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Abstract. Let X ⊂ Cn be an affine variety and f : X → Cm be the restriction to X of a

polynomial map Cn → Cm. In this paper, we construct an affine Whitney stratification of X. The

set K(f) of stratified generalized critical values of f can be also computed. We show that K(f) is

a nowhere dense subset of Cm, which contains the set B(f) of bifurcation values of f by proving a

version of the Thom isotopy lemma for non-proper polynomial maps on singular varieties.

1. Introduction

Ehresmann’s fibration theorem [3] states that a proper smooth surjective submersion f : X → N

between smooth manifolds is a locally trivial fibration. With some extra assumptions, this result

has been considered in different contexts.

Firstly, if we remove the assumption of properness or submersiveness, in general, Ehresmann’s

fibration theorem does not hold since f might have “local singularities” or “singularities at infinity”.

The set of points in N where f fails to be trivial, denoted by B(f), is called the bifurcation set of

f , which is the union of the set K0(f) of critical values and the set B∞(f) of bifurcation values

at infinity of f . So far, characterizing B∞(f) is still an open problem. In general, people use a

bigger set (but easier to describe), the set of asymptotic critical values of f(see Definition 3.1),

denoted by K∞(f), to control B∞(f). The set K∞(f) is always a nowhere dense subset of Cm and

it is a good approximation of the set B∞(f). For a dominant map f : X → Cm on smooth complex

affine variety X, the computation of K∞(f), and hence of the set of generalized critical values,

K(f) := K0(f) ∪K∞(f), is given in [8], [9], [10].

Now if X is singular, we need to partition X into disjoint smooth manifolds and then apply

Ehresmann’s fibration theorem on each part. However, if we do not require any extra assumption,

then the trivialization on the parts may not match. This obstacle can be overcome by introducing

the Whitney conditions [21, 22]. Indeed, if f is proper and X admits a Whitney stratification, then

f is locally trivial if it is a submersion on strata [18, 13, 20]. Moreover, if f is non proper and non

submersive, we can also define the bifurcation set of f such that f is locally trivial outside B(f).
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However, so far, to our knowledge, no connection between B(f) and the set of stratified gener-

alized critical values of f , defined by K(f,S) :=
⋃
Xα∈S K(f,Xα), for a Whitney stratification

S of X, has been established. Here K(f,Xα) = K0(f,Xα) ∪K∞(f,Xα), where K0(f,Xα) is the

closure of the set of critical values of f|Xα and K∞(f,Xα) = {y ∈ Cm : there is a sequence xk →
∞; xk ∈ Xα : ‖xk‖ν(dxk(f |Xα)) → 0 and f(xk) → y} (ν denotes the Rabier function, see section

5).

Let X ⊂ Cn be a singular algebraic set of dimension n − r with I(X) = (g1, . . . , gω) and let

f := (f1, . . . , fm) : X → Cm be a polynomial dominant map, i.e., f(X) = Cm . Now restricting

ourselves to the cases of dominant polynomial maps on singular affine varieties, the main goals of

this paper are the following:

• Construct an affine Whitney stratification S of X.

• Establish some version of the Thom isotopy lemma for f which yields the inclusion B(f) ⊂
K(f,S).

• Calculate the set K(f,S) of stratified generalized critical values of f .

The paper is organized as follows. In Section 2, we recall the definitions of Whitney regularity

and Whitney stratification, then we construct an affine stratification from a filtration of X by

means of some hypersurfaces, and refine it to get an affine Whitney stratification. Some versions

of the Thom isotopy lemma for non-proper polynomial maps (Theorem 3.1 and Corollary 3.1) will

be given in Section 3. Then we compute the set of stratified generalized critical values of f , which

contains the bifurcation values of f , where f := (f1, . . . , fm) : X → Cm is a polynomial dominant

map, in the last Sections 4 and 5.

For the remainder of the paper, the differential of f at a point x is identified with its (row)

matrix, so we write dxf =
(
∂f
∂x1

(x), . . . , ∂f∂xn (x)
)

. Let

∇f(x) :=


∂f
∂x1

(x)
...

∂f
∂xn

(x)

 ,
the Hermitian transpose of dxf. For v, w ∈ Cn, denote by 〈v, w〉 =

∑n
i=1 viwi the Hermitian product,

and let v · w =
∑n

i=1 viwi. For a set A ⊂ Cn, let A and A
Z

denote respectively the topological

closure and the Zariski closure of A. For an algebraic variety X, the singular part and the regular

part of X are denoted respectively by sing(X) and reg(X).

2. Affine Whitney stratifications

2.1. Preliminaries. For any two different points x, y ∈ Cn, define the secant xy to be the line

passing through the origin which is parallel to the line through x and y.

A stratification S of X is a decomposition of X into a locally finite disjoint union X =
⊔
α∈I

Xα

of non-empty, non-singular, connected, locally closed subvarieties, called strata, such that the
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boundary ∂Xα := Xα \Xα of any stratum Xα is a union of strata. If, in addition, for each α, the

closure Xα and the boundary ∂Xα are affine varieties, then we call S an affine stratification. It

is obvious that any affine stratification is finite.

For linear subspaces F,G ⊆ Cn, let

δ(F,G) := sup
x∈F
‖x‖=1

dist(x,G),

where dist(x,G) is the Hermitian distance.

Let (Xα, Xβ) be a pair of strata of S such that Xβ ⊂ Xα and let x ∈ Xβ. We recall some

regularity conditions:

(a) The pair (Xα, Xβ) is said to be Whitney (a) regular at x ∈ Xβ if it satisfies the following

Whitney condition (a) at x: if xk ∈ Xα is any sequence such that xk → x and TxkXα → T ,

then T ⊃ TxXβ.

(w) The pair (Xα, Xβ) is said to be (w) regular at x ∈ Xβ (or strictly Whitney (a)

regular at x with exponent 1) if it satisfies the following condition (w) at x: there exist

a neighborhood U of x in Cn and a constant c > 0 such that for any y ∈ Xα ∩ U and

x′ ∈ Xβ ∩ U , we have δ(Tx′Xβ, TyXα) 6 c‖y − x′‖.
(b) The pair (Xα, Xβ) is said to be Whitney regular at x ∈ Xβ if it satisfies the following

Whitney condition (b) at x: for any sequences xk ∈ Xα and yk ∈ Xβ, y
k 6= xk, such that

xk → x, yk → x, TxkXα → T and xkyk converges to a line ` in the projective space Pn−1,

we have ` ⊂ T.

We say that the pair (Xα, Xβ) is Whitney (a) regular (resp. Whitney regular) if it is

Whitney (a) regular (resp. Whitney regular) at every point of Xβ. We say that S is a Whitney

(a) stratification (resp. a Whitney stratification) if any pair of strata (Xα, Xβ) of S with

Xβ ⊂ Xα is Whitney (a) regular (resp. Whitney regular). It is well-known that Whitney regularity

implies Whitney (a) regularity [21, 22]. Moreover, in light of [17, V.1.2], the Whitney condition (b)

is equivalent to the condition (w) for the category of complex analytic sets, so to check Whitney

regularity, we can verify either condition (w) or condition (b).

For the purpose of this paper, we also need the following notion of Whitney (resp. Whitney (a))

regularity along a stratum. Let Xβ be a stratum of S and let x ∈ Xβ. We say that Xβ is Whitney

regular (resp. Whitney (a) regular) at x if for any stratum Xα such that Xβ ⊂ Xα, the pair

(Xα, Xβ) is Whitney (resp. Whitney (a)) regular at x. The stratum Xβ is Whitney regular

(resp. Whitney (a) regular) if it is Whitney (resp. Whitney (a)) regular at every point of Xβ.

It is clear that S is a Whitney (resp. a Whitney (a)) stratification if and only if each stratum of S
is Whitney (resp. Whitney (a)) regular.

2.2. Construction of affine stratifications. Let us, first of all, fix an affine stratification of X

whose construction is based on the following proposition.
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Proposition 2.1. Let X ⊂ Cn be an affine subvariety of pure codimension r. Assume that I(X) =

(g1, . . . , gω), where deg gi ≤ D. Let W be an affine subvariety of positive codimension in X with

I(W ) = (g1, . . . , gω, u1, . . . , uτ ) where ui 6∈ I(X) and deg ui 6 D′. Then there exists a polynomial

pX,W on Cn of degree less than or equal to r(D − 1) + D′ such that W ⊆ V (pX,W ) := {x ∈ Cn :

pX,W (x) = 0} and X \ V (pX,W ) is a smooth, dense subset of X. Moreover, the polynomial pX,W

can be constructed effectively.

Proof. Let X =
⋃m
i=1 Yi, where Yi are irreducible (hence r-codimensional) components of X. Take

sufficiently generic (random) rational numbers αij ∈ Q, i = 1, . . . , r, j = 1, . . . , ω and set

Gi =

ω∑
j=1

αijgj , i = 1, . . . , r.

Here and in the following, to obtain a generic number, it is sufficient to take a random rational

number and verify the genericity condition, the procedure is repeated until the genericity condition

is satisfied. Note that the set Z := V (G1, . . . , Gr) has pure codimension r and X ⊂ Z. Let γ1, . . . , γτ

be some (random) generic rational numbers and set

H :=

1 if W = ∅,∑τ
i=1 γiui otherwise.

Clearly dim
(
X∩V (H)

)
< dimX. Moreover, for a sufficiently general linear r-dimensional subspace

Lr ⊂ Cn the intersection Lr ∩ Z has only isolated smooth points and Lr ∩ Yi 6= ∅ for every i =

1, . . . ,m. We can assume that Lr is determined by the linear forms li =
∑n

j=1 βijxj , i = 1, . . . , n−r,
where βij are sufficiently generic (random) rational numbers. Now take

pX,W = |Jac(G1, . . . , Gr, l1, . . . , ln−r)| ·H,

where Jac(.) denotes the Jacobian matrix. Then pX,W is a polynomial with the required properties.

�

Remark 2.1. Theoretically, a random rational number is a generic rational number, but practically

by random numbers we mean rational numbers produced by special random algorithms.

The polynomial pX,W can be found by using a probabilistic algorithm. First recall the following.

Definition 2.1. Let I be an ideal in C[x1, . . . , xn]. We define the homogenization of I to be the

ideal Ih generated by {fh : f ∈ I} ⊂ C[x0, . . . , xn], where fh is the homogenization of f .

Theorem 2.1. [2, Theorem 4, §4, Chapter 8, page 388] Let I be an ideal in k[x1, . . . , xn] and let

G = {g1, . . . , gs} be a Gröbner basis for I with respect to a graded lexicographic order in k[x1, . . . , xn]

(i.e., the lexicographic order that first compares the total degree: xα > xβ whenever |α| > |β|). Then

Gh = {gh1 , . . . , ghs } is a basis for Ih ⊂ k[x0, x1, . . . , xn].
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This theorem allows us to compute the set of points at infinity of an affine variety given by

the ideal I, to this aim it is enough to compute the Gröbner basis {g1, . . . , gs} of the ideal I and

then to consider the ideal I∞ = (x0, g
h
1 , . . . , g

h
s ). In particular we can check effectively, whether

Lr ∩X ∩ {x0 = 0} = ∅, which implies that Lr ∩ Yi 66= ∅ for i = 1, ...,m (see the proof of Proposition

2.1). This is crucial for our computations.

Now we sketch the algorithm to compute the polynomial pX,W . Note that for a given ideal I we

can compute dim V (I) by [19].

INPUT: The ideal I = I(X) = (g1, . . . , gω) and the ideal J = I(W ) = (g1, . . . , gω, u1, . . . , uτ )

1) repeat

choose random rational numbers αi1, . . . , αiω, i = 1, . . . , r;

put Gi :=
∑ω

k=1 αikgk, i = 1, . . . , r;

put I = (G1, . . . , Gr);

until dimV (I) = n− r.
2) repeat

choose random rational numbers βi1, . . . , βin, i = 1, . . . , n− r;
put li :=

∑n
k=1 βikxk, i = 1, . . . , n− r;

put I = (G1, . . . , Gr, l1, . . . , ln−r);

compute the ideal I∞ = (H1, . . . ,Hm) ⊂ k[x0, . . . , xn];

if dim V (I∞) = 0 then

begin

compute V (G1, . . . , Gr, l1, . . . , lr) := {a1, . . . , ap}
end

until dimV (I∞) = 0 and |Jac(G1, . . . , Gr, l1, . . . , ln−r)(ai)| 6= 0 for i = 1, . . . p.

3) repeat

choose random rational numbers γ1, . . . , γτ ;

put H :=
∑τ

k=1 γiuk ;

put J = (G1, . . . , Gr, H);

until dimV (J) < n− r.

OUTPUT: pX,W = |Jac(G1, . . . , Gr, l1, . . . , ln−r)| ·H

Remark 2.2. Let us assume that I(X) and I(W ) are generated by polynomials from the ring

F[x1, . . . , xn], where F is a subfield of C. Then we can choose a polynomial pX,W such that pX,W ∈
F[x1, . . . , xn].

From the proof of Proposition 2.1, with no loss of generality, we can assume that rankJac(g1, . . . , gr) =

r on some non-empty regular open subset X0 of X and that X = X0. It is clear that V (pX,W )

contains sing(X) ∪W and the singular points of the projection (l1, . . . , ln−r) : X → Cn−r. Now to

5



construct an affine stratification of X, it is enough to construct an affine filtration X = X0 ⊃ X1 ⊃
· · · ⊃ Xn−r ⊃ Xn−r+1 = ∅ by induction with Xi+1 := Xi ∩ V (pXi,∅), i = 0, . . . , n− r. The degree

of each Xi can be calculated and depends only on D.

2.3. Construction of affine Whitney stratifications. In this section, we will construct an

affine Whitney stratification of a given affine variety X, with I(X) = (g1, . . . , gr) and deg gi ≤ D,

by refining the affine stratification given in Subsection 2.2 so that the resulting stratification is still

affine and moreover satisfies the Whitney condition.

First of all, inspired by the construction in [5, 17], let us describe the Whitney condition (b)

algebraically. Assume that Y ⊂ X is an affine subvariety of X with dimY < dimX defined by

Y := X ∩ {g̃r+1 = · · · = g̃p = 0}.

Set

Γ1 :=



(x, y, w, v, γ, λ) ∈ Cn × Cn × Cn × Cn × C× Cr :

g1(x) = · · · = gr(x) = 0

g1(y) = · · · = gr(y) = g̃r+1(y) = · · · = g̃p(y) = 0

w = γ(x− y)

v =
∑r

i=1 λidxgi


,

and let

π1 : Cn × Cn × Cn × Cn × C× Cr → Cn × Cn × Cn × Cn

be the projection on the first 4n coordinates. Let C(X,Y ) = π1(Γ1)
Z ⊂ (X ×Y ×Cn×Cn), where

the closure is taken in the Zariski topology (which coincides with the topological closure, see e.g.,

[16, Proposition 7]). Of course, C(X,Y ) is an affine variety. We have the following.

Lemma 2.1. For each (x, x, w, v) ∈ C(X,Y ), there are sequences xk ∈ X0, yk ∈ Y, γk ∈ C and

λk ∈ Cr such that

• xk → x,

• yk → x,

• wk := γk(xk − yk)→ w,

• vk :=
∑r

i=1 λ
k
i dxkgi → v.

Proof. By construction, there are sequences x̄k ∈ X, yk ∈ Y, γ̄k ∈ C and λk ∈ Cr such that

x̄k, yk → x, w̄k := γ̄k(x̄k − yk)→ w and
∑r

i=1 λ
k
i dx̄kgi → v. It is clear that by taking subsequences

if necessary, we may suppose that:

• either x̄k = yk for every k or x̄k 6= yk for every k,

• for each i, either λki 6= 0 for every k or λki = 0 for every k.

Set

γk =

0 if x̄k = yk for every k,

γ̄k if x̄k 6= yk for every k.
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Suppose that λki 6= 0 for i = 1, . . . , r′ 6 r, k ∈ N and λki = 0 for i = r′ + 1, . . . , r, k ∈ N. Since

x̄k ∈ X0, there exists a sequence xk ∈ X0 such that

‖xk − x̄k‖ 6

 1
k if x̄k = yk for every k,

‖x̄k−yk‖
k if x̄k 6= yk for every k,

so xk → x. By continuity, we can also choose xk so that ‖dxkgi − dx̄kgi‖ < 1
kλki

if λki 6= 0. Set

vk :=
∑r

i=1 λ
k
i dxkgi. Then∥∥vk −∑r

i=1 λ
k
i dx̄kgi

∥∥ =
∥∥∑r′

i=1 λ
k
i

(
dxkgi − dx̄kgi

)∥∥
6

∑r′

i=1 |λki |
∥∥dxkgi − dx̄kgi∥∥ < r′

k → 0,

i.e., vk → v. Set wk := γk(xk − yk). Now if x̄k = yk for every k, then γk = 0 and w = w̄k = 0, so

we have wk = 0 = w. If x̄k 6= yk for every k, then

‖wk − w̄k‖ = |γk| · ‖(xk − x̄k)‖ 6 |γk| · ‖x̄
k − yk‖
k

=
‖w̄k‖
k
→ 0.

Hence wk → w. The lemma is proved. �

The following algebraic criterion permits us to check Whitney regularity on Y 0 = Y \ V (pY,W ),

where the notation V (pY,W ) is from Proposition 2.1, and the affine set W will be determined later.

Lemma 2.2. Let x ∈ Y 0. Then the pair (X0, Y 0) satisfies the Whitney condition (b) at x if and

only if for any (x, x, w, v) ∈ C(X,Y ), we have v · w = 0.

Proof. Suppose that (X0, Y 0) is Whitney regular at x and assume for contradiction that there is

(x, x, w, v) ∈ C(X,Y ) such that v ·w 6= 0. In view of Lemma 2.1, there are sequences xk ∈ X0, yk ∈
Y, γk ∈ C and λk ∈ Cr such that

• xk → x, yk → x,

• wk := γk(xk − yk)→ w,

• vk :=
∑r

i=1 λ
k
i dxkgi → v.

Note that w 6= 0, so w determines the limit of the sequence of secants xkyk and it follows that

xk 6= yk for k large enough. By taking a subsequence if necessary, we may assume that TxkX
0 → T.

By assumption, w ∈ T. For each k, let {bk1, . . . , bkr} be an orthonormal basis of NxkX
0; recall that

NxkX
0 := span{dxkg1, . . . , dxkgr} is the normal space ofX0 at xk.Obviously 〈bk1, . . . , bkr 〉⊥ = TxkX

0.

By compactness, each sequence bki has an accumulation point bi. Without loss of generality, suppose

that bki → bi. It is clear that the system {b1, . . . , br} is also orthonormal and 〈b1, . . . , br〉⊥ = T. Let

λ̃k = (λ̃k1, . . . , λ̃
k
r ) be such that vk :=

∑r
i=1 λ̃

k
i b
k
i . Then λ̃k is convergent to a limit λ̃ and it is clear

that v =
∑r

i=1 λ̃ibi. Finally, we have w ∈ T = 〈b1, . . . , br〉⊥ ⊂ 〈v〉⊥, i.e., v · w = 0, which is a

contradiction.

Now suppose that v · w = 0 for any (x, x, w, v) ∈ C(X,Y ) and assume, that (X0, Y 0) is not

Whitney regular at x. So there are sequences xk ∈ X0 and yk ∈ Y 0 with the following properties:

• xk 6= yk, xk → x, yk → y;
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• TxkX0 → T ;

• the sequence of secants xkyk tends to a line ` 6⊂ T .

For each k, let {bk1, . . . , bkr} be an orthonormal basis of NxkX
0 so 〈bk1, . . . , bkr 〉⊥ = TxkX

0. As above,

we may assume that bki → bi. Then the system {b1, . . . , br} is also orthonormal and 〈b1, . . . , br〉⊥ = T.

Let wk := xk−yk
‖xk−yk‖ ; we can assume that the limit w := limwk exists and clearly w is a direction

vector of `. By assumption, w 6∈ T = 〈b1, . . . , br〉⊥, i.e., there exists an index j such that bj ·w 6= 0.

To get a contradiction, it is enough to show that there is a sequence vk :=
∑r

i=1 λ
k
i dxkgi such that

vk → bj , but this is clear since bkj ∈ span{dxkg1, . . . , dxkgr} so such a sequence always exists. The

lemma is proved. �

Now according to [11, Algorithm 3.3], [7, Algorithm 4.5.3], (see also [4, 6]), it is possible to calcu-

late a basis for the ideal I(Γ1) by calculating the radical of the following ideal in C[x, y, w, v, γ, λ]:
g1(x), . . . , gr(x),

g1(y), . . . , gr(y), g̃r+1(y), . . . , g̃p(y),

w − γ(x− y),

v −
∑r

i=1 λidxgi

 .

Then by Buchberger’s algorithm, we can calculate a Gröbner basis of I(Γ1). So in view of [10,

Theorem 5.1], [14], we can compute a Gröbner basis of the ideal I
(
C(X,Y )

)
. Now we give another

criterion for Whitney regularity.

Lemma 2.3. Let {h1(x, y, w, v), . . . , hq(x, y, w, v)} be a Gröbner basis of I
(
C(X,Y )

)
and set

Γ2 :=


(x, x, w, v, γ, λ) ∈ Cn × Cn × Cn × Cn × C× C :

h1(x, x, w, v) = · · · = hq(x, x, w, v) = 0

γ
∑n

j=1 vjwj = 1

λpY,∅(x) = 1

 ,

where pY,∅(x) is the polynomial determined in Proposition 2.1. Let Y 0 := Y \ V (pY,∅). Then the

pair (X0, Y 0) is not Whitney regular at x if and only if there exists (w, v, γ, λ) ∈ Cn ×Cn ×C×C
such that (x, x, w, v, γ, λ) ∈ Γ2.

Proof. Note that x ∈ Y 0 if and only if pY,∅(x) 6= 0, i.e., there exists λ ∈ C such that λpY,∅(x) = 1.

In view of Lemma 2.2, the pair (X0, Y 0) is not Whitney regular at x if and only if there exist w, v

with v · w 6= 0 such that (x, x, w, v) ∈ C(X,Y ). The lemma follows easily. �

Now we determine an algebraic set W = W (X,Y ) in Y with dimW < dimY and V (pY,∅) ⊂ W
such that the pair (X0, Y \W ) is Whitney regular. Let

π2 : Cn × Cn × Cn × Cn × C× C→ Cn

be the projection on the first n coordinates. By Lemma 2.3, π2(Γ2) is the set of points where

the Whitney condition (b) fails to be satisfied. Let π2(Γ2)
Z

be the Zariski closure of π2(Γ2), then
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π2(Γ2)
Z

is affine. It follows from [21, Theorem 8.5],[22, Lemma 19.3] that dimπ2(Γ2) < dimY , so

dimπ2(Γ2)
Z
< dimY . Set

W = W (X,Y ) := π2(Γ2)
Z

;

then obviously dimW < dimY . Again, applying [11, Algorithm 3.3] or [7, Algorithm 4.5.3], (see

also [4, 6]) to find a system of generators of I(W ), then applying [10, Theorem 5.1], [14], we can

compute a Gröbner basis of the ideal I(W ).

Finally, let

• X0 := X,

• X1 := X0 ∩ V (pX0,∅),

• X2 := X1 ∩ V (pX1,W (X0,X1)),

• X3 := X2 ∩ V (pX2,W (X0,X2)∪W (X1,X2)), . . . ,

• Xi := Xi−1 ∩ V (pXi−1,
⋃i−2
j=0W (Xj ,Xi−1)), . . .

By induction, we can construct a finite filtration of algebraic sets X = X0 ⊃ X1 ⊃ · · · ⊃ Xn−r ⊃
Xn−r+1 = ∅ with dimXi > dimXi+1. Let Bi := Xi \ Xi+1. Then S := {Bi}i=1,...,q is a Whitney

stratification of X. Note that the degree of Xi can be determined explicitly and depends only on

D.

3. Thom isotopy lemma for non-proper maps

We start this section with:

Definition 3.1. Let f : X → Cm be a polynomial dominant map where X is an algebraic

set. Let S = {Xα}α∈I be a stratification of X. By K∞(f,Xα) we mean the set {y ∈ Cm :

there is a sequence xk → ∞; xk ∈ Xα : ‖xk‖ν(dxk(f |Xα)) → 0 and f(xk) → y} (here ν de-

notes the Rabier function, for details see [10] and section 5). Now let C(f,Xα) denote the set of

points where f |Xα is not a submersion. By sing(f,S) we denote the set of stratified singular values

of f , i.e.,

sing(f,S) =
⋃
α∈I

K0(f,Xα), (1)

where K0(f,Xα) = f(C(f,Xα)).

By [10, Theorem 3.3], we have that for every α the set K∞(f |Xα) is closed and has measure 0 in

Cm. In particular the set K(f) defined below is also closed and has measure 0.

Definition 3.2. Let K(f,S) be the set of stratified generalized critical values of f given by

K(f,S) :=
⋃
α∈I

(
K0(f,Xα) ∪K∞(f,Xα)

)
(2)

Remark 3.1. The set K(f,S) is closed. Indeed, it is enough to see that K∞(f,Xα) is closed for

every α. Assume that yk ∈ K∞(f,Xα) and yk → y. So for every k, there are suitable sequences

xkj ∈ Xα, j = 1, 2, . . . , such that limj→∞ f(xkj) = yk. Hence for any k, we can choose xkjk such

that:

9



• ‖f(xkjk)− yk‖ < 1/k,

• ‖xkjk‖ > k,

• ‖xkjk‖ν(dxkjk f) < 1/k.

Set zk := xkjk . Thus zk ∈ Xα, zk → ∞, ‖zk‖ν
(
dzk(f |Xα)

)
→ 0 and f(zk) → y. Consequently

y ∈ K∞(f,Xα).

Assuming that S is an affine Whitney stratification of X, we prove that K(f,S) contains the set

of bifurcation values of f .

Theorem 3.1 (First isotopy lemma for non-proper maps). Let X ⊂ Cn be an affine variety with

an affine Whitney stratification S and let f = (f1, . . . , fm) : X → Cm be a polynomial dominant

map. Let K(f,S) be the set of stratified generalized critical values of f given by (2). Then f is

locally trivial outside K(f,S).

Before proving Theorem 3.1, recall that the Whitney condition (b) is equivalent to the condition

(w) (see [17, V.1.2]), so it is more convenient to use the condition (w) since we will need to construct

rugose vector fields in the sense of [20]. In what follows, it is more convenient to work with the

underlying real algebraic set of X in R2n, denoted also by X; the affine Whitney stratification S
of X induces a semialgebraic Whitney stratification of the underlying set with the corresponding

strata denoted by the same notations Xβ. We also identify the polynomial map f with the real

polynomial map (Ref1, . . . ,Refm, Imf1, . . . , Imfm) : X → R2m.

Let us recall the definitions pertaining to rugosity. Let ψ : X → R be a real function. We say

that ψ is a rugose function if the following conditions are fulfilled:

• The restriction ψ|Xβ to any stratum Xβ is a smooth function.

• For any stratum Xβ and for any x ∈ Xβ, there exist a neighborhood U of x in R2n and a

constant c > 0 such that for any y ∈ X ∩ U and x′ ∈ Xβ ∩ U , we have |ψ(y) − ψ(x′)| 6
c‖y − x′‖.

A rugose map is a map whose components are rugose functions. A vector field v on X is called a

rugose vector field if v is a rugose map and v(x) is tangent to the stratum containing x for any

x ∈ X.

Proof of Theorem 3.1. Let z ∈ Cm \ K(f,S) where we identify Cm with R2m and let B be an

open box centered at z such that B ∩ K(f,S) = ∅. To prove the theorem, it is enough to

prove that f is trivial on B. Without loss of generality, we may suppose that z = 0 and

B = (−1, 1)2m. Let ∂1, . . . , ∂2m be the restrictions of the coordinate vector fields (on R2m) to

B. Set U := f−1(B), Uβ := U ∩Xβ and

I ′ := {β ∈ I : Uβ 6= ∅}.

Clearly U = f−1(B) and I ′ = {β ∈ I : U ∩Xβ 6= ∅}. First of all, let us give a sufficient condition

for trivializing a rugose vector field.
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Lemma 3.1. For i = 1, . . . , 2m, let vi be vector fields on X which are rugose in U . Assume that

df(vi) = ∂i and there is a positive constant c > 0 such that ‖vi(x)‖ 6 ‖x‖+1
c for any x ∈ U . Then

f is a topologically trivial fibration over B.

Proof. It is enough to prove that there is a homeomorphism φ : f−1(B) → f−1(0) × B such that

the following diagram commutes:

f−1(B)
φ−→ f−1(0)×B

f ↘ ↙ π

B

where π denotes the projection on the second factor. We note the following facts:

(i) The flow of vi preserves the stratification. This is a consequence of the rugosity. For more

detail, see [20, Proposition 4.8].

(ii) For each i and any x ∈ U , there is a unique integral curve of vi passing through x. This

follows from the uniqueness of integral curves of smooth vector fields and the fact that vi

preserves the stratification.

Set Y i
t := (y1, . . . , yi−1, t, yi+1, . . . , yn) and Y i = {Y i

t : t ∈ (−1, 1)}. First of all, we will prove that

the flow of vi induces a homeomorphism φi : f−1(Y i)→ f−1(Y i
0 )× (−1, 1) such that the following

diagram commutes:

f−1(Y i)
φi−→ f−1(Y i

0 )× (−1, 1)

pi ◦ f ↘ ↙ πi

(−1, 1)

where πi denotes the projection on the second factor and pi denotes the projection on the ith

coordinate. This follows from the following claim which states that there is no trajectory of vi

going to infinity.

Claim 3.1. For each x ∈ f−1(Y i
0 ), let γ be the integral curve of vi such that γ(0) = x. Then γ

reaches any level f−1(Y i
t ) at time t for t ∈ (−1, 1).

Proof. By assumption, ‖γ̇(t)‖ 6 ‖γ(t)‖+1
c . Without loss of generality, suppose that t > 0. In light

of the Gronwall Lemma, by repeating the calculation of [1, Theorem 3.5], we get

‖γ(t)‖ 6 ‖γ(0)‖+

∫ t

0

‖γ(s)‖+ 1

c
ds

= ‖x‖+
t

c
+

∫ t

0

‖γ(s)‖
c

ds

6
(
‖x‖+

t

c

)
exp

∫ t

0

ds

c
=
(
‖x‖+

t

c

)
e
t
c < +∞,

which implies that the trajectory γ does not go to infinity at time t. Now we have

f
(
γ(t)

)
− f(x) =

∫ t

0
d
[
f
(
γ(t)

)]
=

∫ t

0
dγ(t)f

( .
γ (t)

)
dt =

∫ t

0
∂idt = (0, . . . 0, t, 0, . . . , 0).

Since f(x) ∈ Y i
0 , clearly f

(
γ(t)

)
∈ Y i

t and the claim follows. �
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For any x ∈ f−1(Y i
0 ), let hi(x, t) = x+

∫ t
0

.
γ (s)ds. Then hi defines a homeomorphism f−1(Y i

0 )×
(−1, 1) → f−1(Y i). Then φi = h−1

i is the required homeomorphism. Now for x ∈ f−1(0), let

h : f−1(0)×B → f−1(B) be defined by

h(x, t1, . . . , t2m) = h2m(. . . (h2(h1(x, t1), t2), . . . , t2m).

Then φ := h−1 is a homeomorphism, as required. The lemma is proved. �

Now let us prove the following.

Lemma 3.2. There is a constant c > 0 such that for any β ∈ I ′ and any x ∈ U ∩Xβ, we have

(‖x‖+ 1)ν
(
dx(f |Xβ )

)
> c.

Proof. Assume for contradiction that there exist an index β ∈ I ′ and a sequence xk ∈ U ∩ Xβ

such that (‖xk‖ + 1)ν
(
dxk(f |Xβ )

)
→ 0. Taking a subsequence if necessary, we can suppose that

xk → x, TxkXβ → T and f(xk) → y ∈ B with x ∈ Cn or x = ∞. If x = ∞, then by definition,

y ∈ K∞(f |Xβ ) ⊂ K(f,S). This is a contradiction since B ∩K(f,S) = ∅. Thus x ∈ Cn and we get

ν
(
dxk(f |Xβ )

)
→ 0. In the case x ∈ Xβ, in view of [15, Lemma 2.2], we have ν

(
dx(f |Xβ )

)
= 0, i.e.,

y ∈ K0(f,Xβ), which is also a contradiction. Therefore x ∈ Xβ \Xβ. Denote by Xα the stratum

containing x. Let F = (f1, . . . , fm) : Cn → Cm be the polynomial extending f on Cn. Obviously

ν
(
dxkF |TxkXβ

)
= ν

(
dxk(F |Xβ )

)
= ν

(
dxk(f |Xβ )

)
→ 0. Moreover, since f |Xα is a submersion at x,

so F is a submersion at x. Hence ν
(
dx(F |Xα)

)
6= 0. Since the stratification is Whitney, it implies

that T ⊃ TxXα. Consequently ν
(
dxF |T

)
> ν

(
dx(F |Xα)

)
6= 0. To get a contradiction, we will need

the following claim.

Claim 3.2. Let Ak : Rq → Rp be a sequence of linear maps such that Ak → A as k → +∞ (i.e.,

the terms of the matrix of Ak tends to the corresponding terms of the matrix of A). Let Hk ⊂ Rq

be a sequence of linear subspaces of same dimension such that Hk → H (i.e., δ(Hk, H)→ 0 where

δ(Hk, H) := supy∈Hk,‖y‖=1 dist(y,H) is the distance between Hk and H, dist(·, ·) is the Euclidean

distance). Then ν(Ak|Hk)→ ν(A|H).

Proof. It is clear that

‖ν(Ak|Hk)− ν(A|H)‖ 6 ‖ν(Ak|Hk)− ν(A|Hk)‖+ ‖ν(A|Hk)− ν(A|H)‖.

In light of [15, Lemma 2.1 (iv)], we have

‖ν(Ak|Hk)− ν(A|Hk)‖ 6 ‖Ak|Hk −A|Hk‖ = ‖(Ak −A)|Hk‖ 6 ‖Ak −A‖ → 0. (3)

Note that ν(A) is the length of a minimal semiaxis of the ellipsoid A(Bq) where Bq is the unit ball

in Rq. Since Hk → H we have Bq ∩Hk → Bq ∩H and A(Bq ∩Hk) → A(Bq ∩H) by continuity of

A. Hence also ν(A|Hk)→ ν(A|H).

�
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Applying Claim 3.2 with Ak = dxkF and Hk = TxkXβ, we get

0 = lim
k→∞

ν
(
dxkF |TxkXβ

)
= ν

(
dxF |T

)
,

which is a contradiction. The lemma follows. �

For each β ∈ I ′, it is clear that f |Xβ is a submersion on (f |Xβ )−1(B), so for x ∈ U ∩ Xβ, the

differential dx(f |Xβ ) : TxXβ → R2m is surjective, which induces an isomorphism of vector spaces

d̃x(f |Xβ ) : TxXβ/ ker dx(f |Xβ ) ∼= R2m.

Thus for each i = 1, . . . , 2m, the vector field ∂i can be lifted uniquely and smoothly on each stratum

Xβ with β ∈ I ′, to the vector field called the horizontal lift of ∂i and denoted by vβi . Clearly, vβi (x)

is the unique vector in TxXβ which lifts ∂i and is orthogonal to ker dx(f |Xβ ). Each vβi has the

following important properties.

Lemma 3.3. Let c > 0 be the constant in Lemma 3.2. Then for each x ∈ U ∩Xβ with β ∈ I ′, we

have

‖vβi (x)‖ 6 ‖x‖+ 1

c
.

Proof. Let Bβ be the closed unit ball centered at the origin in TxXβ. Then dx(f |Xβ )(Bβ) is an

ellipsoid in R2m with ν
(
dx(f |Xβ )

)
as the length of shortest semiaxis. Let B2m be the closed unit ball

centered at the origin in R2m. Then
(
d̃x(f |Xβ )

)−1
(
ν
(
dx(f |Xβ )

)
B2m

)
is an ellipsoid in TxXβ with 1

as the length of longest semiaxis. Therefore the longest semiaxis of the ellipsoid
(
d̃x(f |Xβ )

)−1
(B2m)

is 1/ν
(
dx(f |Xβ )

)
. Consequently,

‖vβi (x)‖ 6 1

ν
(
dx(f |Xβ )

) 6 ‖x‖+ 1

c
,

which yields the lemma. �

Note that, for fixed i, the vector field on U which coincides with vβi on each Uβ is not necessarily

a rugose vector field. In what follows, we will try to deform these vector fields to produce a rugose

vector field, which satisfies the assumption of Lemma 3.1. The process is carried out by induction

on dimension.

For 2m 6 d 6 2 dimCX, let I ′d := {β ∈ I ′ : 2m 6 dimXβ 6 d} and Ud :=
⋃
β∈I′d

Xβ ∩ U . By

induction on d, we construct a rugose vector field on U2 dimCX with the property of Lemma 3.1. For

d = 2m, let v2m
i be the restriction to U2m of the smooth vector field on

⋃
β∈I′2m

Xβ which coincides

with each vβi on Xβ for β ∈ I ′2m. Then v2m
i is clearly rugose, df(v2m

i ) = ∂i and by Lemma 3.3,

‖v2m
i (x)‖ 6 ‖x‖+1

c for any x ∈ U2m.

For each i, assume that we have constructed a rugose vector field, denoted by vdi , on Ud such

that dxf
(
vdi (x)

)
= ∂i and ‖vdi (x)‖ 6 ‖x‖+1

cd
for every x ∈ Ud, where cd is a positive constant. We

need to extend each vdi to a rugose vector field vd+2
i on Ud+2 such that ‖vd+2

i (x)‖ 6 ‖x‖+1
cd+2

for every

x ∈ Ud+2, where cd+2 is also a positive constant (recall that the strata of S have even dimension).
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Note that to construct vd+2
i , it is enough to construct vd+2

i separately on each stratum Xα with

α ∈ I ′d+2 \ I ′d. Without loss of generality, suppose that I ′d+2 \ I ′d = {α}.
By [20, Lemma 4.4], for each i = 1, . . . , 2m, there is a rugose vector field on Ud+2, denoted by

w̃d+2
i , which extends vdi , so the restriction w̃d+2

i |Ud+2∩Xα is a smooth vector field. We need to adjust

w̃d+2
i to get a new rugose vector field wd+2

i on Ud+2 such that for any y ∈ Xα ∩ Ud+2, we have

dyf
(
wd+2
i (y)

)
= ∂i.

Lemma 3.4. For y ∈ Ud+2 ∩Xα, write

w̃d+2
i (y) =

2m∑
j=1

aj(y)vαj (y) + P (y),

where P (y) ∈ ker dyf. Define

wd+2
i (x) :=

{
vαi (x) + P (x) if x ∈ Xα ∩ Ud+2

vdi (x) if x ∈ Ud.

Then wd+2
i is a rugose vector field on Ud+2 and dxf

(
wd+2
i (x)

)
= ∂i for x ∈ Ud+2.

Proof. For x′ ∈ Ud, let

vdi (x′) =
2m∑
j=1

bj(x
′, y)vαj (y) +Q(x′, y) + S(x′, y),

where Q(x′, y) ∈ ker dyf and S(x′, y) ∈ (TyXα)⊥. Since w̃d+2
i is rugose, for each x ∈ Ud, there is a

neighborhood Wx of x such that for any y ∈Wx ∩Xα and any x′ ∈Wx ∩Xβ, we have:

• ‖P (y)−Q(x′, y)‖ < C‖y − x′‖,
• ‖S(x′, y)‖ < C‖y − x′‖,

for some C > 0, where Xβ is the stratum containing x. Shrink Wx and increasing C if necessary,

we can suppose that dF : x 7→ dxF is Lipschitz on Wx, where F is a polynomial extension of f to

Cn. Hence ‖dyF − dx′F‖ < C‖y − x′‖. In particular,∥∥dyF (vdi (x′)
)
− dx′F

(
vdi (x′)

)∥∥ < C‖y − x′‖ · ‖vdi (x′)‖,

i.e., ∥∥∥ 2m∑
j=1

bj(x
′, y)∂j − ∂i

∥∥∥− ‖dyF (S(x′, y))‖ < C‖y − x′‖ · ‖vdi (x′)‖,

Shrink Wx, if necessary, so that W x ∩ Xγ ⊂ Ud+2 for any γ ∈ I ′d+2. Let M := supz∈Ud ‖v
d
i ‖ and

N := supz∈Wx
‖dzF‖. Then we have∑

j 6=i
|bj(x′, y)|+ |bi(x′, y)− 1| < C(M +N)‖y − x′‖,

and

‖wd+2
i (y)− vdi (x′)‖ <

(∑
j 6=i
|bj(x′, y)|+ |bi(x′, y)− 1|

)
D + ‖P (y)−Q(x′, y)‖+ ‖S(x′, y)‖,
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where D := supz∈Wx∩Xα ‖v
α
i ‖. Thus

‖wd+2
i (y)− vdi (x′)‖ < (2C + CD(M +N))‖y − x′‖.

Hence wd+2
i is rugose and of course dxf

(
wd+2
i (x)

)
= ∂i for x ∈ Ud+2. �

Since wd+2
i is rugose (in view of Lemma 3.4), it is continuous. Then by shrinking Wx, where

Wx is determined in the proof of Lemma 3.4, if necessary, we may assume that Wx ⊂ {z ∈ Cn :

‖z − x‖ 6 1} and

‖wd+2
i (y)‖ < 2‖vdi (x)‖, (4)

for any y ∈ Wx ∩ Xα. Let Wd :=
⋃
x∈UdWx, then Wd is an open neighborhood of radius not

bigger than 1 of Ud. Let F = (f1, . . . , fm) : Cn → Cm be the polynomial extending f on Cn. Let

K := F−1(B), which is considered as a subset of R2n under the identification of Cn with R2m.

Then Ud is a closed set in K for the induced topology from the Euclidean topology. By a smooth

version of Urysohn’s lemma, there is a smooth function ϕ : K → [0, 1] such that ϕ−1(0) = K \Wd

and ϕ−1(1) = Ud. (Remark that there may not exist such a function ϕ defined on the whole of

R2n since Ud is not closed in R2n, namely, there may be no smooth extensions of ϕ on R2n). For

x ∈ Ud+2, set

vd+2
i (x) :=

(
1− ϕ(x)

)
vαi (x) + ϕ(x)wd+2

i (x).

Clearly, the restriction of vd+2
i on each stratum is a smooth vector field. Moreover, we have

dxf
(
vd+2
i (x)

)
= dxf

((
1− ϕ(x)

)
vαi (x) + ϕ(x)wd+2

i (x)
)

=
(
1− ϕ(x)

)
dxf

(
vαi (x)

)
+ ϕ(x)dxf

(
wd+2
i (x)

)
=
(
1− ϕ(x)

)
∂i + ϕ(x)∂i = ∂i.

Let us prove that vd+2
i is a rugose vector field. For any x ∈ Ud, let Xβ be the stratum containing

x. For x′ ∈Wx ∩Xβ and y ∈Wx ∩Xα, we have

‖vd+2
i (y)− vd+2

i (x′)‖ =
∥∥(1− ϕ(y)

)
vαi (y) + ϕ(y)wd+2

i (y)− vdi (x′)
∥∥

=
∥∥(1− ϕ(y)

)
vαi (y)−

(
1− ϕ(y)

)
wd+2
i (y) + wd+2

i (y)− vdi (x′)
∥∥

6
(
1− ϕ(y)

)
‖vαi (y)− wd+2

i (y)‖+ ‖wd+2
i (y)− vdi (x′)‖

6
(
1− ϕ(y)

)
(‖vαi (y)‖+ ‖wd+2

i (y)‖) + ‖wd+2
i (y)− wd+2

i (x′)‖.

We note the following facts:

• Since 1−ϕ(y) is a smooth function, it is locally Lipschitz; with no loss of generality, assume

that 1− ϕ(y) is Lipschitz on Wx with constant c1. Then

1− ϕ(y) =
(
1− ϕ(y)

)
−
(
1− ϕ(x′)

)
6 c1‖y − x′‖.

• By Lemma 3.3 and by the continuity of wd+2
i , there is a positive constant c2 depending

only on x such that ‖vαi (y)‖ + ‖wd+2
i (y)‖ 6 c2 (we can take c2 := sup

z∈Wx∩Xα

‖z‖+ 1

c
+

sup
z∈Wx∩Xα

‖wd+2
i (z)‖, note that W x ∩Xα ⊂ Ud+2).
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• Since wd+2
i is rugose, it follows that there is a positive constant c3 depending only on x

such that ‖wd+2
i (y)− wd+2

i (x′)‖ 6 c3‖y − x′‖.

Hence

‖vd+2
i (y)− vd+2

i (x′)‖ 6 (c1c2 + c3)‖y − x′‖,

i.e., vd+2
i is rugose. Now it remains to show that there is a positive constant cd+2 such that

‖vd+2
i (y)‖ 6 ‖y‖+1

cd+2
for every y ∈ Ud+2. Obviously, the statement holds for y ∈ Ud by the induction

assumption and for y ∈ Ud+2 \Wd by Lemma 3.3, so we can suppose that y ∈W \Ud, which clearly

implies that y ∈ Xα. In light of Lemma 3.3, we get

‖vαi (y)‖ 6 ‖y‖+ 1

c
, (5)

where c is the constant in the same lemma. In view of (4) and the induction assumption, we have

‖wd+2
i (y)‖ < 2‖vdi (x)‖ 6 2

‖x‖+ 1

cd
6 2
‖y‖+ ‖x− y‖+ 1

cd
6 2
‖y‖+ 2

cd
6 4
‖y‖+ 1

cd
. (6)

Thus (5) and (6) yield

‖vd+2
i (y)‖ =

∣∣(1− ϕ(y)
)
vαi (y) + ϕ(y)wd+2

i (y)
∥∥

6
(
1− ϕ(y)

)
‖vαi (y)‖+ ϕ(y)‖wd+2

i (y)‖
6

(
1− ϕ(y)

)‖y‖+1
c + ϕ(y)4‖y‖+1

cd

<
(

1
c + 4

cd

)
(‖y‖+ 1).

Set cd+2 = min
{

1
1
c
+ 4
cd

, c, cd

}
, then ‖vd+2

i (y)‖ 6 ‖y‖+1
cd+2

for every y ∈ Ud+2. By induction, there

exists a rugose vector field on U2 dimCX with the property of Lemma 3.1. Then the theorem follows

by applying Lemma 3.1. �

The following corollary follows immediately from Theorem 3.1.

Corollary 3.1. Let X ⊂ Cn be an affine variety with an affine Whitney stratification S and let

f : X → Cm be a polynomial dominant map. Assume that for any stratum Xβ ∈ S, the restriction

f |Xβ is a submersion and K∞(f,Xβ) = ∅. Then f is a locally trivial fibration.

4. Computation of the sets of stratified generalized critical values

In this section, we will compute the set K(f,S) of stratified generalized critical values of f ,

for which we need to construct an affine Whitney stratification of X and then apply [10] for each

stratum of this stratification. The process is a bit different from the construction in Subsection 2.3

since we only need to construct such an affine Whitney stratification “partially”, by remarking the

following facts:

• As the construction of Whitney stratifications is by induction on dimension, we only need

to proceed until the dimension shrinks below m since the restriction of f to any stratum of

dimension < m is always singular.
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• For any algebraic set Z ⊆ X, let

rZ := max
x∈Z\V (pZ,∅)

rankJacx(f |Z) and H(Z) := {x ∈ Z \ V (pZ,∅) : rankJacx(f |Z) < rZ}
Z
.

Then at any step of the induction process, the construction in Subsection 2.3 can be omitted

if rY < m.

Let us now construct such a stratification. With the same notations as in Lemma 2.3, let

Γ3 :=
t⋃

k=1



(x, x, w, v, γ, λ, µ) ∈ Cn × Cn × Cn × Cn × C× C× Ct :

h1(x, x, w, v) = · · · = hq(x, x, w, v) = 0

γ
∑n

j=1 vjwj = 1

λpY,∅(x) = 1

µkM
(m,p)
k (x) = 1


,

where each M
(m,p)
k (x) is a minor of the matrix

A(x) :=



dxf1

...

dxfm

dxg1

...

dxgr

dxg̃r+1

...

dxg̃p



,

obtained by deleting n − m − p columns. So Γ3 differs from Γ2 in the last t equations since we

are only interested in finding the points where the Whitney condition (b) is not satisfied, outside

P (Y, ∅). Let

π3 : Cn × Cn × Cn × Cn × C× C× Ct → Cn

be the projection on the first n coordinates. By Lemma 2.3, π3(Γ3) is the set of points where

the Whitney condition (b) fails. Obviously π3(Γ3) ⊂ reg(f |Y \P (Y )) and dimπ3(Γ3) < dimY. Set

W̃ := π3(Γ3)
Z

. Then obviously dim W̃ < dimY . Again, we can compute a Gröbner basis of the

ideal I(W̃ ).

Finally, set

• X0 := X,

• X1 := X0 ∩ V (pX0,∅), S1 = K0(f,X0 \X1), . . . ,

• Xi := Xi−1 ∩ V (p
Xi−1,

⋃i−2
j=0 W̃ (Xj ,Xi−1)

), Si = K0(f,Xi−1 \Xi), . . .

By induction, we can construct a finite filtration of algebraic sets X = X0 ⊃ X1 ⊃ · · · ⊃ Xq ⊃
Xq+1 ⊇ ∅ with dimXi > dimXi+1 and rXq+1 < m. It is clear that this filtration does not induce an
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affine Whitney stratification S of X. However, it shows that there is an affine Whitney stratification

S such that

K0(f,S) =

q⋃
i=1

Si ∪ f(Xq+1).

Let Zi := Xi \ Xi+1. Then {Zi}i=0,...,q is an affine Whitney stratification of X \ Xq+1. Every

variety Zi can be realized as a closed affine variety Z̃i in Cn+1, by the embedding Zi 3 x 7→(
x, 1/P

Xi,
⋃i−1
j=0 W̃ (Xj ,Xi)

(x)
)
∈ Cn+1 for i > 0 or the embedding Z0 3 x 7→

(
x, 1/PX0,∅(x)

)
∈

Cn+1. Let K∞(f, Zi) be the set of asymptotic critical values of f |Zi , which now can be computed

analogously as in [8],[10] - this will be done in the next section. Then from the construction, it is

clear that the set of stratified generalized critical values of f is given by

K(f,S) :=

q⋃
i=1

(K∞(f, Zi) ∪K0(f, Zi)) ∪ f(Xq+1)

and K(f,S) can be computed effectively. Note that Remark 2.2 and elementary properties of

Gröbner bases imply:

Corollary 4.1. Let X ⊂ Cn be an affine variety of pure dimension and let f = (f1, . . . , fm) : X →
Cm be a polynomial mapping. Let F ⊂ C be a subfield generated by coefficients of generators of I(X)

and all coefficients of polynomials fi, i = 1, . . . ,m. Then there is a nowhere dense affine variety

K(f,S) ⊂ Cm, which is described by polynomials from F[x1, . . . , xm], such that all bifurcation

values B(f) of f are contained in K(f,S). In particular, for m = 1, if X and f are described by

polynomials from Q[x1, . . . , xn], then all bifurcation values of f are algebraic numbers.

5. Computation of K0(f, Zi) ∪K∞(f, Zi)

Let k = R or k = C. Let X ∼= kn, Y ∼= km be finite dimensional vector spaces (over k). We

consider those spaces equipped with the canonical scalar (hermitian) products. Let us denote by

L(X,Y ) the set of linear mappings from X to Y and by Σ = Σ(X,Y ) ⊂ L(X,Y ) the set of

non-surjective mappings. In this section we give several different expressions for a distance of an

A ∈ L(X,Y ) to the space Σ of singular operators. Let us recall first the following ([15]):

Definition 5.1. Let A ∈ L(X,Y ). Set

ν(A) = inf ||φ||=1||A∗(φ)||,

where A∗ : L(Y ∗, X∗) is the adjoint operator and φ ∈ Y ∗.

Let α, β : L(X,Y )→ R+ be two non-negative functions. We shall say that α and β are equivalent

(we write α ∼ β) if there are constants c, d > 0 such that

cα(A) ≤ β(A) ≤ dα(A)

for any A ∈ L(X,Y ). We shall give below several functions equivalent to ν. Let A = (A1, . . . , Am) ∈
L(X,Y ) and let Ai = grad Ai. Denote by < (Aj)j 6=i > the linear space generated by vectors
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(Aj), j 6= i. Let

κ(A) = min1≤i≤mdist(Ai, < (Aj)j 6=i >),

be the Kuo number of A.

Proposition 5.1 ([12]). The Kuo function κ is equivalent to ν of Rabier. More precisely

ν(A) ≤ κ(A) ≤
√
mν(A).

Definition 5.2. Let A ∈ L(X,Y ) and let H ⊂ X be a linear subspace. We set

ν(A,H) = ν(A|H), κ(A,H) = κ(A|H),

where A|H denotes the restriction of A to H.

From Proposition 5.1 we get immediately the following corollary.

Corollary 5.1. We have ν(A,H) ∼ κ(A,H).

In fact we have also the following explicit expression for κ(A,H) (see [9], [10]).

Proposition 5.2. Let A = (A1, . . . , Am) ∈ L(X,Y ) and let H ⊂ X be a linear subspace. Assume

that H is given by a system of linear equations Bj = 0, j = 1, . . . , r. Then

κ(A,H) = min1≤i≤mdist(Ai, < (Aj)j 6=i; (Bj)j=1,...,r >),

where Ai = grad Ai and Bj = grad Bj .

Finally we introduce a function g′ which will be useful in the explicit description of the set of

generalized critical values.

Definition 5.3. Let A ∈ L(kn, km), where n ≥ m + r, and let H ⊂ kn be a linear subspace given

by a system of independent linear equations Bl =
∑
blkxk, l = 1, . . . , r. By abuse of notation we

denote by A the matrix (in the canonical bases in kn and km) of the mapping A. Let C be an

(m+ r)×n matrix given by rows A1, . . . , Am;B1, . . . , Br (we identify Ai =
∑
aikxk with the vector

(aj1, . . . , ajn), similarly for Bl). Let MI , where I = (i1, . . . , im+r), denote an ((m + r)× (m + r))

minor of C given by columns indexed by I. Let MJ(j) denote an (m+ r − 1)× (m+ r − 1) minor

given by columns indexed by J and by deleting the jth row , where 1 ≤ j ≤ m. Note that we delete

only Aj rows! We set

g′(A,H) = max
I

{
min

{J⊂I, 1≤j≤m}

|MI |
|MJ(j)|

}
,

(where we consider only numbers with MJ(j) 6= 0, if all numbers MJ(j) are zero, we put g′(A) = 0).

In particular we have the following (see [9], [10]).

Proposition 5.3. We have g′(A,H) ∼ ν(A,H).

Now we can prove the following theorem.
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Theorem 5.1. Let Zi be a stratum of X as in Section 4. Then the set K(f, Zi) = K0(f, Zi) ∪
K∞(f, Zi) is a nowhere dense algebraic subset of Cm.

Proof. It is a standard fact that K0(f, Zi) is algebraic and nowhere dense (for details see the end

of subsection 5.1). Hence it is enough to focus on K∞(f, Zi).

By construction the set X := Zi ⊂ Cn is a subset of complete intersection, X ⊂ {b1 = 0, ..., bs =

0} and rank{∇bk, k = 1, ..., s} = s (X has codimension s). Let us recall notation of Definition 5.3.

For x ∈ C let A = dxf , and Bl = dxbl, l = 1, . . . , s. Let A ∈ L(kn, km), where n ≥ m + s, and

let TxX = H ⊂ kn be a linear subspace given by a system of independent linear equations Bl =∑
blkxk, l = 1, . . . , s. By abuse of notation we denote by A the matrix (in the canonical bases in kn

and km) of the mapping A. Let C be an (m+ s)× n matrix given by rows A1, . . . , Am;B1, . . . , Bs

(we identify Ai =
∑
aikxk with the vector (aj1, . . . , ajn), similarly for Bl).

For an index I = (i1, . . . , im+r) ⊂ {1, . . . , n} let MI(x) denote the ((m + s) × (m + s)) minor

of C given by columns indexed by I. For integers j ∈ I, 1 ≤ k ≤ m we denote by MI(k,j)(x) the

(m + s− 1)× (m + s− 1) minor obtained by deleting the jth column and the kth row. Note that

we delete only Ak, 1 ≤ k ≤ m, rows!

Hence MI and MI(k,j) are regular (restriction of polynomials) functions on X. We define now a

family of rational functions on X:

WI(k,j)(x) = MI(x)/MI(k,j)(x)

where for MI(k,j) ≡ 0, we put WI(k,j) ≡ 0. We write b = (b1, . . . , bs) and (f, b) : Cn → Cm × Cs,
here we consider f1, . . . , fm, and b1, . . . , bs as polynomials on Cn.

Let w =
(

n
m+s

)
and let MI1 , . . . ,MIw be all possible main minors of a matrix of dx(f, b). For every

index Il take a pair (kl, jl) which determines an (m+ s−1)× (m+s−1) minor of MIl (we consider

here only minors which are not identically zero). We denote a sequence (k1, j1), . . . , (kw, jw) by

(k, j) ∈ Nw × Nw and we consider a rational function:

Φ(k,j) = Φ((k1, j1), . . . , (kw, jw)) : X → Cm × CN

where the first component of Φ(k,j) is f and next components are WIp(kp,jp), p = 1, . . . , w and all

products xlWIp(kp,jp), p = 1, . . . , w; l = 1, . . . , n.

We can assume that for some choice of l we haveWIl(kl,jl) 6≡ 0, and consequently dim cl(Φ(k,j)(X)) =

dim X = n− s. Here cl(Y ) stands for the closure of Y in the strong (or which is the same, in the

Zariski topology). Let Γ(k, j) = cl(Φ(k,j)(X)) (by Φ(k,j)(X) we mean the set Φ(k,j)(X \ P ), where

P is a set of poles of Φ(k,j)).

Now for a given r ∈ {1, . . . , n}, consider the set Xr := X \ {xr = 0}. Finally let Φ(k,j),r(x) :=

(Φ(k,j)(x), 1/xr) and Γ((k, j), r) := cl(Φ(k,j),r(Xr)).

Let us recall that y ∈ K∞(f, Zi) if there exists a sequence x→∞; x ∈ Zi, such that

f(x)→ y and ‖x‖g′(x)→ 0,

where g′(x) = g′(dxf, TxZi). We have
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Lemma 5.1.

K∞(f,X) = Cm ∩
⋃

(k,j),r

Γ((k, j), r),

where we identify Cm with Cm × (0, . . . , 0).

Proof. We identify X with Z̃i ⊂ Cn+1, hence we can assume that X is closed in Cn+1. Let y ∈
K∞(f,X). Hence there is a sequence xl →∞, such that xl ∈ X and f(xl)→ y and ‖xl‖g′(xl)→ 0.

Moreover, if x = (x1, . . . , xn), then there is at least one r; 1 ≤ r ≤ n such that xlr → ∞. If

{xl, l = 1, 2, . . . } ⊂ C(f,X) (C(f,X) denotes the set of critical points of f|X), then it is easy

to see that y ∈ Cm ∩ Γ((k, j), r) for every (k, j) ( we can choose a close sequence x′l such that

f(x′l) → y and ‖x′l‖g′(x′l) → 0 and functions WI(k,j) are defined). Consequently we can assume

that {xl, l = 1, 2, . . . } ∩ C(f,X) = ∅.
Thus there is a sequence xl → ∞, such that for every Ii there are integers (ki, ji), such that

‖xl‖MIi/MIi(ki,ji)(xl) → 0 and f(xl) → y. This also gives y ∈ Γ((k, j), r) ∩ Cm with ((k, j), r) =

((k1, j1), . . . , (kw, jw), r).

Conversely, if y ∈ Γ((k, j), r) ∩ Cm, then we can choose a sequence xl → ∞, xl ∈ Xr, such that

f(xl) → y and ‖xl‖MIi/MIi(ki,ji)(x
l) → 0. It is easy to observe that this implies ‖xl‖g′(xl) → 0

and f(xl)→ y, i.e. y ∈ K∞(f,X). �

Now in light of [10, Theorem 3.3], we have that K∞(f,X) 6= Cm hence Cm∩
⋃

((k,j),r) Γ((k, j), r) 6=
Cm. By Lemma 5.1, K∞(f,X) is an algebraic set. The theorem follows. �

5.1. A sketch of an algorithm. Let X := Zi ⊂ Cn be a smooth affine variety of dimension n−s.
Let f = (f1, . . . , fm) : X → Cm be a polynomial dominant mapping. Then the set K∞(f,X) can

be computed as follows.

By constructionX is a subset of complete intersection, hence we can choose polynomials b1, . . . , bs ∈
I(X) such that rank {grad b1, . . . , grad bs} = s on X. Let us consider the rational mapping:

Φ((k1, j1), . . . , (kw, jw), r) : X 3 x 7→ (f(x),WI1(k1,j1)(x), x1WI1(k1,j1)(x), . . . , xnWI1(k1,j1)(x),

. . . ,WIs(kw,jw)(x), x1WIw(kw,jw)(x), . . . , xnWIw(kw,jw)(x), 1/xr) ∈ Cm × CN ,

which is constructed exactly as in the proof of Theorem 5.1. Recall that

Γ((k1, j1), . . . , (kw, jw), r) = cl(Φ((k1, j1), . . . , (kw, jw), r)(X)).

We know also that

K∞(f,X) = L ∩

 ⋃
((k1,j1),...,(kw,jw)),r

Γ((k1, j1), . . . , (kw, jw), r)

 ,

where L = Cm × (0, . . . , 0). First we compute the ideal of the set Γ((k1, j1), . . . , (kw, jw), r). Now

we can consider a variety X as a closed affine variety in Cn+1 (see the end of section 4). Let

I(X) = (b1, ..., bq).
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To this end we restrict the mapping Φ((k, j), r) to an open dense subset U ⊂ X on which this

mapping is regular. In particular we can choose the set U = X \ (
⋃w
l=1{MIl(kl,jl) = 0} ∪ {xr = 0}).

The set U can be identified with the set

V ((k1, j1), . . . , (kw, jw), r) :=

:= {(x, t, z1, . . . , zw) ∈ X × C× Cw : j = 1, . . . , w;xrt = 1;MIp(kp,jp)zp = 1; p = 1, . . . , w}.

Now we can consider a morphism

Ψ((k1, j1), . . . , (kw, jw)) : V ((k1, j1), . . . , (kp, jp), r)→ Cm × CN .

defined by

(x, t, z)→ (f(x), z1MI1(x), x1z1MI1(x), . . . , xnz1MI1(x),

. . . , zpMIw(x), x1zwMIw(x), . . . , xnzwMIw(x), t).

Denote Ψ((k1, j1), . . . , (kw, jw), r) := (ψ1(x, z), . . . , ψm+N (x, z)). It is easy to see that

Γ((k1, j1), . . . , (kw, jw), r)

is the closure of

Ψ((k1, j1), . . . , (kw, jw), q)(V ((k1, j1), . . . , (kw, jw)), r).

Let G((k1, j1), . . . , (kw, jw), r) = graph(Ψ((k1, j1), . . . , (kw, jw), r)). A basis of the ideal I of the set

G((k1, j1), . . . , (kw, jw), r) in the ring C[x1, . . . , xn, xn+1, t, z1, . . . , zw; y1, . . . , ym+N ] is given by the

polynomials

{bj , j = 1, . . . , w; }∪{zrMIr(kr,jr)(x)−1, r = 1, . . . , s}∪{txr−1}∪{yi−ψi(x, z), i = 1, . . . ,m+N}.

To compute a basis B((k1, j1), . . . , (kw, jw), r) of the ideal of the set cl(Γ((k1, j1), . . . , (kw, jw), r), it

is enough to compute a Gröbner basis A((k1, j1), . . . , (kw, jw), r) of the ideal I in C[x, t, z, y] with

respect to the lexicographic order in which y < x, t, z (see e.g. [14]) and then to take

B((k1, j1), . . . , (kw, jw), r) = A((k1, j1), . . . , (kw, jw), r) ∩ C[y1, . . . , ym+N ].

Consequently,

K∞(f,X) =
⋃

((k1,j1),...,(kw,jw)),r

{y ∈ Cm : h(y, 0, . . . , 0) = 0 for every h ∈ B((k1, j1), . . . , (kw, jw), r)}.

The computation of the set K0(f,X) is standard. Let I(X) = (b1, ..., bq). Consider the set

U := {x ∈ Cn+1 : bj = 0, j = 1, . . . , w;MIr = 0; r = 1, . . . , s}.

Now we can consider a morphism f : U → Cm. We have K0(f,X) = f(U). Let Γ be a graph of f |U
and I = I(Γ).

A basis of the ideal I is given by the polynomials

{bj ; j = 1, . . . , w; } ∪ {MIr(x); r = 1, . . . , p} ∪ {yi − fi; i = 1, . . . ,m}.
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To compute a basis B of the ideal I it is enough to compute a Gröbner basis A of the ideal I in

C[x1, . . . , xn+1; y1, . . . , ym] and then to take

B = A ∩ C[y1, . . . , ym].

Consequently, K0(f,X) =
⋃
{y ∈ Cm : h(y, 0, . . . , 0) = 0 for every h ∈ B}.
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elles (1950), 29–55.

[4] D. Eisenbud, C. Huneke, W. Vasconcelos, Direct methods for primary decomposition, Invent. Math. 110 (1992),

no. 2, 207–235.

[5] A. G. Flores and B. Teissier, Local polar varieties in the geometric study of singularities, Ann. Fac. Sci. Toulouse

27, no. 4, (2018), 679–695.
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[16] J-P. Serre, Géométrie algébrique et géométrie analytique, Ann. Inst. Fourier, Grenoble 6 (1956), 1–42.

[17] B. Teissier, Variétés polaires. II. Multiplicités polaires, sections planes, et conditions de Whitney, Algebraic
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