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Abstract. In this paper we propose a splitting subgradient algorithm for solving equi-
librium problems involving the sum of two bifunctions. At each iteration of the algorithm,
two strongly convex subprograms are required to solve separately, one for each compo-
nent bifunction. In contrast to the splitting algorithms previously proposed in [1, 11],
our algorithm is convergent for paramonotone and strongly pseudomonotone bifunctions
without any Lipschitz type as well as Hölder continuity condition of the bifunctions
involved. Furthermore, we show that the ergodic sequence defined by the algorithm
iterates converges to a solution without paramonotonicity property. Some numerical ex-
periments on differentiated Cournot-Nash models are presented to show the behavior of
our proposed algorithm with and without ergodic.
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1. Introduction

Let H be a real Hilbert space endowed with weak topology defined by the inner product ⟨·, ·⟩ and
its induced norm ∥ ·∥. Let C ⊆ H be a nonempty closed convex subset and f : H×H → R∪{+∞}
a bifunction such that f(x, y) < +∞ for every x, y ∈ C. The equilibrium problem defined by the
Nikaido-Isoda-Fan inequality that we are going to consider in this paper is given as

Find x ∈ C : f(x, y) ≥ 0 ∀y ∈ C. (EP )

This inequality first was used in 1955 by Nikaido and Isoda [23] in convex game models. Then
in 1972 Ky Fan [9] called this inequality a minimax one and established existence theorems for
Problem (EP ). After the appearance of the paper by Blum and Oettli [6], Problem (EP ) has
been attracted much attention of researchers. It has been shown in [4, 6, 19] that some important
problems such as optimization, variational inequality, Kakutani fixed point and Nash equilibrium
can be formulated in the form of (EP ). Many papers concerning the solution existence, stabilities
as well as algorithms for Problem (EP ) have been published (see e.g. [10, 13, 16, 20, 25, 26, 27],
the survey paper [4], and the interesting monograph [5]).

A basic method for Problem (EP ) is the subgradient (or projection) one, where the sequence
of iterates is defined by taking

xk+1 = min

{
λkf(x

k, y) +
1

2
∥y − xk∥2 : y ∈ C

}
, (1)

with λk is some appropriately chosen real number. Note that in the variational inequality case,
where f(x, y) := ⟨F (x), y − x⟩, the iterate xk+1 defined by (1) becomes

xk+1 = PC

(
xk − λkF (xk)

)
,

where PC stands for the metric projection onto C. It is well known that under certain conditions
on the parameter λk, the projection method is convergent if f is strongly pseudomonotone or
paramonotone [7, 13]. However when f is monotone, it may fail to converge. In order to obtain
convergent algorithms for monotone, even pseudomonotone, equilibrium problems, the extragra-
dient method first proposed by Korpelevich [15] for the saddle point and related problems has
been extended to equilibrium problems [26]. In this extragradient algorithm, at each iteration, it
requires solving the two strongly convex programs

yk = min

{
λkf(x

k, y) +
1

2
∥y − xk∥2 : y ∈ C

}
, (2)

xk+1 = min

{
λkf(x

k, y) +
1

2
∥y − yk∥2 : y ∈ C

}
, (3)

which may cause computational cost. In order to reduce the computational cost, several convergent
algorithms that require solving only one strongly convex program or computing only one projection
at each iteration have been proposed for some classes of bifunctions such as strongly pseudomono-
tone and paramonotone with or without using an ergodic sequence (see e.g. [2, 7, 27]). In another
direction, also for the sake of reducing computational cost, some splitting algorithms have been
developed (see e.g. [1, 11, 18]) for monotone equilibrium problems where the bifunction f can be
decomposed into the sum of two bifunctions. In these algorithms the convex subprograms (resp.
regularized subproblems) involving the bifunction f can be replaced by two convex subprograms
(resp. regularized subproblems), one for each component bifunction independently. However, for
the convergence, these algorithms require Lipschitz type or Hölder continuity conditions on the
involved bifunctions.

For solving the equilibrium problems, in this paper we propose a splitting subgradient algorithm
with the following main features. At each iteration, it requires solving only one strongly convex
program. Similar to the algorithm in [1, 11], in the case where the bifunction f can be represented
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as the sum of two bifunctions f1 + f2, this strongly convex subprogram can be replaced by two
strongly convex subprograms, one for each component bifunction f1 and f2. Nevertheless, for the
convergence, our algorithm does not require any additional conditions such as Hölder continuity
and Lipschitz type condition of these bifunctions. Furthermore, we show that the ergodic sequence
defined by the iterates obtained by our algorithm is convergent to a solution without paramono-
tonicity property. We apply the two versions of the algorithm (with and without ergodic sequence)
for solving some versions of a differentiated Cournot-Nash model. Some preliminary computational
results for comparing the proposed algorithms with the ones in [2] and [27] are reported.

The remaining part of the paper is organized as follows. The next section gives preliminaries
containing some lemmas that will be used in proving the convergence of the proposed algorithm.
Section 3 is devoted to the description of the algorithm and its convergence analysis for both
versions with and without ergodic. Some numerical experiments are presented in Section 4. Section
5 closes this paper with some conclusions.

2. Preliminaries

We recall from [4] the following well-known definition on monotonicity of bifunctions.

Definition 2.1. A bifunction f : H×H → R ∪ {+∞} is said to be
(i) strongly monotone on C with modulus β > 0 (shortly β-strongly monotone) if

f(x, y) + f(y, x) ≤ −β∥y − x∥2 ∀x, y ∈ C;

(ii) monotone on C if
f(x, y) + f(y, x) ≤ 0 ∀x, y ∈ C;

(iii) strongly pseudomonotone on C with modulus β > 0 (shortly β-strongly pseudomonotone)
if

f(x, y) ≥ 0 =⇒ f(y, x) ≤ −β∥y − x∥2 ∀x, y ∈ C;

(iv) pseudomonotone on C if

f(x, y) ≥ 0 =⇒ f(y, x) ≤ 0 ∀x, y ∈ C.

(v) paramonotone on C with respect to a set S if

x∗ ∈ S, x ∈ C and f(x∗, x) = f(x, x∗) = 0 implies x ∈ S.

Clearly in the case of optimization problem when f(x, y) = φ(y) − φ(x), the bifunction f is
paramonotone on C with respect to the solution set of the problem minx∈C φ(x). It is obvious
that (i) =⇒ (ii) =⇒ (iv) and (i) =⇒ (iii) =⇒ (iv). Note that a strongly pseudomonotone
bifunction may not be monotone. Paramonotone bifunctions have been used in e.g. [27, 28].
Some properties of paramonotone operators can be found in [12], where a multivalued monotone
operator T is called paramonotone on C ⊆ domT if for every x, y ∈ C we have u ∈ T (x), v ∈ T (y),
⟨u − v, x − y⟩ = 0 implies u ∈ T (y), v ∈ T (x). The following remark gives a connection between
paramonotone operators and paramonotone bifunctions.

Remark 2.2. Let T be a convex, compact valued multivalued operator on C. The bifunction
f(x, y) := maxu∈T (x)⟨u, y−x⟩ is paramonotone with respect to the solution set S(C, f) of Problem
(EP ) if T is paramonotone on C.

Proof. Suppose T is paramonotone on C and let x∗ ∈ S(C, f), x̄ ∈ C such that f(x∗, x̄) =
f(x̄, x∗) = 0. On one hand, since x∗ ∈ S(C, f), there exists u∗ ∈ T (x∗) such that ⟨u∗, x− x∗⟩ ≥ 0
for every x ∈ C. In particular we have ⟨u∗, x̄− x∗⟩ ≥ 0. On the other hand, by definition we have
f(x∗, x̄) = max{⟨u, x̄ − x∗⟩ : u ∈ T (x∗)}. Since f(x∗, x̄) = 0, this means ⟨u∗, x̄ − x∗⟩ ≤ 0. So we
obtain

⟨u∗, x̄− x∗⟩ = 0. (4)
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Since f(x̄, x∗) = 0, there exists ū ∈ T (x̄) satisfying ⟨ū, x∗− x̄⟩ = 0, which together with (4) implies
⟨u∗ − ū, x∗ − x̄⟩ = 0. By paramonotonicity of T , we have u∗ ∈ T (x̄), which implies

f(x̄, x) := max
u∈T (x̄)

⟨u, x− x̄⟩ ≥ ⟨u∗, x− x̄⟩ = ⟨u∗, x− x∗⟩+ ⟨u∗, x∗ − x̄⟩ ≥ 0 ∀x ∈ C.

Hence x̄ solves the problem (EP ), i.e., x̄ ∈ S(C, f). Therefore f is paramonotone with respect to
S(C, f). �

The following well known lemmas will be used for proving the convergence of the algorithm to
be described in the next section.

Lemma 2.3. (see [29] Lemma 1) Let {αk} and {σk} be two sequences of nonnegative numbers such
that αk+1 ≤ αk + σk for all k ∈ N, where

∑∞
k=1 σk < ∞. Then the sequence {αk} is convergent.

Lemma 2.4. (see [3] Lemma 2.39) Let H be a Hilbert space, {xk} a sequence in H and C be a
nonempty subset of H. Suppose that:

(i) For every x ∈ C, {∥xk − x∥}k∈N converges;
(ii) Every weak cluster point of the sequence {xk} belongs to C.

Then the sequence {xk} converges weakly to a point in C.

Lemma 2.5. (see [24]) Let H be a Hilbert space, {xk} a sequence in H. Let {rk} be a sequence of

nonnegative number such that
∑∞

k=1 rk = +∞ and set zk :=

∑k
i=1 rix

i∑k
i=1 ri

. Assume that there exists

a nonempty, closed convex set S ⊂ H satisfying:
(i) For every z ∈ S, limn→∞ ∥zk − z∥ exists;

(ii) Any weakly cluster point of the sequence {zk} belongs to S.
Then the sequence {zk} converges weakly to a point in S.

Lemma 2.6. (see [31]) Let {λk}, {δk}, {σk} be sequences of real numbers such that
(i) λk ∈ (0, 1) for all k ∈ N;

(ii)
∑∞

k=1 λk = +∞;
(iii) lim supk→+∞ δk ≤ 0;
(iv)

∑∞
k=1 |σk| < +∞.

Suppose that {αk} is a sequence of nonnegative real numbers satisfying

αk+1 ≤ (1− λk)αk + λkδk + σk ∀k ∈ N.

Then we have limk→+∞ αk = 0.

3. The algorithm and its convergence

In what follows, for the following equilibrium problem

find x ∈ C : f(x, y) ≥ 0 ∀y ∈ C (EP )

we suppose that f(x, y) = f1(x, y) + f2(x, y) and that fi(x, x) = 0 (i = 1, 2) for every x, y ∈ C.
The following assumptions for the bifunctions f, f1, f2 will be used in the sequel.

(A1) For each i = 1, 2 and each x ∈ C, the function fi(x, ·) is convex and sub-differentiable,
while for each y ∈ C the function f(·, y) is weakly upper semicontinuous on C;

(A2) If {xk} ⊂ C is bounded, then for each i = 1, 2, the sequence {gki } with gki ∈ ∂2fi(x
k, xk)

is bounded;
(A3) The bifunction f is monotone on C.
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Assumption (A2) has been used in e.g. [28]. Note that Assumption (A2) is satisfied if the
functions f1 and f2 are jointly weakly continuous on an open convex set containing C (see [30]
Proposition 4.1).

The dual problem of (EP ) is

find x ∈ C : f(y, x) ≤ 0 ∀y ∈ C. (DEP )

We denote the solution sets of (EP ) and (DEP ) by S(C, f) and Sd(C, f), respectively. A rela-
tionship between S(C, f) and Sd(C, f) is given in the following lemma.

Lemma 3.1. (see [14] Proposition 2.1) (i) If f(·, y) is weakly upper semicontinuous and f(x, ·) is
convex for all x, y ∈ C, then Sd(C, f) ⊆ S(C, f).

(ii) If f is pseudomonotone, then S(C, f) ⊆ Sd(C, f).

Therefore, under the assumptions (A1)-(A3) one has S(C, f) = Sd(C, f). In this paper we
suppose that S(C, f) is nonempty. The algorithm below is a subgradient one for paramonotone or
strongly pseudomonotone equilibrium problems (EP ). The stepsize is taken as in the subgradient
method for nonsmooth convex optimization problems.

Algorithm 1 A splitting subgradient algorithm for solving paramonotone or strongly pseudomono-
tone equilibrium problems.

Initialization: Seek x0 ∈ C. Choose a sequence {βk}k≥0 ⊂ R satisfying the following conditions

∞∑
k=0

βk = +∞,

∞∑
k=0

β2
k < +∞.

Iteration k = 0, 1, . . .:
Take gk1 ∈ ∂2f1(x

k, xk), gk2 ∈ ∂2f2(x
k, xk).

Compute

ηk := max{βk, ∥gk1∥, ∥gk2∥}, λk :=
βk

ηk
,

yk := argmin{λkf1(x
k, y) +

1

2
∥y − xk∥2 | y ∈ C},

xk+1 := argmin{λkf2(x
k, y) +

1

2
∥y − yk∥2 | y ∈ C}.

Theorem 3.2. In addition to the assumptions (A1), (A2), (A3) we suppose that f is paramonotone
on C, and that either int C ̸= ∅ or for each x ∈ C both bifunctions f1(x, ·), f2(x, ·) are continuous
at a point in C. Then the sequence {xk} generated by Algorithm 1 converges weakly to a solution
of (EP ). Moreover, if f is strongly pseudomonotone, then {xk} strongly converges to the unique
solution of (EP ).

Proof. (i) We first show that, for each x∗ ∈ S(f, C), the sequence {∥xk − x∗∥} is convergent.
Indeed, for each k ≥ 0, for simplicity of notation, let

hk
1(x) := λkf1(x

k, x) +
1

2
∥x− xk∥2,

hk
2(x) := λkf2(x

k, x) +
1

2
∥x− yk∥2.

Since f1(x
k, ·) is convex and subdifferentiable by Assumption (A1), the functions hk

1 is strongly
convex with modulus 1 and subdifferentiable, which implies that for any uk

1 ∈ ∂hk
1(y

k) we have

hk
1(y

k) + ⟨uk
1 , x− yk⟩+ 1

2
∥x− yk∥2 ≤ hk

1(x) ∀x ∈ C. (5)
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On the other hand, since yk is a minimizer of hk
1(x) over C, by the regularity condition and the

optimality condition for convex programming, we have 0 ∈ ∂hk
1(y

k) +NC(y
k) in which NC(y

k) is
the normal cone of C at yk. This implies that there exists uk

1 ∈ ∂hk
1(y

k) satisfying uk
1 ∈ −NC(y

k),
or equivalently, ⟨uk

1 , x− yk⟩ ≥ 0 for all x ∈ C. Hence, from (5), for each x ∈ C, it follows that

hk
1(y

k) +
1

2
∥x− yk∥2 ≤ hk

1(x),

i.e.,

λkf1(x
k, yk) +

1

2
∥yk − xk∥2 + 1

2
∥x− yk∥2 ≤ λkf1(x

k, x) +
1

2
∥x− xk∥2,

or equivalently,

∥yk − x∥2 ≤ ∥xk − x∥2 + 2λk

(
f1(x

k, x)− f1(x
k, yk)

)
− ∥yk − xk∥2. (6)

Using the same argument for xk+1, we obtain

∥xk+1 − x∥2 ≤ ∥yk − x∥2 + 2λk

(
f2(x

k, x)− f2(x
k, xk+1)

)
− ∥xk+1 − yk∥2. (7)

Combining (6) and (7) yields

∥xk+1 − x∥2 ≤ ∥xk − x∥2 − ∥yk − xk∥2 − ∥xk+1 − yk∥2

+ 2λk

(
f1(x

k, x) + f2(x
k, x)

)
− 2λk

(
f1(x

k, yk) + f2(x
k, xk+1)

)
= ∥xk − x∥2 − ∥yk − xk∥2 − ∥xk+1 − yk∥2

+ 2λkf(x
k, x)− 2λk

(
f1(x

k, yk) + f2(x
k, xk+1)

)
. (8)

From gk1 ∈ ∂2f1(x
k, xk) and f1(x

k, xk) = 0, it follows that

f1(x
k, yk)− f1(x

k, xk) ≥ ⟨gk1 , yk − xk⟩,

which implies
−2λkf1(x

k, yk) ≤ −2λk⟨gk1 , yk − xk⟩. (9)
By using the Cauchy-Schwarz inequality and the fact that ∥gk1∥ ≤ ηk, from (9) one can write

−2λkf1(x
k, yk) ≤ 2

βk

ηk
ηk∥yk − xk∥ = 2βk∥yk − xk∥. (10)

By the same argument, we obtain

−2λkf2(x
k, xk+1) ≤ 2βk∥xk+1 − xk∥. (11)

Replacing (10) and (11) to (8) we get

∥xk+1 − x∥2 ≤ ∥xk − x∥2 + 2λkf(x
k, x)

+ 2βk∥yk − xk∥+ 2βk∥xk+1 − xk∥ − ∥yk − xk∥2 − ∥xk+1 − yk∥2. (12)

Take x = xk in (12), since f(xk, xk) = 0, we obtain

∥xk+1 − xk∥2 ≤ 2βk∥yk − xk∥+ 2βk∥xk+1 − xk∥ − ∥yk − xk∥2 − ∥xk+1 − yk∥2.

It follows that

(∥xk+1 − xk∥ − βk)
2 + (∥yk − xk∥ − βk)

2 + ∥xk+1 − yk∥2 ≤ 2β2
k.
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Hence (∥xk+1 − xk∥ − βk)
2 ≤ 2β2

k, and consequently we have

∥xk+1 − xk∥ ≤ 3βk. (13)

Replacing (13) to (12), we obtain

∥xk+1 − x∥2 ≤ ∥xk − x∥2 + 2λkf(x
k, x) + 2βk∥yk − xk∥+ 6β2

k − ∥yk − xk∥2 − ∥xk+1 − yk∥2

≤ ∥xk − x∥2 + 2λkf(x
k, x) + 6β2

k + 2βk∥yk − xk∥ − ∥yk − xk∥2

≤ ∥xk − x∥2 + 2λkf(x
k, x) + 7β2

k − (∥yk − xk∥ − βk)
2

≤ ∥xk − x∥2 + 2λkf(x
k, x) + 7β2

k. (14)

Note that by definition of x∗ ∈ S(f, C) = Sd(f, C) we have f(xk, x∗) ≤ 0. Therefore, by taking
x = x∗ in (14) we obtain

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 + 7β2
k + 2λkf(x

k, x∗) ≤ ∥xk − x∗∥2 + 7β2
k. (15)

Since
∑∞

k=0 β
2
k < +∞ by assumption, in virtue of Lemma 2.3, it follows from (15) that the se-

quence {∥xk − x∗∥} is convergent.

(ii) We now prove that any cluster point of the sequence {xk} is a solution of (EP ).
Indeed, from (15) we have

−2λkf(x
k, x∗) ≤ ∥xk − x∗∥2 − ∥xk+1 − x∗∥2 + 7β2

k ∀k ∈ N.

By summing up we obtain

2

∞∑
k=0

λk

(
−f(xk, x∗)

)
≤ ∥x0 − x∗∥2 + 7

∞∑
k=0

β2
k < ∞. (16)

On the other hand, by Assumption (A2) the sequences {gk1}, {gk2} are bounded. This fact, together
with the construction of {βk}, implies that there exists M > 0 such that ∥gk1∥ ≤ M, ∥gk2∥ ≤ M,βk ≤
M for all k ∈ N, and consequently

ηk = max{βk, ∥gk1∥, ∥gk2∥} ≤ M ∀k ∈ N.

So we have
∞∑
k=0

λk =

∞∑
k=0

βk

ηk
≥ 1

M

∞∑
k=0

βk,

and since
∑∞

k=0 βk = +∞, we obtain
∞∑
k=0

λk = +∞.

Since f(xk, x∗) ≤ 0 for all k ∈ N, it follows from (16) that

lim sup f(xk, x∗) = 0 ∀x∗ ∈ S(C, f).

Fixed x∗ ∈ S(C, f) and let {xkj} be a subsequence of {xk} such that

lim sup f(xk, x∗) = lim
j

f(xkj , x∗) = 0.

Since {xkj} is bounded, we may assume that {xkj} weakly converges to some x̄. Since f(·, x∗) is
weakly upper semicontinuous by assumption (A1), we have

f(x̄, x∗) ≥ lim f(xkj , x∗) = 0. (17)
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Then it follows from the monotonicity of f that f(x∗, x̄) ≤ 0. On the other hand, since x∗ ∈ S(C, f),
by definition we have f(x∗, x̄) ≥ 0. Therefore we obtain f(x∗, x̄) = 0. Again, the monotonicity
of f implies f(x̄, x∗) ≤ 0, and therefore, by (17) one has f(x̄, x∗) = 0. Since f(x∗, x̄) = 0 and
f(x̄, x∗) = 0, it follows from paramonotonicity of f that x̄ is a solution to (EP ).

Thus it follows from (i), (ii), and Lemma 2.4 that the sequence {xk} converges weakly to a
solution to (EP ).

We now turn to the case that f is strongly pseudo-monotone. By this assumption, (EP ) has a
unique solution (see [21] Proposition 1). Let x∗ be the unique solution of (EP ). By definition of
x∗ we have

f(x∗, x) ≥ 0 ∀x ∈ C,

which, by strong pseudo-monotonicity of f , implies

f(x, x∗) ≤ −β∥x− x∗∥2 ∀x ∈ C. (18)

By choosing x = xk in (18) and then applying to (12) we obtain

∥xk+1 − x∗∥2 ≤ (1− 2βλk)∥xk − x∗∥2 + 7β2
k ∀k ∈ N,

which together with the construction of βk and λk, by virtue of Lemma 2.6 with δk ≡ 0, implies
that

lim
k→+∞

∥xk − x∗∥2 = 0,

i.e., xk strongly converges to the unique solution x∗ of (EP ). �
The following simple example shows that without paramonotonicity, the algorithm may not be

convergent.

Example 3.3. Let us consider the following instance of (EP ), taken from [8], where C := R2 and
f(x, y) := ⟨Ax, y − x⟩ with

A =

[
0 1
−1 0

]
.

For all x, y ∈ C we have f(x, y)+f(y, x) = ⟨A(x−y), y−x⟩ = (x2−y2)(y1−x1)−(x1−y1)(y2−x2) =
0, so f is monotone on C. It has already shown in [8] that x∗ = (0, 0)T is the unique solution of
this problem. Note that for all x = (x1, x2)

T ∈ C we have

f(x∗, x) =

⟨[
0 1
−1 0

] [
0
0

]
,

[
x1

x2

]⟩
= 0

and
f(x, x∗) =

⟨[
0 1
−1 0

] [
x1

x2

]
,

[
−x1

−x2

]⟩
= −x2x1 + (−x1)(−x2) = 0.

Hence f(x∗, x) = f(x, x∗) = 0 for all x ∈ C, and therefore f is not paramonotone.
Let f1(x, y) = 0 and f2(x, y) = f(x, y) = x2y1−x1y2, then we have f(x, y) = f1(x, y)+f2(x, y).

Furthermore, f1, f2 satisfy assumptions (A1) and (A2). Let {βk} be any sequence satisfying the
conditions in the initialization step of Algorithm 1. Applying this algorithm with f = f1 + f2, in
iteration k we obtain

yk = argmin{λkf1(x
k, y) +

1

2
∥y − xk∥2 | y ∈ R2}

= argmin{1
2
∥y − xk∥2 | y ∈ R2}

= xk.

Therefore we have

λkf2(x
k, y) +

1

2
∥y − yk∥2 = λkf2(x

k, y) +
1

2
∥y − xk∥2
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= λk(x
k
2y1 − xk

1y2) +
1

2
(y1 − xk

1)
2 +

1

2
(y2 − xk

2)
2

=
1

2

(
y21 − 2a1y1 + (xk

1)
2
)
+

1

2

(
y22 − 2a2y2 + (xk

2)
2
)

=
1

2

(
(y1 − a1)

2 + a21 − (xk
1)

2
)
+

1

2

(
(y2 − a2)

2 + a22 − (xk
2)

2
)
.

Here a1 = xk
1 − λkx

k
2 and a2 = xk

2 + λkx
k
1 . It follows that

xk+1 = argmin{λkf2(x
k, y) +

1

2
∥y − yk∥2 | y ∈ R2}

= argmin{1
2
(y1 − a1)

2 +
1

2
(y2 − a2)

2 | y ∈ R2}

= (a1, a2)
T = (xk

1 − λkx
k
2 , x

k
2 + λkx

k
1)

T .

Thus, ∥xk+1∥2 = (1 + λ2
k)∥xk∥2 > ∥xk∥2 if xk ̸= 0, which implies that the sequence {xk} does not

converge to the solution x∗ = 0 for any starting point x0 ̸= 0. �
In order to obtain the convergence without paramonotonicity we use the iterate xk to define an

ergodic sequence by taking

zk :=

∑k
i=0 λix

i∑k
i=0 λi

.

We then have the following convergence result.

Theorem 3.4. Under the assumptions (A1) − (A3), the ergodic sequence {zk} converges weakly
to a solution of (EP ).

Proof. In the proof of Theorem 1, we have shown that the sequence {∥xk − x∗∥} is convergent.
From the definition of zk and the Silverman–Toeplitz theorem (see e.g. Theorem 1.1. in [22]),
the sequence {∥zk − x∗∥} is convergent, too. In order to apply Lemma 2.4, now we show that all
weakly cluster points of {zk} belong to S(f, C). Indeed, using the inequality (15), by taking the
sum of its two sides over all indices we have

2

k∑
i=0

λif(x, x
i) ≤

k∑
i=0

(
∥xi − x∥2 − ∥xi+1 − x∥2 + 7β2

i

)
= ∥x0 − x∥2 − ∥xk+1 − x∥2 + 7

k∑
i=0

β2
i

≤ ∥x0 − x∥2 + 7

k∑
i=0

β2
i .

By using this inequality, from definition of zk and convexity of f(x, ·), we can write

f(x, zk) = f

(
x,

∑k
i=0 λix

i∑k
i=0 λi

)

≤
∑k

i=0 λif(x, x
i)∑k

i=0 λi

≤
∥x0 − x∥2 + 7

∑k
i=0 β

2
i

2
∑k

i=0 λi

. (19)

As we have shown in the proof of Theorem 1 that

λk =
βk

ηk
≥ βk

M
.
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Since
∑∞

k=0 βk = +∞, we have
∑∞

k=0 λk = +∞. Then, it follows from (19) that

lim sup
k

f(x, zk) ≤ 0. (20)

Let z̄ be any weakly cluster of {zk}. Then there exists a subsequence {zkj} of {zk} such that
zkj ⇀ z̄. Since f(x, .) is lower semicontinuous, it follows from (20) that

f(x, z̄) ≤ 0.

Since this inequality hold for arbitrary x ∈ C, it means that z̄ ∈ Sd(f, C) = S(f, C). Thus it
follows from Lemma 2.5 that the sequence {zk} converges weakly to a point z∗ ∈ S(f, C), which
is a solution to (EP ). �

4. Numerical experiments

This section aims to evaluate the performance of Algorithm 1 on some numerical examples. We
also present some experiments on comparing the performance of our proposed algorithm to the
exact version of inexact projected subgradient method proposed in [27] and the ergodic algorithm
in [2]. We used MATLAB R2016a for implementing the algorithms, and conducted all experiments
on a computer with a Core i5 processor, 16 GB of RAM, and Windows 10.

All the tested instances were taken in finite dimensional setting and designed to satisfy the
assumptions (A1)-(A3) as well as the convergence conditions of Algorithm 1 in Theorem 3.2 or
Theorem 3.4. Since the iterative points generated by the algorithm are proved to be convergent,
in each test we terminated our MATLAB program when the number of iterations is large enough
(104 in our setting) to obtain an approximate solution. For the same purpose and in spirit of
(13), we also terminated our MATLAB programs when the distance between two consecutive
iteration points is small enough (10−3 in our setting, i.e., when ∥xk+1 − xk∥ ≤ 10−3, or when
∥zk+1 − zk∥ ≤ 10−3 for the ergodic sequences).

4.1. Experiment 1

The problem instance in this subsection is designed for a twofold purpose. First, it is to illus-
trate our motivation of splitting the bifunction involved in (EP ). Second, it is to compare the
performance Algorithm 1 to the method proposed by Santos and Scheimberg in [27] without using
the ergodic strategy, and the algorithm by Anh et al. in [2] for the ergodic sequence. For that we
consider the following differentiated Cournot-Nash model.

There are n companies producing a common homogeneous commodity. For each company
i = 1, . . . , n, let xi ≥ 0 be the production level (i.e. the amount of commodity to be produced) of
company i, and Ci the strategy set of producing of this company. This means that the condition
xi ∈ Ci must be satisfied for every i = 1, . . . , n, and C := C1 × . . . × Cn is the set of feasible
production levels x = (x1, . . . , xn) of all these companies. The price (per commodity unit) of
company i is given by

pi(x) := α−
n∑

k=1

τikxk (with α > 0, τik ≥ 0).

For each company i = 1, . . . , n, let ci(x) = xtAix be the cost for producing its production level,
in which Ai = (aijk)n×n is a square matrix with positive entries. The profit of company i is then
given by

qi(x) = xipi(x)− ci(x).

Each company i seeks to maximize its profit by choosing the corresponding production level xi

under the presumption that the production of the other companies are parametric input. In this
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context, a Nash equilibrium point for the model is a point x∗ ∈ C satisfying

qi(x
∗[xi]) ≤ qi(x

∗) ∀x ∈ C, i = 1, . . . , n,

where x∗([xi]) stands for the vector obtained from x∗ by replacing the component x∗
i by xi. It

means that, if some company i leaves its equilibrium strategy while the others keep their equilib-
rium positions, then the profit of company i does not increase. The problem of finding such an
equilibrium point can be formulated in form of (EP ) as follows.

(EP (φ)) Find x ∈ C such that φ(x, y) ≥ 0 for all y ∈ C,

with C = C1 × . . .× Cn and

φ(x, y) :=

n∑
i=1

(qi(x)− qi(x[yi]))

=

n∑
i=1

(
n∑

k=1

τikxk

)
(yi − xi) +

n∑
i=1

τiiyi(yi − xi)− α

n∑
i=1

(yi − xi)

+

n∑
i=1

aiiiy
2
i + yi

∑
k ̸=i

(aiik + aiki)xk − aiiix
2
i − xi

∑
k ̸=i

(aiik + aiki)xk


= φ1(x, y) + φ2(x, y).

Here φ1(x, y) = ⟨Px+Qy − ᾱ, y − x⟩ with

P :=


τ11 τ12 . . . τ1n
τ21 τ22 . . . τ2n
· · . . . ·

τn1 τn2 . . . τnn

 , Q :=


τ11 0 . . . 0
0 τ22 . . . 0
· · . . . ·
0 0 . . . τnn

 , ᾱ := (α, . . . , α)T ,

and φ2(x, y) =
∑n

i=1 hi(x, yi) with

hi(x, yi) = aiiiy
2
i + yi

∑
k ̸=i

(aiik + aiki)xk − aiiix
2
i − xi

∑
k ̸=i

(aiik + aiki)xk.

Note that by taking f1(x, y) := ⟨(P +Q)x− ᾱ, y − x⟩ and f(x, y) := f1(x, y) + φ2(x, y), we have

φ(x, y) = f(x, y) + ⟨Q(y − x), y − x⟩.

Since Q is positive semidefinite, it follows from [17] Proposition 2.1 that the solution set of (EP (φ))
coincides with the solution set of (EP (f)). Therefore, in order to obtain an equilibrium point of
(EP (φ)), we can solve the equilibrium problem (EP (f)) associated to the bifunction f .

For a numerical instance, we took n := 8, Ci := [10, 50] for all i = 1, . . . , n, and α := 45. The
discount coefficients τij were determined by

P := (τij)n×n =
1

100



11.75 22 2 33 17 4 40 18
18 13.75 1 22 3 2 33 10
4 1 1.25 1 2 5 4 7
11 15 0 17 10 0 40 10
5 1 2 27 9.5 4 30 10
8 2 5 2 4 5 8 14
22 14 8 25 11 16 26 20
14 2 4 19 17 8 35 12


,

which implies that
Q :=

1

100
diag(11.75, 13.75, 1.25, 17, 9.5, 5, 26, 12).
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The matrices Ai’s are randomly generated in such a way that their entries are integers in [1, 10].
Let S := 1

2

(
(P + Q) + (P + Q)T

)
. Then on one hand we have S is symmetric and positive

definite, which can be checked by using MATLAB function ‘chol’. It follows that P + Q is also
positive definite. An elementary computation shows that

f1(x, y) + f1(y, x) = −(y − x)T (P +Q)(y − x) ≤ 0 ∀x, y ∈ C,

which implies the monotonicity of f1, thanks to the positive definiteness of P +Q. We furthermore
have

φ2(x, y) + φ2(y, x) = −
∑
i ̸=j

(yi − xi)(yj − xj)(a
i
ij + aiji + ajij + ajji)

= −zTAz

in which z = (z1, . . . , zn)
T with zi = yi − xi for all i = 1, . . . , n, and A = (aij)n×n is a symmetric

matrix with

aij = aji =

{
1
2 (a

i
ij + aiji + ajij + ajji) if i ̸= j,

0 if i = j.

By this formula, the ij-entry of matrix A is defined only by the ij-entries and ji-entries of matrices
Ai. In this experiment, the matrices Ai are chosen so that the matrix A is positive semidefinite,
and consequently

φ2(x, y) + φ2(y, x) = −zTAz ≤ 0,

which leads to monotonicity of φ2. So f = f1 +φ2 is also monotone, meaning that condition (A3)
is also satisfied.

As a remark, it follows from the positivity of aiii that φ2(x, y) is convex quadratic with respect
to y. By the construction of f1 and φ2, the conditions (A1) and (A2) are also satisfied, so all
conditions of Theorem 3.2 are fulfilled and therefore we can apply its version without using ergodic
sequence.

On the other hand, it can also be checked that rank(S) = rank(P +Q) = 7 < n = 8. Thus, by
[12] Proposition 3.2, the bifunction f = f1 + φ2 is paramonotone, which ensures the convergence
of Algorithm 1 and the projected subgradient method proposed in [27].

Table 1 presents the performance of three methods: original version of Algorithm 1 (denoted
OSGA for short), ergodic version of Algorithm 1 (denoted ESGA for short), and exact version
of inexact projected subgradient method proposed in [27] (abbreviated by EPSM). For the first
two methods, we set βk = 10i

k+1 with i ∈ {0, 1, 2}, while the settings for the last method include
βk = 10i

k+1 with i ∈ {0, 1, 2} and ρk = 1 (see [27] for details of the method). In Table 1 we report
the performance of these methods with respect to criteria of running time (in seconds, reported
in ‘Time’ columns) and the number of iterations (reported in ‘Iter’ columns). Three choices for
starting points were taken:

xa = (20, 20, . . . , 20), xb = (30, 30, . . . , 30), xc = (50, 50, . . . , 50).
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Initial guess Method
1

k+1
10
k+1

100
k+1

Time Iter Time Iter Time Iter

x0 = xa
OSGA 0.088 32 0.268 100 0.696 316
ESGA 4.246 2228 4.357 2313 6.164 3288
EPSM 0.018 1000 0.009 131 0.024 1279

x0 = xb
OSGA 0.089 32 0.273 100 0.689 316
ESGA 2.495 1299 2.680 1400 4.730 2511
EPSM 0.013 999 0.021 2087 0.046 4581

x0 = xc
OSGA 0.085 32 0.269 100 0.681 316
ESGA 0.117 45 0.562 257 3.011 1572
EPSM 0.011 999 0.068 8470 0.044 4999

Table 1. Performance of the considered methods.

It can be observed from Table 1 that the original version of Algorithm 1 (without using ergodic
sequence) has better performance than the ergodic version in both criteria: the number of executed
iterations and running time. In sense of running time, method EPSM performs best. It is due to
the main operation in EPSM is projection onto the set C, which can be quickly done thanks to the
box structure of C. In another perspective, the original version of Algorithm 1 performs best in
sense of the number of executed iterations. Its performance seems to be independent of the initial
guess.

4.2. Experiment 2

The key feature of the previous example is the paramononicity of the involved bifunctions.
Requiring that property, the performance of ergodic version of Algorithm 1 is not comparative to
the original version, and also to the method proposed in [27]. In order to highlight the advantage of
the ergodic version of Algorithm 1, in this subsection we consider an example in which the involved
bifunction is not necessarily paramonotone. For this example, both OSGA and EPSM methods
cannot be applied due to the lack of the paramonotonicity of the involved bifunction, but ESGA
can.

Let us consider the differentiated Cournot-Nash model similar to the previous example, but
with linear cost functions

ci(xi) = µixi + ξi (µi > 0, ξi ≥ 0, i = 1, . . . , n).

Furthermore, we assume that there are additional constraints concerning lower and upper bounds
on quota of the commodity (i.e., there exist σ, σ ∈ R+ such that σ ≤ σ =

∑n
i=1 xi ≤ σ). The

problem in this case can be formulated in form of (EP ) in which we can split the bifunction f as
f(x, y) = f1(x, y) + f2(x, y) with

f1(x, y) = (Bx+ µ− ᾱ)T (y − x),

f2(x, y) = yT B̃y − xT B̃x,

in which µ = (µ1, . . . , µn) and

B =


0 τ12 τ13 . . . τ1n
τ21 0 τ23 . . . τ2n
· · · . . . ·

τn1 τn2 τn3 . . . 0

 , B̃ =


τ11 0 0 . . . 0
0 τ22 0 . . . 0
· · · . . . ·
0 0 0 . . . τnn

 .

It is easy to check that f1, f2 are equilibrium functions satisfying conditions (A1)-(A3), so is f .
By Theorem 3.4, this ensures that the ergodic sequence generated from the iterative points of
Algorithm 1 converges without paramonotonicity of f . Therefore, in contrast to the previous
experiment, in this experiment we do not need to check the paramonotonicity of the bifuction f .



14 TITLE WILL BE SET BY THE PUBLISHER

For the tested instances, we set Ci = [10, 50] for i = 1, . . . , n, σ = 10n+ 10, σ = 50n− 10, and
α = 120. The initial guess was set to x0

i = 30 (i = 1, . . . , n). The values for parameters τij were
randomly generated in [0.5, 1.5] while the ones for µi were randomly chosen in [20, 40].

n βk Number of iterations
10 10/(k + 1) 1309
10 100/(k + 1) 419
15 10/(k + 1) 3108
15 100/(k + 1) 672
20 10/(k + 1) 5090
20 100/(k + 1) 610

Table 2. Performance of ergodic version of Algorithm 1 in solving differentiated
Cournot-Nash model with linear costs and additional joint constraints.

Table 2 shows that the choice of parameter βk is crucial for the convergence of the algorithm,
since changing the value of this parameter may significantly reduce the number of iterations.
Furthermore, it proves the applicability of the ergodic version of our proposed algorithm in solving
differentiated Cournot-Nash model with linear costs and joint constraints.

4.3. Experiment 3

In this subsection we compare the performance of ergodic version of Algorithm 1 to the algorithm
proposed in [2]. For that we consider the following instance of equilibrium problem (EP ).

Find x ∈ C : f(x, y) ≥ 0 ∀y ∈ C,

in which C = C1 × . . .× C5 with Ci = [1, 10], i = 1, . . . , 5, and

f(x, y) = ⟨Px+Qy − ᾱ, y − x⟩+
5∑

i=1

(y3i − x3
i ),

where

P =


3 3 3 0 1
2 9 8 0 6
2 6 8 5 5
6 6 4 8 0
5 10 6 10 3

 , Q =


21 23 17 15 21
23 50 36 21 18
17 36 76 27 60
15 21 27 25 27
21 18 60 27 66

 .

By setting

f1(x, y) = ⟨Px+Qy − ᾱ, y − x⟩, f2(x, y) =

5∑
i=1

(y3i − x3
i )

we see that f(x, y) = f1(x, y) + f2(x, y). Note that f1(x, y) is quadratic but not separable with
respect to y, so the subproblem of computing yk in Algorithm 1 is nothing but solving a quadratic
strongly convex program. Furthermore, f2(x, y) is not quadratic but separable with respect to y,
so computing xk+1 in Algorithm 1 can be done by solving n = 5 separated convex programs, each
on one real variable.

Table 3 presents the performance of ergodic version of Algorithm 1 (denoted ESGA) and the
ergodic algorithm proposed in [2] (abbreviated by EA). For the former algorithm, we set βk =
10i

k+1 , while for the parameters in the description of the latter algorithm we choose λk = 10i

k+1

(i ∈ {0, 1, 2, 3}). We compare the performance of these algorithms in sense of running time. Three
choices for starting points were taken:

xa = (1, 10, 1, 10, 1), xb = (5.5, 5.5, 5.5, 5.5, 5.5), xc = (10, 10, 10, 10, 10).
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Initial guess Method Running time (seconds)
βk = λk = 1

k+1 βk = λk = 10
k+1 βk = λk = 100

k+1 βk = λk = 1000
k+1

x0 = xa ESGA 1.116 1.121 1.256 1.164
EA 3.601 3.866 4.099 3.533

x0 = xb ESGA 0.721 0.758 1.023 1.346
EA 3.154 3.029 2.718 2.388

x0 = xc ESGA 0.016 0.158 0.591 1.473
EA 6.075 6.487 6.125 4.805

Table 3. Performance of the considered ergodic algorithms.

It can be observed from Table 3 that, regardless of the choices for parameters βk and λk, our
proposed ergodic algorithm performs better than the one proposed in [2]. The reasons are as
follows. By splitting the equilibrium function f(x, y) as f1(x, y) + f2(x, y), we then can exploit
special properties of component bifunctions f1 and f2. More precisely, that helps us to solve more
easily the two subproblems in each step of our proposed algorithm: one is a quadratic strongly
convex program, while the other is equivalent to solving separated convex programs on single real
variable. However, the sum f = f1+f2 does not inherit the properties of the summand functions f1
and f2. The algorithm proposed in [2] applies directly on f and does not exploit special properties
of f1 and f2. That leads to the worse performance of this algorithm in comparison to our proposed
one.

5. Conclusions

We have proposed splitting algorithms for equilibrium problems where the bifunction is the
sum of the two ones f1 and f2. At each iteration the proposed algorithms require solving two
strongly convex programs, one for each f1 and f2 separately. Under a paramononicity property,
the convergence of the iterates to a solution without any Lipschitz type condition as well as Hölder
continuity of the bifunctions involved has been proved. It also has been shown that the ergodic
sequence defined by the iterates of the algorithm converges to a solution without paaramonotonicity.
We have applied the proposed algorithm to solve some versions of differentiated Cournot-Nash
equilibrium model. Some numerical results have been reported for these models with different
data. We have compared our algorithm to the one in [27] for paramonotone bifunction, and to
the algorithm in [2] for monotone case. The obtained computational results have shown that for
paramonotone problems the algorithm in [27] worked better in computing time, while for monotone
problems the ergodic version of our algorithm runs more quickly than that in [2].
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