∥y − xk∥2 : y ∈ C

}
. (Pk)

This problem can be solved by efficient algorithms of convex programming
(see [12]).

4. Conclusions
The mixed equilibrium problem (MEP) and the regularized Moreau proximal
mapping Bλ defined for it are equivalent in the following senses:

(i) The solution set of (MEP) coincides with the fixed point set of Bλ

for any λ > 0.
In addition, we have shown in this paper the following results.
(ii) If (MEP) is strongly monotone and satisfies the Lipschitz-type con-

dition, then one can choose λ such that Bλ is quasicontractive (Theorem
1).

(iii) If (MEP) is strongly monotone and satisfies the strongly Lipschitz-
type condition, then one can choose λ such that Bλ is contractive (Theorem
2).

(iv) If (MEP) is strongly inverse monotone, then one can choose λ such
that Bλ is nonexpansive (Theorem 3).
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(v) If (MEP) is monotone and satisfies the strongly Lipschitz-type con-
dition, then one can choose λ such that Bλ is ϵ-nonexpansive for any ϵ > 0
(Theorem 4).

(vi) If (MEP) is pseudomonotone and satisfies the Lipschitz-type con-
dition, then the composite proximal mapping is quasinonexpansive, and its
fixed point-set coincides the solution-set of Problem (MEP) (Theorem 5).

Applications to mixed variational inequality problems with Lipschitz
cost operator have been presented (Corollary 1).

The following questions seem to be interesting.
(1) How to extend these results for the equilibrium problem when the

bifunction involved is quasiconvex with respect to its second variable?
(2) How to extend Theorem 4 to the case the bifunction is quasimono-

tone?
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