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Abstract. In the setting adopted by Edmond and Thibault [Mathematical Programming 104 (2005),
347–373], we study a class of perturbed sweeping processes. Under suitable assumptions, we obtain two
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1. INTRODUCTION

Let T > 0 be a real number and let C(t), t ∈ [0,T ], be nonempty closed subsets of a Hilbert
space H . For any fixed x0 ∈C(0), the differential inclusion{

−ẋ(t) ∈NC(t)(x(t)) a.e. t ∈ [0,T ],
x(0) = x0,

(1.1)

where NΩ(z) denotes the Clarke normal cone [1, p. 51] to a closed set Ω at z, is called a
sweeping process. An absolutely continuous function x(·) : [0,T ]→H which satisfies the two
conditions in (1.1) is said to be a solution of the sweeping process. It is worthy to stress that any
absolutely continuous function x(·) : [0,T ]→H is Fréchet differentiable almost everywhere
on [0,T ] with respect to the Lebesgue measure (see Proposition 2.1 below). If C(t) is convex,
then the Clarke normal cone coincides with the normal cone in the sense of convex analysis [2,
Proposition 2.4.4, p. 52].

The model (1.1) under the assumption that C(t) is convex for each t ∈ [0,T ] was introduced
by Moreau in [3], where some fundamental results on solution existence and uniqueness were
obtained. In [4], he has studied the continuity of the solutions when the convex-valued mapping
C : [0,T ]⇒ H undergoes small perturbations.

In many subsequent papers, assumptions on the convexity of C(t) have been relaxed. For
examples, Colombo and Goncharov [5] obtained a solution existence and uniqueness theorem
for the sweeping process (1.1) under the hypothesis that the sets C(t) are weakly closed and
ϕ-convex. Later, in a more general setting, Bounkhel [6] proved some solution existence and
uniqueness results. Namely, the author just requires that the sets C(t) are prox-regular (see the
definition of prox-regularity of a set below).
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Since the function x(·) in (1.1) can be interpreted as the trajectory of a certain mechanical
system, which is driven by an external force (the gravitational force, a force generated by an
electromagnetic field, a wind, etc.), several authors have studied perturbed sweeping processes
of the form {

−ẋ(t) ∈NC(t)(x(t))+g(t,x(t)) a.e. t ∈ [0,T ]
x(0) = x0,

(1.2)

where the perturbation function g is either a single-valued or a multi-valued map satisfying
some regularity assumptions. Since NC(t)(x(t)) = {0} if C(t) = H for all t ∈ [0,T ], then the
inclusion in (1.2) reduces to the ordinary differential equation −ẋ(t) = g(t,x(t)). Hence, in that
case, (1.2) is a Cauchy problem. In the finite-dimensional setting, where H =Rn, there are two
celebrated theorems: the Peano theorem [7, Theorem 2.1, p. 10] (for the solution existence of
the Cauchy problem) and the Picard-Lindelöf theorem [7, Theorem 1.1, p. 8] (for the existence
and uniqueness of the solution of the Cauchy problem). Naturally, one wishes to have some
analogues of such theorems for the problem (1.2).

Perturbed sweeping processes with the sets C(t), t ∈ [0,T ], being convex or the complement
of the interior of a convex set were studied by Castaing et al. [8] and several authors in ref-
erences therein. For sweeping processes with delay, where C(t), t ∈ [0,T ], are assumed to be
compact convex sets, Castaing and Monteiro Marques [9] obtained not only solution existence
and uniqueness results but also some topological properties of the solution sets.

Bounkhel and Thibault [10, Corollary 3.5] established new characterizations of r-prox-regular
sets in terms of the subdifferentials of the distance functions associated with the sets. Using
these characterizations, they proved [10, Theorem 4.2] a solution existence theorem for non-
convex sweeping processes in Hilbert spaces with multi-valued perturbation mappings.

For discontinuous perturbed sweeping processes in the infinite-dimensional setting, Edmond
and Thibault [11, Theorem 3.1] sought solutions in the form of functions of bounded variation,
which can be discontinuous. As a corollary, they gave [11, Theorem 5.1] sufficient condition
for the existence of absolutely continuous solutions.

The starting point for our investigations in the present note is the papers [11, 12] of Ed-
mond and Thibault, where the authors investigated systematically the solution existence and
uniqueness for the sweeping processes with prox-regular constraint sets C(t) with single-valued
perturbations.

Based on the result on the prox-regularity of nonsmooth sublevel sets of Adly et al. [13,
Theorem 4.1], we prove the solution existence as well as the solution uniqueness for a special
case when C(t) are sublevel sets under some assumptions. To clarify the applicability of the
obtained results, we give some examples having clear mechanical interpretations. Remarkably,
the examples can be solved only by invoking the uniqueness of the solution of (1.2).

The remainder of this note is organized as follows. Section 2 presents some notions and
preliminary results to be used in the sequel. In Section 3, we establish two solution existence
theorems for the case where C(t), t ∈ [0,T ], are sublevel sets of a certain function. In Section
4, we present four illustrative examples.

2. PRELIMINARIES

Let H be a Hilbert space whose scalar product will be denoted by 〈·, ·〉 and the associated
norm by ‖·‖. Denoted by B the closed unit ball of H . For any set Ω⊂H , the notation d(·,Ω)
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denotes the distance from a point in H to Ω, i.e., for some x ∈H , d(x,Ω) = inf
y∈Ω
‖x− y‖. For

any extended real number r ∈ (0,∞], the r-enlargement of Ω, denoted by Ur(Ω), is defined by
Ur(Ω) = {x ∈H | d(x,Ω) < r}. The closure, the interior and boundary of a set Ω ⊂H are
denoted respectively by cl(Ω), int(Ω) and ∂Ω. Given x ∈H , the set of all points y ∈Ω nearest
to x is defined as

PΩ(x) = {y ∈Ω | d(x,Ω) = ‖x− y‖}.
We also denote respectively by N P

Ω
(x) and NΩ(x) the proximal normal cone and the Clarke

normal cone of Ω at x, which are defined as follows.

Definition 2.1. The set TΩ(x) is called the Clarke tangent cone to Ω at x is the set of all vector
v ∈H such that

lim
t→0+,y

Ω−→x

d(y+ tv,Ω)

t
= 0.

The Clarke normal cone to Ω at x is the polar cone of the Clarke tangent cone, i.e.,

NΩ(x) :=
{

x∗ ∈H | 〈x∗,v〉 ≤ 0 for all v ∈TΩ(x)
}
.

Definition 2.2. A vector v∈H is a proximal subgradient of a function f : H →R at x if there
exist a real number σ ≥ 0 and a neighborhood U of x such that

〈v,x′− x〉 ≤ f (x′)− f (x)+σ‖x′− x‖2,

for all x′ ∈U .

Definition 2.3. A vector v∈H is a proximal normal vector to Ω at x∈Ω when it is a proximal
subgradient of the indicator function of Ω, that is, when there exist a constant σ ≥ 0 and a
neighborhood U of x such that 〈v,x′− x〉 ≤ σ‖x′− x‖2 for all x′ ∈ U ∩Ω. The set of such
vectors, which is denoted by N P

Ω
(x), is said to be the proximal normal cone of Ω at x.

Definition 2.4. A nonempty closed set Ω is called r-prox-regular if for all x∈Ω, for all t ∈ (0,r)
and for all ξ ∈N P

Ω
(x) such that ‖ξ‖= 1, one has x ∈ PΩ(x+ tξ ).

A convex set is a r-prox-regular set for all r > 0. Properties of prox-regular sets and their
applications have been thoroughly studied in [13, 14].

Proofs of the next proposition can be found in the books by Benyamini and Lindenstrauss [15,
Corollary 5.12 and Theorem 5.21] and by Diestel and Uhl [16, Corollary 13 of Chapter 3 and
Section 6 of Chapter VII].

Proposition 2.1. Let f : [a,b]→H be absolutely continuous. Then, f is Fréchet differentiable
almost everywhere on [a,b] with respect to the Lebesgue measure.

Let T > 0 and I = [0,T ]. Following Edmond and Thibault [12], we consider the next two
assumptions.

Assumption (H1). For each t ∈ I, C(t) is a nonempty closed subset of H which is r-prox-
regular for some constant r > 0.

Assumption (H2). C(t) varies in an absolutely continuous way, that is, there exists an abso-
lutely continuous function v : I→ R such that for any y ∈H and s, t ∈ I, one has

‖d(y,C(t))−d(y,C(s))‖ ≤ |v(s)− v(t)|.
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The following result, which is a simplified form of Theorem 5.1 from [11], provides us with
an analogue of the Peano theorem [7, Theorem 2.1, p. 10] which works for ordinary differential
equations.

Theorem 2.1. (See [11, Theorem 5.1]) Assume that a family of sets C(t), t ∈ I, in H satisfies the
assumptions (H1) and (H2). Assume that G : I×H ⇒ H is a set-valued map with nonempty
convex compact values such that

(a) For any x ∈H , G(·,x) has a measurable selection;
(b) For all t ∈ I, G(t, ·) is scalarly upper semicontinuous on H ;
(c) For some compact subset K ⊂ B and for some non-negative function β (·) ∈ L1(I,R),

one has for all (t,x) ∈ I×H ,

G(t,x)⊂ β (t)(1+‖x‖)K.

Assume also that H is separable if G 6≡ {0}. Then, for any x0 ∈C(0), the sweeping process{
−ẋ(t) ∈NC(t)(x(t))+G(t,x(t)) a.e. t ∈ [0,T ]
x(0) = x0,

(2.1)

has at least one absolutely continuous solution x(·).

The next result is an analogue of the Picard-Lindelöf theorem [7, Theorem 1.1, p. 8] from the
theory of ordinary differential equations.

Theorem 2.2. (See [12, Theorem 1]) Assume that a family of sets C(t), t ∈ I, in H satisfies
the assumptions (H1) and (H2). Let g : I×H →H be such a separately measurable map on
I that

(i) For every η > 0, there exists a non-negative function kη(·) ∈ L1(I,R) such that for all
t ∈ I and for any x,y ∈ B(0,η) one has

‖g(t,x)−g(t,y)‖ ≤ kη(t)‖x− y‖;

(ii) There exists a non-negative function β (·) ∈ L1(I,R) such that, for all t ∈ I and for all
x ∈

⋃
s∈I

C(s), one has ‖g(t,x)‖ ≤ β (t)(1+‖x‖).

Then, for any x0 ∈C(0), the sweeping process (1.2) has one and only one absolutely continuous
solution x(·). In addition, the solution satisfies the estimate

‖ẋ(t)+g(t,x(t))‖ ≤ (1+Mx0)β (t)+ |v̇(t)| a.e. t ∈ I,

where

Mx0 := ‖x0‖+ exp
{

2
∫ T

0
β (s)ds

}∫ T

0

(
2β (s)(1+‖x0‖)+ |v̇(s)|

)
ds.

When G is a single-valued mapping, Theorem 2.1 gives sufficient conditions for the existence
of solution to problem (1.2). Meanwhile, Theorem 2.2 provides conditions for the existence and
uniqueness of solution to problem (1.2). However, the assumption (c) in Theorem 2.1 is tighter
than the assumption (ii) in Theorem 2.2. To justify this fact, let us consider the following
example.
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Example 2.1. Let H be an infinite dimensional Hilbert space. Consider the problem (1.2) with
C(t) satisfying the assumptions (H1) and (H2). Let g : I×H ⇒ H , g(t,x) = tPB(x). We see
that g is linear with respect to t. In addition, since the projection map onto a closed convex set in
Hilbert space is Lipschitz continuous, g satisfies the assumptions (a), (b) of Theorem 2.1 and (i)
of Theorem 2.2. Moreover, since ‖g(t,x)‖ ≤ t for all t ∈ I, the assumption (ii) of Theorem 2.2 is
also valid. However, the unit ball B in H is non-compact, so we cannot find any compact set K
such that the assumption (c) of Theorem 2.1 holds. So, it is not possible to apply Theorem 2.1
in this case. Nevertheless, for any x0 ∈ C(0), Theorem 2.2 assures the solution existence and
uniqueness of the problem under consideration.

Remark 2.1. Since the assumptions of the Peano theorem are weaker than those of the Picard-
Lindelöf theorem, it would be nice if one can have another version of Theorem 2.1 whose
assumption set is weaker than that of Theorem 2.2.

From a result of Edmond and Thibault [12, Proposition 2] it follows that, for every t ∈ I, the
mapping ψt : C(0)→ C(t) with ψt(x0) := x(x0, t), where x(x0, ·) denotes the unique solution
x(·) of (1.2) with the initial value x(0) = x0, is Lipschitz on any bounded subset of C(0).

In the sequel, we will need the following characterization of a r-prox-regular set.

Lemma 2.1. (See [14, Theorem 3, p. 108]) Let Ω be a closed subset of H and r > 0. If Ω is
r-prox-regular then for any x,x′ ∈Ω and v ∈N P

Ω
(x), one has

〈v,x′− x〉 ≤ 1
2r
‖v‖‖x′− x‖2.

Remark 2.2. If Ω ⊂H is r-prox-regular, then the proximal normal cone to Ω at any point
x ∈Ω coincides with the corresponding Clarke normal cone (see [14, Proposition 7(b)]). So the
set N P

Ω
(x) in the formulation of Lemma 2.1 can be replaced by NΩ(x).

3. SOLUTION EXISTENCE THEOREMS

Let T be a positive real number and I = [0,T ]. Let there be given the functions fi : I×H →
R, i ∈ {1, . . . ,m}. Suppose that the set

C(t) := {x ∈H | fi(t,x)≤ 0, i ∈ {1, . . . ,m}}
is nonempty for each t ∈ I. Assume that there is an extended real number ρ ∈ [0,+∞] satisfying
the next four assumptions.

Assumption (A1). For x ∈H and for all i ∈ {1, . . . ,m}, fi(·,x) is Lipschitz continuous with
modulus L1 > 0 on [0,T ].

Assumption (A2). For each t ∈ [0,T ], and for all i ∈ {1, . . . ,m}, fi(t, ·) is locally Lipschitz
continuous on Uρ(C(t)).

Assumption (A3). There is γ > 0 such that for all t ∈ [0,T ] and i ∈ {1, . . . ,m}, for all x1,x2 ∈
Uρ(C(t)), and for all ξ j ∈ ∂C fi(t, ·)(x j), j = 1,2,

〈ξ1−ξ2,x1− x2〉 ≥ −γ‖x1− x2‖2.

Assumption (A4). There is µ > 0 with the property that for all t ∈ [0,T ] and x ∈C(t) one can
find v = v(t,x) ∈H with ‖v‖= 1 such that for all i ∈ {1, . . . ,m}, for all ξ ∈ ∂C fi(t, ·)(x), one
has 〈ξ ,v〉 ≤ −µ.
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Clearly, if ∂C f1(t, ·) is monotone for every t ∈ [0,T ], i.e., 〈ξ1−ξ2,x1−x2〉 ≥ 0 for all x1,x2 ∈
H and for all ξ j ∈ ∂C fi(t, ·)(x j), j = 1,2, then Assumption (A3) is satisfied with any γ > 0.

Lemma 3.1. (See [13, Theorem 4.1]) For all t ∈ [0,T ], the set C(t) is r-prox-regular with
r = min{ρ, µ

γ
}.

Lemma 3.2. The set-valued map C : I ⇒H is Lipschitz with respect to the Hausdorff distance,

with the Lipschitz modulus ϑ , for any ϑ ≥ L1

µ
.

Proof. Fix a real number ϑ such that ϑ ≥ µ−1L1. Choose a subdivision

T0 = 0 < T1 < .. . < Tp = T

of [0,T ] such that Tk−Tk−1 < ϑ−1ρ for k = 1, . . . , p. Fix an index k ∈ {1, . . . , p} and select
any numbers s, t from the segment Ik := [Tk−1,Tk]. Put u(s, t) = ϑ |s− t|. For any x ∈ C(t),
define y = x+ u(s, t)v. Since t,s ∈ Ik, we have ‖y− x‖ = ϑ |s− t| < ρ. This proves that y ∈
int(Uρ(C(t))). By [13, Lemma 3.2], for all λ ∈ [0,1] we have x+ λ (y− x) ∈ int(Uρ(C(t))).
Take any i ∈ {1, . . . ,m}. By Assumption (A2) and Lebourg’s mean value theorem (see, e.g., [1,
Theorem 2.3.7, p. 41]) there exists λ ∈ (0,1) such that

fi(t,y)− fi(t,x) ∈ 〈∂C
2 fi(t,x(λ )),u(s, t)v〉

with x(λ ) := (1−λ )x+λy. Hence, by Assumptions (A1) and (A4) we have

fi(s,y) = [ fi(s,y)− fi(t,y)]+ fi(t,x)+ [ fi(t,y)− fi(t,x)]

≤ L1|s− t|−u(s, t)µ

= (L1−ϑ µ) |s− t|.
Hence, fi(s,y) ≤ 0. Since i ∈ {1, . . . ,m} can be chosen arbitrarily, we have thus shown that
the vector y = x + ϑ |s− t|v belongs to C(s). So, d(x,C(s)) ≤ ϑ |s− t| for every x ∈ C(t).
By symmetry, we get d(x′,C(t)) ≤ ϑ |s− t| for every x′ ∈ C(s). Consequently, we obtain
dH(C(t),C(s))≤ ϑ |t− s|.

The proof is complete. �

Theorem 3.1. Suppose that Assumptions (A1)–(A4) are fulfilled. Let g : I×H →H satisfy
the three requirements (a), (b) and (c) in Theorem 2.1. Then, for any x0 ∈C(0), the sweeping
process {

−ẋ(t) ∈NC(t)(x(t))+g(t,x(t)) a.e. t ∈ I
x(0) = x0

(3.1)

has at least one absolutely continuous solution x(·).

Proof. By Lemma 3.1, the set C(t) is r-prox-regular for all t ∈ [0,T ]. Moreover, Lemma 3.2
states that

dH(C(t),C(s))≤ ϑ |t− s|.
For all y ∈H , we have that ‖d(y,C(t))− d(y,C(s))‖ ≤ dH(C(t),C(s)). It follows that C(t)
varies in an absolutely continuous way, i.e.,

‖d(y,C(t))−d(y,C(s))‖ ≤ |v(s)− v(t)|,
where v : I→ R, v(z) = ϑz. By Theorem 2.1, we obtain the desired result. �
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Theorem 3.2. Suppose that Assumptions (A1)–(A4) are fulfilled. Let g : I×H →H be such
a separately measurable map on I that satisfies the two requirements (i) and (ii) in Theorem 2.2.
Then, for any x0 ∈C(0), the sweeping process (3.1) has a unique absolutely continuous solution
x(·).

Proof. Using Theorem 2.2 instead of Theorem 2.1 and arguing similarly as in the proof of
Theorem 3.1, one can obtain the desired result. �

Remark 3.1. The assumptions (A1)–(A4) on the functions fi, i ∈ {1, . . . ,m}, and the family of
sets C(t), t ∈ I, do not depend on the choice of x0 from C(t). Clearly, the requirements (i) and
(ii) on g(t,x) in the formulation of Theorem 3.2 also do not depend on the choice of x0 from
C(t).

4. APPLICATIONS TO MECHANICAL SWEEPING PROCESSES

To illustrate the applicability of Theorem 3.2, we shall provide examples considering classical
mechanical models.

Example 4.1. Consider the problem (3.1) with H = R2, m = 1, f1(t,x) = t − x2 + |x1|, and
g(t,x) = 0 for all t ∈ [0,T ], x = (x1,x2) ∈ R2. Here, we have

C(t) = {x ∈ R2 | −x2 + |x1| ≤ −t}. (4.1)

Let the initial condition be x(0) = (0,0). Obviously, x(0) ∈C(0) and f = f1 satisfies Assump-
tions (A1) and (A2). We have

∂
C f1(t, ·)(x) =


{(1,−1)} if x1 > 0
[−1,1]×{−1} if x1 = 0
{(−1,−1)} if x1 < 0.

(4.2)

Since f1(t, ·) is convex, ∂C f1(t, ·) coincides with the convex subdifferential mapping of ∂ f1(t, ·),
which is monotone. Hence, for any t ∈ [0,T ], the mapping ∂C f1(t, ·) is hypermonotone with
any γ > 0. Thus, Assumption (A3) is satisfied. Now, to check Assumption (A4), let us fix any
µ ∈ (0,1]. Suppose that t ∈ [0,T ] and x ∈ C(t) are given arbitrarily. For v := (0,1), one has
〈ξ ,v〉 = ξ2, where ξ = (ξ1,ξ2) ∈ ∂C f1(t, ·)(x) can be chosen arbitrarily. Thanks to (4.2), we
have ξ2 =−1. Hence,

〈ξ ,v〉=−1≤−µ.

We have thus showed that Assumption (A4) is satisfied. Since g(t,x) ≡ 0, the requirements
(i) and (ii) on g are fulfilled. So, according to Theorem 3.2, (3.1) has a unique absolutely
continuous solution x(·). Interestingly, we can give an explicit formula for x(·). Namely, let us
show that

x1(t) = 0, x2(t) = t ∀t ∈ [0,T ]. (4.3)

Clearly, the trajectory x(t) given by (4.3) satisfies the conditions

x(0) = (0,0) and − ẋ(t) = (0,−1).

Since C(t) is convex, the Clarke normal cone to C(t) at any point of C(t) coincides with
the normal cone to C(t) at that point in the sense of convex analysis (see [1, Proposition
2.4.4]). So, applying [2, Proposition 2, p. 206] to the set C(t) in (4.1), which is a sublevel
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set of the continuous convex function f1(t, ·), at the boundary x(t) = (x1(t),x2(t)), one obtains
NC(t)(x(t)) = R+∂ f1(t, ·)(x(t)). Since x1(t)≡ 0, combining this with (4.2) gives

NC(t)(x(t)) = R+([−1,1]×{−1}).

So, −ẋ(t) ∈NC(t)(x(t))+g(t,x(t)) for all t ∈ [0,T ]. Hence, formula (4.3) describes the unique
absolutely continuous solution of the problem in question. The above mathematical model and
the solution have the following clear mechanical meanings. In the horizontal coordinate plane
R2, there is a small metal ball standing at the origin of the plane at time t = 0. The boundary
of C(0) is the union of two orthogonal half-lines. Suppose that the boundary is the frame made
from two long sticks of bamboo or wood which are firm enough that they cannot be bend by the
metal ball. The set C(t) in (4.1) is the position of C(0) at the time t. The requirement saying
that the ball must be inside C(t) at any time t means that it must be in the plane area formed
by the frame. The change of C(t) with respect to t corresponds to the movement of the frame
along the x2-axis with the velocity 1. The assumption g(t,x)≡ 0 means that there is no external
force acting on the ball. The formula (4.3) of the obtained solution means that the ball always
lies in the corner of the frame, when the later moves steadily along the x2-axis.

Concerning the sweeping problem in Example 4.1, we observe that the role of the normal
cone operator NC(t)(x(t)) in the inclusion−ẋ(t)∈NC(t)(x(t))+g(t,x(t)) is important. Namely,
note that the last inclusion implies x(t) ∈C(t). Note also that 0 ∈NC(t)(x(t)) if x(t) ∈C(t). So,
together with (3.1), it is naturally to consider the following tighter problem:

−ẋ(t) = g(t,x(t)) a.e. t ∈ I
x(t) ∈C(t) for t ∈ I
x(0) = 0

Since g(t,x)≡ 0, the first and the third conditions of this system imply that x(t) = 0 for all t ∈ I.
However, for this curve x(t), the second condition of the system is violated. So, the assertion
of Theorem 3.2 may fail to hold if one replaces the inclusion −ẋ(t) ∈NC(t)(x(t))+g(t,x(t)) by
the conditions −ẋ(t) = g(t,x(t)) and x(t) ∈C(t).

Example 4.2. Consider problem (3.1) with the data given in Example 4.1, where the initial
point is x(0) = x0 with x0 = (x0

1,x
0
2) being an arbitrary point from C(0). The analysis in Exam-

ple 4.1 shows that the assumptions (A1)–(A4) and the requirements (i) and (ii) on g(t,x) in the
formulation of Theorem 3.2 are satisfied. Hence, by Remark 3.1 and Theorem 3.2, the sweep-
ing process (3.1) has a unique absolutely continuous solution x(·). To have an explicit formula
for this solution x(·), we first suppose that x0 belongs to the interior of C(0). This means that
|x0

1|< x0
2. Put tx0 = x0

2−|x0
1| and note that tx0 > 0.

Case 1: T ≤ tx0 . In this case, since f1(t,x0) = t−x0
2 + |x0

1|= t− tx0 < 0 for all t ∈ [0,T ), one
has x0 ∈ int(C(t)) for all t ∈ [0,T ). So, setting x(t) = x0 for t ∈ I, we obtain

NC(t)(x(t)) = {(0,0)}

for all t ∈ [0,T ). Therefore, (3.1) is satisfied. Since the solution is unique by Theorem 3.2, the
just defined constant trajectory is the unique absolutely continuous solution of the sweeping
process under our consideration.
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Case 2: tx0 < T . First, consider the subcase where tx0 ≤ 2|x0
1|+ tx0 < T . Let us prove that the

unique solution x(·) can be given by the formula

x(t) =


x0 if t ∈ [0, tx0)

(x0
1− sign(x0

1)
t−tx0

2 ,x0
2 +

t−tx0
2 ) if t ∈ [tx0,2|x0

1|+ tx0)

(0, t) if t ∈ [2|x0
1|+ tx0,T ].

(4.4)

Note that the function x(·) is absolutely continuous on [0,T ] and x(0) = x0. Arguing as in
Case 1, we obtain −ẋ(t) ∈NC(t)(x(t))+g(t,x(t)) for every t ∈ [0, tx0). For t ∈ [tx0,2|x0

1|+ tx0),

if x0
1 ≤ 0 then t <−2x0

1 + tx0 . Hence, x1(t) = x0
1 +

t−tx0
2 < 0. Combining this with (4.4) yields

f1(t,x(t)) = t− x2(t)+ |x1(t)|= t−
(

x0
2 +

t− tx0

2

)
−
(

x0
1 +

t− tx0

2

)
= 0.

This means that x(t)∈ ∂C(t), x1(t)< 0; so ∂C f1(t,x(t))= {(−1,−1)}. Thanks to the continuity
and convexity of the function f1(t, ·), applying [1, Proposition 2.4.4] we have NC(t)(x(t)) =
R+{(−1,−1)}. It follows that ẋ(t) = (1

2 ,
1
2) ∈ −NC(t)(x(t)) for all t ∈ (tx0,−2x0

1 + tx0). The
situation x0

1 > 0 can be treated similarly. Therefore, −ẋ(t) ∈ NC(t)(x(t)) + g(t,x(t)) for t ∈
(tx0,2|x0

1|+ tx0). Now, for t ∈ [2|x0
1|+ tx0 ,T ], one has −ẋ(t) ∈NC(t)(x(t))+ g(t,x(t)) by (4.4)

and the result given in Example 4.1. Therefore, (4.4) describes the unique absolutely continuous
solution x(·) of the problem in question. In the situation where tx0 < T ≤ 2|x0

1|+ tx0 , arguing
analogously as before, we can show that the formula

x(t) =

{
x0 if t ∈ [0, tx0)

(x0
1− sign(x0

1)
t−tx0

2 ,x0
2 +

t−tx0
2 ) if t ∈ [tx0,T ]

(4.5)

describes the unique absolutely continuous solution x(·) of our problem.
Now, suppose that x(0) ∈ ∂C(0). This means that x0

2− |x0
1| = 0. This situation reduces to

Case 2 above with tx0 := x0
2−|x0

1|= 0. So, the unique absolutely continuous solution x(·) of our
problem is given by

x(t) =

{
(x0

1− sign(x0
1)

t
2 ,x

0
2 +

t
2) if t ∈ [0,2|x0

1|)
(0, t) if t ∈ [2|x0

1|,T ]
(4.6)

whenever 2|x0
1|< T , and

x(t) =
(

x0
1− sign(x0

1)
t
2
,x0

2 +
t
2

)
for t ∈ [0,T ] (4.7)

whenever 2|x0
1| ≥ T . As in the preceding example, the problem here and the obtained solution

can be interpreted respectively as a mechanical problem and a mechanical motion as follows.
Suppose that, at time t = 0, there is a small metal ball standing at the point x0 ∈ C(0) in the
horizontal plane R2. When the set C(0) moves along the x2-axis with the velocity 1 (see (4.1)),
its boundary - a firm frame consisting of two orthogonal half-lines - also moves along the x2-
axis with the velocity 1. The ball cannot overpass the frame. If x0 ∈ int(C(0)), x1(0) 6= 0, and
2|x0

1|+ tx0 < T with tx0 := x0
2− |x0

1|, then (4.4) shows that the motion of the ball in the time
segment [0,T ] and has three phases: (a) Until the time instant tx0 , the ball stays still; (b) In the
time interval [tx0,2|x0

1|+tx0), the ball goes steadily along one wing of the boundary of C(0) with
the speed

√
2

2 (the ball is on the left wing if x1(0) < 0 and it is on the right wing if x1(0) > 0);
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(c) In the time interval [2|x0
1|+ tx0,T ], the ball always lies in the corner of the above-mentioned

frame. Similar interpretations can be given for formulas (4.5)–(4.7).

Let the horizontal plane R2 in the preceding example be replaced by a vertical plane R2,
where the x2-axis is orthogonal to the earth surface and pointing up. Then, the set C(t) given
by (4.1) can be interpreted as the position of the set

C(0) = {x ∈ R2 | −x2 + |x1| ≤ 0}
at time t. In other words, in accordance with formula (4.1), the set C(0) is moving up along the
x2-axis with the velocity 1. As before, the boundary of C(0) - a firm frame - also moves along the
x2-axis with the velocity 1. Note that the metal ball in question cannot overpass the frame. Since
the ball has the tendency to go down straightly with the acceleration g0 = 9.8, the velocity of its
free fall is−g0t. So the equation of motion of the ball should be−ẋ(t)∈NC(t)(x(t))+g(t,x(t))
for almost everywhere t ∈ I, where g(t,x) := (0,g0t). The solution of this mechanical problem
is given below.

Example 4.3. Consider problem (3.1) with the data given in Example 4.1 except for g(t,x) =
(0,g0t), where g0 = 9.8 is the gravitational acceleration. Let the initial condition be x(0) =
(x0

1,x
0
2). As we know from the two examples above, the assumption (A1)–(A4) hold true. Since

g(t,x) is independent of the second variable, it is clear that the requirement (i) in Theorem 3.2
is satisfied. In addition, as g(t,x) is a linear function of t, the requirement (ii) in the theorem
is satisfied with the choice β (t) = g0t. Hence, by Remark 3.1 and Theorem 2.2, the sweeping
process (3.1) has a unique absolutely continuous solution x(·). To provide an explicit formula
for this solution x(·), we first consider the situation where x0 ∈ int(C(0)). Putting tx0 = x0

2−|x0
1|,

one has tx0 > 0. Define θ 1
x0
=
−1+
√

1+2g0tx0
g0

and θ 2
x0
=
−1+

√
1+2g0(tx0+2|x0

1|)
g0

. It is clear that
0 < θ 1

x0
≤ θ 2

x0
.

Case 1: T ≤ θ 1
x0

. Setting

x(t) = (x0
1,x

0
2−

g0t2

2
) (∀t ∈ I), (4.8)

we have f1(t,x(t)) = t− x0
2 +

g0t2

2 + |x0
1| < 0, for any t ∈ [0,T ). Hence, x(t) ∈ int(C(t)) for all

t ∈ [0,T ). So, NC(t)(x(t)) = {(0,0)} for all t ∈ [0,T ). Since−ẋ(t) = (0,g0t), it follows that the
inclusion in (3.1) is satisfied for all t ∈ [0,T ). Therefore, Theorem 3.2 assures that the chosen
trajectory is the unique absolutely continuous solution of (3.1).

Case 2: θ 1
x0
< T . If θ 1

x0
≤ θ 2

x0
< T. then the explicit formula for the solution x(·) is

x(t) =


(x0

1,x
0
2−

g0t2

2 ) if t ∈ [0,θ 1
x0
)

(x0
1− sign(x0

1)
(

t−tx0
2 + g0t2

4

)
,x0

2 +
t−tx0

2 −
g0t2

4 ) if t ∈ [θ 1
x0
,θ 2

x0
)

(0, t) if t ∈ [θ 2
x0
,T ].

(4.9)

Indeed, the function x(·) is an absolutely continuous on [0,T ], x(0)= x0, and a direct verification
shows that −ẋ(t) ∈NC(t)(x(t))+ (0,g0t) for t ∈ [0,θ 1

x0
). Now, suppose that x0

1 ≤ 0. Then we

have x1(t) = x0
1 +

t−tx0
2 + g0t2

4 < 0 for t ∈ [θ 1
x0
,θ 2

x0
). So, for t ∈ [θ 1

x0
,θ 2

x0
), one has

f1(t,x(t)) = t− x0
2−

t− tx0

2
+

g0t2

4
− x0

1−
t− tx0

2
− g0t2

4
= 0.
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Hence, x(t) ∈ ∂C(t). Since x1(t) < 0, this implies that ∂C f1(t,x(t)) = {−1,−1} for every
t ∈ [θ 1

x0
,θ 2

x0
). Thanks to the continuity and convexity of f1(t, ·), applying [1, Proposition 2.4.4],

we obtain NC(t)(x(t)) = R+{(−1,−1)} for t ∈ [θ 1
x0
,θ 2

x0
). Since

ẋ(t) =
(

1+g0t
2

,
1+g0t

2
−g0t

)
,

one has −ẋ(t) ∈ NC(t)(x(t)) + (0,g0t) for t ∈ (θ 1
x0
,θ 2

x0
). Thus, for every t ∈ (θ 1

x0
,θ 2

x0
), the

inclusion −ẋ(t) ∈NC(t)(x(t))+g(t,x) holds. For t ∈ (θ 2
x0
,T ), it is clear that f1(t,x(t)) = 0 and

ẋ(t) = (0,1). Since NC(t)(x(t)) = R+([−1,1]×{−1}), the inclusion

−ẋ(t) ∈NC(t)(x(t))+g(t,x)

holds for t ∈ (θ 2
x0
,T ). Therefore, the function x(·) given in (4.9) describes the unique absolutely

continuous solution of the problem under consideration. The situation x0
1 > 0 can be treated

similarly. If T ≤ θ 2
x0

, arguing analogously, we can prove that the formula

x(t) =

(x0
1,x

0
2−

g0t2

2 ) if t ∈ [0,θ 1
x0
)

(x0
1− sign(x0

1)
(

t−tx0
2 + g0t2

4

)
,x0

2 +
t−tx0

2 −
g0t2

4 ) if t ∈ [θ 1
x0
,T ]

(4.10)

describes the unique solution x(·).
Now, suppose that x(0) ∈ ∂C(0). It is not difficult to show that the unique absolute solution

x(·) is described as

x(t) =

{
(x0

1− sign(x0
1)
(

t
2 +

g0t2

4

)
,x0

2 +
t
2 −

g0t2

4 ) if t ∈ [0,θ 2
x0
),

(0, t) if t ∈ [θ 2
x0
,T ].

(4.11)

if θ 2
x0
< T , and by the formula

x(t) =
(

x0
1− sign(x0

1)

(
t
2
+

g0t2

4

)
,x0

2 +
t
2
− g0t2

4

)
for t ∈ [0,T ]. (4.12)

if θ 2
x0
≥ T . The mechanical meanings of the motion modes (4.8)–(4.12) of the metal ball are

similar to those explained in Example 4.2.

Remark 4.1. By RT we denote the set of end points of the sweeping process (1.2), i.e., the set
of all x(T ) with x(·) being the unique solution of (3.1) where x0 ∈C(0) is chosen arbitrarily. It
is an interesting question that under which conditions on C(t), t ∈ [0,T ], we have RT =C(T ).
The following example shows that even when C(t) is just a linear translation of C(0), we get a
negative answer. The system{

−ẋ(t) ∈NC(t)(x(t))+g(t,x(t)) a.e. t ∈ I,
x(T ) = x1

(4.13)

will be used in our analysis.

Example 4.4. Consider problem (3.1) with H = R2, m = 2,

f1(t,x) = t− x2 + |x1|, f2(t,x) = x2− t−1,
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and g(t,x) = 0 for all t ∈ [0,T ], where T = 3, and x = (x1,x2) ∈ R2. Here, we have

C(t) = {x ∈ R2 | −x2 + |x1| ≤ −t, x2 ≤ t +1}. (4.14)

Let the terminal condition be x(T )= (x1
1,x

1
2). If (4.13) has a solution x(·), then one has x(0)= x0

for some x0 =(x0
1,x

0
2)∈C(0). Since the assumptions (A1)–(A4) and the requirements (i) and (ii)

on g(t,x) in the formulation of Theorem 3.2 are satisfied, by Remark 3.1 and Theorem 3.2, the
sweeping process (3.1) with the chosen x0 has a unique absolutely continuous solution. Using
the formula of C(t) in (4.14), one can easily show that |x0

1| ≤ 1. For tx0 := x0
2−|x0

1|, we have
2|x0

1|+ tx0 ≤ 2 < T . Arguing similarly to Example 4.2, we can show that the unique absolutely
continuous solution x(·) of (3.1) is given by (4.4) if x0

2 = 1 or if x0 ∈ int(C(0)), and by (4.6) if
x0

2 < 1 and x0 ∈ ∂C(0). In both cases, we have x(T ) = (0,3). So, the following assertions are
valid: (i) If x1 6= (0,3), then problem (4.13) has no solution; (ii) If x1 = (0,3), then (4.13) have
infinite number of solutions; (iii) For any x0 ∈C(0), the unique solution x(·) of (1.2) ends at the
point x(T ) = (0,3).

However, if the sweeping process (4.13) in Remark 4.1 is subjected to multi-valued pertur-
bations g(t,x(t)), then the above question can be considered as a controllability problem, for
which we expect to have a positive solution. This issue will be addressed in our further work.

5. CONCLUSIONS

In this paper, the solution existence as well as the solution uniqueness for perturbed sweeping
processes has been studied under the assumption of the prox-regularity of the constraint sets.

If the perturbation function g(t,x) is multi-valued, then we have deal with multi-valued per-
turbed sweeping processes in the prox-regular case. For these problems, it is of interest to
establish some results on the solution existence, continuous dependence of the solutions, and
the reachability of sweeping processes similar to the ones given in the present paper.

It is unclear to us whether one can relax the assumptions of Theorem 3.1 in such a way that
the solution existence of the problem (3.1) is still guaranteed, or not.
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No. 3, 36 pages, Secrétariat des Math., Publ. No. 122, 1972.



PROX-REGULAR PERTURBED SWEEPING PROCESSES 13

[5] G. Colombo, V.V. Goncharov, The sweeping processes without convexity, Set-Valued Anal., 7 (1999), 357-
374.

[6] M. Bounkhel, Existence and uniqueness of some variants of nonconvex sweeping processes, J. Nonlinear
Convex Anal., 8 (2007), 311-323.

[7] P. Hartman, Ordinary Differential Equations, John Wiley & Sons, New York, 1964.
[8] C. Castaing, T.X. Duc Ha, M. Valadier, Evolution equations governed by the sweeping process, Set-Valued

Anal., 1 (1993), 109-139.
[9] C. Castaing, M.D.P. Monteiro Marques, Topological properties of solution sets for sweeping processes with

delay, Portugal. Math., 54 (1997), 485-507.
[10] M. Bounkhel, L. Thibault, Nonconvex sweeping process and prox-regularity in Hilbert space, J. Nonlinear

Convex Anal., 6 (2005), 359-374.
[11] J.F. Edmond, L. Thibault, BV solutions of nonconvex sweeping process differential inclusion with perturba-

tion, J. Differential Equations 226 (2006), 135-179.
[12] J.F. Edmond, L. Thibault, Relaxation of an optimal control problem involving a perturbed sweeping process,

Math. Program., 104 (2005), Ser. B, 347-373.
[13] S. Adly, F. Nacry, L. Thibault, Preservation of prox-regularity of sets with applications to constrained opti-

mization, SIAM J. Optim., 26 (2016), 448-473.
[14] G. Colombo, L. Thibault, Prox-regular sets and applications, In: Handbook of Nonconvex Analysis and

Applications, pp. 99-182, Int. Press, Somerville, MA, 2010.
[15] Y. Benyamini, J. Lindenstrauss, Geometric Nonlinear Functional Analysis, American Mathematical Society,

1998.
[16] J. Diestel, J.J. Uhl, Jr., Vector Measures, American Mathematical Society, Providence, R.I., 1977.


	1. Introduction
	2. Preliminaries
	3. Solution Existence Theorems
	4. Applications to Mechanical Sweeping Processes
	5. Conclusions
	References

