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Abstract. A slope r is called a left orderable slope of a knot K ⊂ S3 if the 3-
manifold obtained by r-surgery along K has left orderable fundamental group. Con-
sider two-bridge knots C(2m,±2n) and C(2m+ 1,−2n) in the Conway notation, where
m ≥ 1 and n ≥ 2 are integers. By using continuous families of hyperbolic SL2(R)-
representations of knot groups, it was shown in [HTe1, Tr2] that any slope in (−4n, 4m)
(resp. [0,max{4m, 4n})) is a left orderable slope of C(2m, 2n) (resp. C(2m,−2n)) and
in [Ga2] that any slope in (−4n, 0] is a left orderable slope of C(2m+1,−2n). However,
the proofs of these results have gaps since the continuity of the families of representa-
tions was not proved. In this paper, we fix these gaps and moreover we show that any
slope in (−4n, 4m) is a left orderable slope of C(2m + 1,−2n) detected by hyperbolic
SL2(R)-representations of the knot group.

1. Introduction

The study of left orderability of fundamental groups of 3-manifolds obtained by Dehn
surgeries along knots is motivated by the L-space conjecture of Boyer, Gordon and Watson
[BGW] which states that an irreducible rational homology 3-sphere is an L-space if and
only if its fundamental group is not left orderable. Here a rational homology 3-sphere
Y is an L-space if its Heegaard Floer homology ĤF(Y ) has rank equal to the order of
H1(Y ;Z), and a non-trivial group G is left orderable if it admits a total ordering < such
that g < h implies fg < fh for all elements f, g, h in G.

Many hyperbolic 3-manifolds are obtained by Dehn surgeries along knots. A slope r
is called a left orderable slope of a knot K ⊂ S3 if the 3-manifold obtained by r-surgery
alongK has left orderable fundamental group. Consider two-bridge knots C(2m,±2n) and
C(2m+ 1,−2n) in the Conway notation, where m ≥ 1 and n ≥ 2 are integers. By using
continuous families of hyperbolic SL2(R)-representations of knot groups, it was shown
in [HTe1, Tr2] that any slope in (−4n, 4m) (resp. [0,max{4m, 4n})) is a left orderable
slope of C(2m, 2n) (resp. C(2m,−2n)) and in [Ga2] that any slope in (−4n, 0] is a left
orderable slope of C(2m + 1,−2n). However, the proofs of these results have gaps since
the continuity of the families of representations was not proved. More precisely, [HTe1,
Proposition 4.2], [Tr2, Lemma 2.1] and [Ga2, Proposition 4.2] proved the existence of
families of SL2(R)-representations of the knot groups but did not prove the continuity of
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these families. In this paper, we fix these gaps in Proposition 4.1, Proposition 4.2 and
Proposition 5.1 respectively. Moreover, we extend the range of left orderable slopes of
C(2m+ 1,−2n) detected by hyperbolic SL2(R)-representations of their knot groups.

Figure 1. The two-bridge knot/link C(k, l) in the Conway notation.

Theorem 1. Let m ≥ 1 and n ≥ 2 be integers. Then any slope in (−4n, 4m) is a left
orderable slope of C(2m + 1,−2n) detected by hyperbolic SL2(R)-representations of the
knot group.

Remark 1.1. In [Tr1], by following the method of Culler-Dunfield’s paper [CD] the third
author used continuous families of elliptic SL2(R)-representations of knot groups to show
that if K is a two-bridge knot of the form C(2m,−2n), C(2m+1, 2n) or C(2m+1,−2n),
where m ≥ 1 and n ≥ 1 are integers, and

LOK =


(−∞, 1) if K = C(2m,−2n),

(−∞, 2n− 1) if K = C(2m+ 1, 2n),

(3− 2n,∞) if K = C(2m+ 1,−2n) and n ≥ 2,

then any slope in LOK is a left orderable slope of K.
Gao [Ga2] independently showed that ifK is a two-bridge knot of the form C(2m+1, 2n)

or C(2m+ 1,−2n), where m ≥ 1 and n ≥ 1 are integers, and

LO′
K =

{
(−∞, 1) if K = C(2m+ 1, 2n),

(−1,∞) if K = C(2m+ 1,−2n) and n ≥ 2,

then any slope in LO′
K is a left orderable slope of K. Her proof also used families of

elliptic SL2(R)-representations of knot groups. Note that LO′
K is a subset of LOK .

For more on the study of left orderable slopes of knots using hyperbolic SL2(R)-
representations of knot groups, see [BGW, HTe2, Ga1].

This paper is organized as follows. In Section 2, we recall some facts about the universal
covering group ˜SL(2,R) of SL(2,R) and we study the lifting problem of a connected curve
of hyperbolic SL(2,R)-representations of knot groups. In Section 3, we review the Riley
polynomial of two-bridge knots C(k,−2p), whose zero locus describes all non-abelian
representations of the knot group into SL2(C). In Section 3 we prove the existence of
continuous families of hyperbolic SL2(R)-representations of the knot groups of C(2m,±2n)
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and therefore fix the gaps in [HTe1, Tr2]. In Section 4 we prove the existence of continuous
families of hyperbolic SL2(R)-representations of the knot groups of C(2m + 1,−2n) and
use it to give a proof of Theorem 1.

2. Lifting of a curve of hyperbolic representations

2.1. The group ˜SL(2,R). We recall some facts about the universal covering group
˜SL(2,R) (see [Kh] pages 763-764). Let ψ : ˜SL(2,R) → SL(2,R) be the covering map.

We can parameterize the universal covering group as

˜SL(2,R) = {(γ, ω)| |γ| < 1,−∞ < w <∞} .

For an element g = (γ, ω) ∈ ˜SL(2,R), we will write g[1] = γ and g[2] = ω.

An element of ˜SL(2,R) is called elliptic/parabolic/hyperbolic if it covers a matrix in
SL(2,R) of the corresponding type.

The multiplication rule in the group ˜SL(2,R) is given by (γ, ω)(γ′, ω′) = (γ′′, ω′′) where

γ′′ =
γ + γ′e−2iω

1 + γ̄γ′e−2iω

ω′′ = ω + ω′ + arg(1 + γ̄γ′e−2iω).

Let A =

(
a b
c d

)
be a matrix in SL(2,R) then

ψ−1(A) =

{(
a− d+ (b+ c)i

a+ d+ (b− c)i
, arg(a+ d+ (b− c)i) + 2nπ

)
|n ∈ Z

}
.

Here, the function argument takes value in the interval (−π, π]. We note that if Tr(A) =
a+d > 0 then in the above formula we have arg(a+d+(b−c)i) = arctan( b−c

a+d
) ∈ (−π

2
, π
2
).

2.2. Lifting of a curve of hyperbolic representations. For a knot K in S3, let X
be an open tubular neighborhood of K and let G(K) = π1(X) be the knot group of K
which is the fundamental group of X. Let µ be a meridian and λ the canonical longitude.
Recall that any representation ρ : G(K) → SL(2,R) can be lifted to a representation ρ̃

into ˜SL(2,R) because H2(K,Z) = 0. We know from [Kh] that the lifts of ρ come in a
family. If we fix a lift ρ̃0, then we have a Z-family of lifts ρ̃n given by ρ̃n(g) = ρ̃0(g)hn(g),

where hn is the representation

G(K) −→ H1(X) ≡ Z −→ ˜SL(2,R)
µ 7−→ 1 7−→ (0, 2nπ).

From this, we see that ρ̃n(λ) does not depend on n.

An SL(2,R) representation ρ of a knot group G(K) is called hyperbolic if ρ(µ) and ρ(λ)
are hyperbolic elements.
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Recall that a hyperbolic element g ∈ ˜SL(2,R) can be conjugated to a unique normal
form (tanh(a), kπ) if and only if kπ − π

2
< g[2] < kπ + π

2
. Let us fix an arbitrary lift

ρ̃0 : G(K) → ˜SL(2,R) and suppose that ρ̃0(λ) is conjugate to (tanh(b), kπ). As noted
above, the number k does not depend on the chosen lift ρ̃0. We call k the index of the
representation ρ.

Lemma 2.1. Let C be a connected curve of hyperbolic representations of a knot group
G(K) into SL(2,R). Then the indexes of all representations of C are the same.

Proof. Note that as ρ varies in C, the image ρ̃0(λ) varies in a connected component of
hyperbolic elements. Since each connected component corresponds to a single value of k
(see Figure 1 of [Kh]), the number k is the same for all representations in C. □

We will also say that the curve C in the above lemma has index k.

Corollary 2.2. Let C be a connected curve of hyperbolic representations of a knot group
G(K) into SL(2,R). If C contains a reducible representation then it has index 0.

Proof. Suppose that ρ1 ∈ C is a reducible hyperbolic representation given by

ρ1(µi) =

(
s ai
0 s−1

)
,

where µi are generators of G(K) which are conjugate to the standard meridian. Then we
can connect ρ1 to an abelian representation by using the curve

ρt(µi) =

(
s tai
0 s−1

)
, t ∈ R.

It is easy to verify that if ρ1 is a representation then so is ρt for all t. As the abelian
representation ρ0 has index 0, the corollary follows from the previous lemma. □

The next proposition tells us how to find left orderable slopes of a knot, given a con-
nected curve of hyperbolic representations of the knot group into SL(2,R).

Proposition 2.3. (1) Let {ρy : G(K) → SL(2,R)}y be a connected curve of hyperbolic
representations of index 0, and choose a lift ρ̃y : G(K) → ˜SL(2,R) such that ρ̃y(µ) =

(tanh a(y), 0) and ρ̃y(λ) = (tanh b(y), 0). If p
q

is a slope such that p
q
= − b(y)

a(y)
for some y,

then p
q

is a left orderable slope of K.
(2) Let {ρy : G(K) → SL(2,R)}y be a connected curve of hyperbolic representations of

index k ̸= 0, and choose a lift ρ̃y : G(K) → ˜SL(2,R) such that ρ̃y(µ) = (tanh a(y), 0) and
ρ̃y(λ) = (tanh b(y), kπ). If p

q
is a slope such that p

q
= − b(y)

a(y)
for some y and p|k, then p

q
is

a left orderable slope of K.

Proof. Let Xp/q denote by 3-manifold obtained from S3 by p
q
-surgery along K.
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(i) Since ρ̃y(µpλq) = (tanh(pa(y) + qb(y)), 0) = (0, 0), ρ̃y gives a representation from
π1(Xp/q) to ˜SL(2,R). Note that Xp/q is an irreducible 3-manifold (by [HTh]) and S̃L2(R)
is a left orderable group (by [Be]). Hence, by Theorem 1.1 of [BRW], π1(Xp/q) is a left
orderable group. This means that p

q
is a left orderable slope of K.

(ii) We choose another lift ρ̃y ′ : G(K) → ˜SL(2,R) such that ρ̃y ′(µ) = (tanh a(y),−kq
p
π)

and ρ̃y
′(λ) = (tanh b(y), kπ). We then have

ρ̃y
′(µpλq) = (tanh(pa(y) + qb(y)),−kqπ + kqπ) = (0, 0).

Therefore ρ̃y ′ gives a representation from π1(Xp/q) to ˜SL(2,R) and, as in (i), the assertion
follows. □

3. Representations of double twist knots

Consider the two-bridge knot/link C(k, l) in the Conway notation, where k, l are integers
such that |kl| ≥ 3. Note that C(k, l) is the rational knot/link corresponding to continued
fraction k + 1/l. It is easy to see that C(k, l) is the mirror image of C(l, k) = C(−k,−l).
Moreover, C(k, l) is a knot if kl is even and is a two-component link if kl is odd. In this
paper, we only consider knots and so we can assume that k > 0 and l = −2p is even.

Note that C(k,−2p) is the mirror image of the double twist knot J(k, 2p) in [HS].
Then, by [HS], the knot group of C(k,−2p) has a presentation

G(C(k,−2p)) = ⟨a, b | awp = wpb⟩

where a, b are meridians and

w =

{
(ab−1)m(a−1b)m if k = 2m,

(ab−1)mab(a−1b)m if k = 2m+ 1.

Moreover, the canonical longitude of C(k,−2p) corresponding to the meridian µ = a is
λ = (wp(wp)∗a−2ε)−1, where ε = 0 if k = 2m and ε = 2p if k = 2m+ 1. Here, for a word
u in the letters a, b we let u∗ be the word obtained by reading u backwards.

Suppose ρ : G(C(k,−2p)) → SL2(C) is a nonabelian representation. Up to conjugation,
we may assume that

(3.1) ρ(a) =

[
M 1
0 M−1

]
and ρ(b) =

[
M 0

2− y M−1

]
where (M, y) ∈ C2 satisfies the matrix equation ρ(awp) = ρ(wpb). It is known that this
matrix equation is equivalent to a single polynomial equation RC(k,−2p)(x, y) = 0, where
x = (trρ(a))2 and RK(x, y) is the Riley polynomial of a two-bridge knot K, see [Ri]. This
polynomial can be described via the Chebychev polynomials as follows.

Let {Sj(v)}j∈Z be the Chebychev polynomials in the variable v defined by S0(v) = 1,
S1(v) = v and Sj(v) = vSj−1(v)−Sj−2(v) for all integers j. Note that Sj(v) = −S−j−2(v)

and Sj(±2) = (±1)j(j + 1). Moreover, we see that Sj(v) = (sj+1 − s−(j+1))/(s− s−1) for
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v = s + s−1 ̸= ±2 from the recurrence relation. Using these identities one can prove the
following.

Lemma 3.1. We have
(1) S2

j (v)− vSj(v)Sj−1(v) + S2
j−1(v) = 1 for any integer j,

(2) Sn(v) =
∏n

j=1(v − 2 cos jπ
n+1

) for any positive integer n,
(3) Sn(v)− Sn−1(v) =

∏n
j=1(v − 2 cos (2j−1)π

2n+1
) for any positive integer n.

Proof. (1) By the recurrence relation,
S2
j (v)− vSj(v)Sj−1 + S2

j−1(v) = Sj(v)(Sj(v)− vSj−1(v)) + S2
j−1(v)

= (vSj−1(v)− Sj−2(v))(−Sj−2(v)) + S2
j−1(v)

= S2
j−1(v)− vSj−1(v)Sj−2(v) + S2

j−2(v).

Since S1(v)
2 − vS1(v)S0(v) + S2

0(v) = 1, we have the conclusion.
(2) For any positive integer n, Sn(v) is a polynomial of degree n. Since ±2 are not

roots of Sn(v), all roots come from solving sn+1 − s−(n+1) = 0, where v = s+ s−1. Hence,
the conclusion follows from the observation that 2 cos jπ/(n+ 1) (j = 1, 2, . . . , n) give all
roots of Sn(v).

(3) For any positive integer n, Sn(v)− Sn−1(v) is a polynomial of degree n, and

Sn(v)− Sn−1(v) =
sn+1 − s−(n+1)

s− s−1
− sn − s−n

s− s−1

=
sn+1 − s−(n+1) − sn + s−n

s− s−1

=
s−(n+1)

s− s−1
· (s2n+2 − 1− s2n+1 + s)

=
s−(n+1)

s− s−1
(s− 1)(s2n+1 + 1).

Hence all roots of Sn(v) − Sn−1(v) come from solving s2n+1 + 1 = 0. That is, 2 cos(2j −
1)π/(2n+ 1) (j = 1, 2, . . . , n) give all the roots. □

The Riley polynomial of C(k,−2p), whose zero locus describes all non-abelian repre-
sentations of the knot group of C(k,−2p) into SL2(C), is

RC(k,−2p)(x, y) = Sp(t)− zSp−1(t)

where

t = trρ(w) =
{
2 + (y + 2− x)(y − 2)S2

m−1(y) if k = 2m,

2− (y + 2− x)(Sm(y)− Sm−1(y))
2 if k = 2m+ 1,

and

z =

{
1 + (y + 2− x)Sm−1(y)(Sm(y)− Sm−1(y)) if k = 2m,

1− (y + 2− x)Sm(y)(Sm(y)− Sm−1(y)) if k = 2m+ 1.
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Moreover, for the representation ρ : G(C(k,−2p)) → SL2(C) of the form (3.1) the image

of the canonical longitude λ = (wp(wp)∗a−2ε)−1 has the form ρ(λ) =

[
L ∗
0 L−1

]
, where

L = −M
−1(Sm(y)− Sm−1(y))−M(Sm−1(y)− Sm−2(y))

M(Sm(y)− Sm−1(y))−M−1(Sm−1(y)− Sm−2(y))
if k = 2m

and
L = −M4pM

−1Sm(y)−MSm−1(y)

MSm(y)−M−1Sm−1(y)
if k = 2m+ 1.

See e.g. [Tr2, Pe].

4. The case of C(2m,±2n)

In this section we prove the existence of continuous families of hyperbolic SL2(R)-
representations of knot groups of C(2m,±2n) and hence fix the gaps in [HTe1, Tr2].

Proposition 4.1. There exist n−1 continuous real functions xj : (2,∞) → (0,∞), where
1 ≤ j ≤ n− 1, in the variable y such that RC(2m,2n)(xj(y), y) = 0 and

y + 2 +
4 sin2 (2j−1)π

4n+2

(y − 2)S2
m−1(y)

< xj(y) < y + 2 +
4 sin2 (2j+1)π

4n+2

(y − 2)S2
m−1(y)

for all y > 2.

Proof. Let K = C(2m, 2n). We have RK(x, y) = S−n(t)− zS−n−1(t) where

t = 2 + (y + 2− x)(y − 2)S2
m−1(y),

z = 1 + (y + 2− x)Sm−1(y)(Sm(y)− Sm−1(y)).

Note that RK(x, y) = (t− z)S−n−1(t)− S−n−2(t) = Sn(t)− (t− z)Sn−1(t).
Let tj = 2 cos (2j−1)π

2n+1
for j = 1, . . . , n. Then, Lemma 3.1(3) gives Sn(t) − Sn−1(t) =∏n

j=1(t − tj), and the signs of Sn(tj) change alternately as Sn(t1) > 0, Sn(t2) < 0, . . . ,
because of the inequality

j − 1

n+ 1
<

2j − 1

2n+ 1
<

j

n+ 1
(j = 1, 2, . . . , n)

and Lemma 3.1(2).
Fix a real number y > 2. Let sj(y) = y + 2 +

2−tj
(y−2)S2

m−1(y)
for j = 1, . . . , n. Since

−2 < tn < · · · < t1 < 2, we have sn(y) > · · · > s1(y) > y+2. At x = sj(y) we have t = tj
and so Sn(t) = Sn−1(t). This implies that

RK(sj(y), y) = (1− (t− z))Sn(tj)

= (y + 2− sj(y))Sm−1(y)(Sm−1(y)− Sm−2(y))Sn(tj)

= − 2− tj
(y − 2)Sm−1(y)

(Sm−1(y)− Sm−2(y))Sn(tj).
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Since y > 2, we have Sm−1(y) − Sm−2(y) > 0 and Sm−1(y) > 0 by Lemma 3.1. Hence
RK(sj(y), y) and Sn(tj) have opposite signs, so the sign of RK(sj(y), y) changes alternately
as RK(s1(y), y) < 0, RK(s2(y), y) > 0, . . . .

For each 1 ≤ j ≤ n − 1, since RK(sj(y), y)RK(sj+1(y), y) < 0, there exists xj(y) ∈
(sj(y), sj+1(y)) such thatRK(xj(y), y) = 0.Also, sinceRK(y+2, y) = 1 andRK(s1(y), y) <

0, there exists x0(y) ∈ (y + 2, s1(y)) such that RK(x0(y), y) = 0.
Since RK(x, y) = Sn(t)− (t− z)Sn−1(t) = zSn−1(t)−Sn−2(t), we see that RK(x, y) is a

polynomial of degree n in x for each fixed real number y > 2. This polyomial has exactly
n simple real roots x0(y), . . . , xn−1(y) satisfying xn−1(y) > · · · > x0(y) > y + 2, hence the
implicit function theorem implies that each xj(y) is a continuous function in y > 2. The
continuous functions x1(y), . . . , xn−1(y) satisfy the conditions of Proposition 4.1. □

Proposition 4.2. There exist n−1 continuous real functions xj : (2,∞) → (0,∞), where
1 ≤ j ≤ n− 1, in the variable y such that RC(2m,−2n)(xj(y), y) = 0 and

y + 2 +
4 sin2 (2j−1)π

4n+2

(y − 2)S2
m−1(y)

< xj(y) < y + 2 +
4 sin2 (2j+1)π

4n+2

(y − 2)S2
m−1(y)

for all y > 2.

Proof. Let K = C(2m,−2n). We have RK(x, y) = Sn(t)− zSn−1(t) where
t = 2 + (y + 2− x)(y − 2)S2

m−1(y),

z = 1 + (y + 2− x)Sm−1(y)(Sm(y)− Sm−1(y)).

Fix a real number y ≥ 2. Choose tj and sj(y) for 1 ≤ j ≤ n as in the proof of
Proposition 4.1. Recall Sn(t) = Sn−1(t) at t = tj. Since

RK(sj(y), y) = (1− z)Sn(tj)

= −(y + 2− sj(y))Sm−1(y)(Sm(y)− Sm−1(y))Sn(tj)

=
2− tj

(y − 2)Sm−1(y)
(Sm(y)− Sm−1(y))Sn(tj),

RK(sj(y), y) and Sn(tj) have the same sign. So, the sign of RK(sj(y), y) changes alter-
nately. Since RK(sj(y), y)RK(sj+1(y), y) < 0, there exists xj(y) ∈ (sj(y), sj+1(y)) such
that RK(xj(y), y) = 0 for each 1 ≤ j ≤ n− 1.

We now claim that there exists x0(y) ∈ (0, y + 2) such that RK(x0(y), y) = 0. Indeed,
at x = 0 we have t = 2+ (y2 − 4)S2

m−1(y) and z = 1+ (y + 2)Sm−1(y)(Sm(y)− Sm−1(y)).
Write y = ξ + ξ−1 for some ξ > 1. Then Sk(y) =

ξk+1−ξ−(k+1)

ξ−ξ−1 for all integers k.

Claim 4.3. (1) t = ξ2m + ξ−2m.
(2) z = ξ−2m ξ4m+1−1

ξ−1
.

Proof of Claim 4.3. (1) follows from
t = 2 + (y2 − 4)S2

m−1(y)
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= 2 + (ξ − ξ−1)2
(
ξm − ξ−m

ξ − ξ−1

)2

= 2 + (ξm − ξ−m)2

= ξ2m + ξ−2m.

(2) Similarly,

z = 1 + (ξ + ξ−1 + 2)
ξm − ξ−m

ξ − ξ−1

(
ξm+1 − ξ−(m+1)

ξ − ξ−1
− ξm − ξ−m

ξ − ξ−1

)
=

1

(ξ − ξ−1)2
(
1 + (ξ + ξ−1 + 2)(ξm − ξ−m)(ξm+1 − ξ−(m+1) − ξm + ξ−m)

)
=

1

(ξ − ξ−1)2
(
ξ2m+2 + ξ−(2m+2) + ξ2m+1 + ξ−(2m+1) − ξ2m − ξ−2m − ξ2m−1 − ξ−(2m−1)

)
=

ξ2 − 1

(ξ − ξ−1)2
(ξ2m + ξ2m−1 − ξ−(2m+1) − ξ−(2m+2))

=
ξ2

ξ2 − 1
ξ−(2m+2)(ξ4m+2 + ξ4m+1 − ξ − 1)

= ξ−2m ξ
4m+1 − 1

ξ − 1
.

□

By Claim 4.3(1), Sk(t) =
ξ2m(k+1)−ξ−2m(k+1)

ξ2m−ξ−2m for all integers k. Hence we have

RK(0, y) = Sn(t)− zSn−1(t)

=
ξ2m(n+1) − ξ−2m(n+1)

ξ2m − ξ−2m
− ξ−2m ξ

4m+1 − 1

ξ − 1

ξ2mn − ξ−2mn

ξ2m − ξ−2m

=
1

ξ2m − ξ−2m

(
(ξ2m(n+1) − ξ−2m(n+1))− ξ−2m ξ

4m+1 − 1

ξ − 1
(ξ2mn − ξ−2mn)

)
=

ξ−2mn

ξ2m − ξ−2m

(
(ξ2m(2n+1) − ξ−2m)− ξ−2m ξ

4m+1 − 1

ξ − 1
(ξ4mn − 1)

)
=

ξ−2mn

ξ2m − ξ−2m

1

ξ − 1
(ξ4mn+2m − ξ4mn−2m − ξ2m+1 + ξ−(2m−1))

= −ξ−2mn ξ
4mn − ξ

ξ − 1
< 0.

Since RK(y + 2, y) = 1, there exists x0(y) ∈ (0, y + 2) such that RK(x0(y), y) = 0.
By writing RK(x, y) = Sn(t)− zSn−1(t) = (t− z)Sn−1(t)− Sn−2(t) and noting that

t− z = 1 + (y + 2− x)Sm−1(y)(−Sm−1(y) + Sm−2(y)),

we see that RK(x, y) is a polynomial of degree n in x for a fixed real number y > 2. This
polynomial has exactly n simple real roots x0(y), . . . , xn−1(y) satisfying xn−1(y) > · · · >
x1(y) > y + 2 > x0(y) > 0, hence the implicit function theorem implies that each xj(y)
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is a continuous function in y > 2. The continuous functions x1(y), . . . , xn−1(y) satisfy the
conditions of Proposition 4.2. □

5. The case of C(2m+ 1,−2n)

In this section we prove the existence of continuous families of hyperbolic SL2(R)-
representations of the knot groups of C(2m+1,−2n) and use it to give a proof of Theorem
1.

5.1. Real roots of the Riley polynomial.

Proposition 5.1. There exists a unique continuous real function x : (2 cos π
2m+1

,∞) →
(0,∞) in the variable y such that RC(2m+1,−2n)(x(y), y) = 0 and x(y) > y + 2 for all
y > 2 cos π

2m+1
.

Proof. Let K = C(2m+ 1,−2n). We have RK(x, y) = Sn(t)− zSn−1(t) where

t = 2− (y + 2− x)(Sm(y)− Sm−1(y))
2,

z = 1− (y + 2− x)Sm(y)(Sm(y)− Sm−1(y)).

Choose tj for 1 ≤ j ≤ n as in the proof of Proposition 4.1. Fix a real number
y > 2 cos π

2m+1
. Then Sm(y) > Sm−1(y) > 0 by Lemma 3.1(3). Let sj(y) = y + 2 −

2−tj
(Sm(y)−Sm−1(y))2

for j = 1, . . . , n. Then sn(y) < · · · < s1(y) < y + 2. Since

RK(sj(y), y) = (1− z)Sn(tj) = (y + 2− sj(y))Sm(y)(Sm(y)− Sm−1(y))Sn(tj),

RK(sj(y), y) and Sn(tj) have the same sign. Thus the sign of RK(sj(y), y) changes alter-
nately. Hence, there exists xj(y) ∈ (sj+1(y), sj(y)) such that RK(xj(y), y) = 0 for each
1 ≤ j ≤ n− 1.

By writing RK(x, y) = (t− z)Sn−1(t)− Sn−2(t) and noting that

t− z = 1 + (y + 2− x)(Sm(y)− Sm−1(y))Sm−1(y),

we see that RK(x, y) is a polynomial of degree n in x with negative highest coefficient
for each fixed real number y > 2 cos π

2m+1
. For, t (resp. t − z) has degree one in the

variable x with positive (resp. negative) coefficient, and the Chebyshev polynomials
Sn−1(t) and Sn−2(t) are polynomials of degree n−1 and n−2, respectively, in t with positive
highest coefficient. Since limx→∞RK(x, y) = −∞ and RK(y + 2, y) = 1, there exists
x0(y) ∈ (y + 2,∞) such that RK(x0(y), y) = 0. For a fixed real number y > 2 cos π

2m+1
,

the polynomial RK(x, y) of degree n in x has exactly n simple real roots x0(y), . . . , xn−1(y)

satisfying xn−1(y) < · · · < x1(y) < y + 2 < x0(y), hence the implicit function theorem
implies that each xj(y) is a continuous function in y > 2 cos π

2m+1
.

Letting x(y) = x0(y) for y > 2 cos π
2m+1

, we have x(y) > y+2 and RK(x(y), y) = 0. □

Proposition 5.2. The continuous real function x(y) in Proposition 5.1 satisfies the fol-
lowing properties:
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(1) x(y) > 2 + Sm(y)
Sm−1(y)

+ Sm−1(y)
Sm(y)

> 4 for all y > 2 cos π
2m+1

,
(2) x(y) → ∞ as y → (2 cos π

2m+1
)+,

(3) y2m+2n−2
(
x(y)− 2− Sm(y)

Sm−1(y)
− Sm−1(y)

Sm(y)

)
→ 1 as y → ∞.

Proof. (1) Since RK(x(y), y) = 0 we have Sn(t) = zSn−1(t). By Lemma 3.1(1), S2
n(t) −

tSn(t)Sn−1(t) + S2
n−1(t) = 1. Thus we have (z2 − tz + 1)S2

n−1(t) = 1. Let G = Sm(y)

and H = Sm−1(y). Then G > H > 0 for y > 2 cos π
2m+1

by Lemma 3.1(3). By using
G2 − yGH +H2 = 1 and t− 2 = (x− y − 2)(G−H)2, we have

z2 − tz + 1 = (z − 1)2 − (t− 2)z

= (x− y − 2)2G2(G−H)2 − (x− y − 2)(G−H)2 (1 + (x− y − 2)G(G−H))

= (x− y − 2)(G−H)2((x− y − 2)GH − 1)

= (x− y − 2)(G−H)2((x− 2)GH −G2 −H2)

= (t− 2)((x− 2)GH −G2 −H2).

Hence (t− 2)((x− 2)GH −G2 −H2)S2
n−1(t) = 1. Since t− 2 = (x− y− 2)(G−H)2 > 0,

we get (x− 2)GH −G2 −H2 > 0. This implies that

x > 2 +
G2 +H2

GH
= 4 +

(G−H)2

GH
> 4.

(2) As y → (2 cos π
2m+1

)+ we have G−H → 0 by Lemma 3.1(3). If x is bounded, then
t− 2 = (x− 2− y)(G−H)2 → 0 and 1 = (t− 2)((x− 2)GH −G2 −H2)S2

n−1(t) → 0, a
contradiction. Hence x(y) → ∞ as y → (2 cos π

2m+1
)+.

(3) We now consider the case y > 2. First,

t+ 2− x = (x− y − 2)(G−H)2 + 4− x

= (x− y − 2)(1 + (y − 2)GH) + 4− x

= (x− y − 2)(y − 2)GH − y + 2

= (y − 2) ((x− y − 2)GH − 1)

= (y − 2)((x− 2)GH −G2 −H2) > 0.

Hence t > x − 2 > y. Noting that (t − 2)((x − 2)GH − G2 − H2)S2
n−1(t) = 1, we have

(x − 2)GH − G2 − H2 → 0 as y → ∞. This is equivalent to GH(x − 2 − y) − 1 =

GH t−2
(G−H)2

− 1 → 0 as y → ∞. Since

GH
t− 2

(G−H)2
=

t
y
− 2

y

1− 2
y
+ 1

yGH

,

t
y
→ 1 as y → ∞. The equation (t− 2)((x− 2)GH −G2 −H2)S2

n−1(t) = 1 gives

(t− 2)GH

(
x− 2− G

H
− H

G

)
S2
n−1(t) = 1.
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Since G and H have degree m and m−1 respectively in y with positive highest coefficient
and Sn−1(t)

2 has degree 2n − 2 in t, y2m+2n−2(x − 2 − G
H

− H
G
) → 1 as y → ∞. This

completes the proof of Proposition 5.2. □

5.2. Proof of Theorem 1. Let X be the complement of an open tubular neighborhood
of K = C(2m + 1,−2n) in S3, and Xr the 3-manifold obtained from S3 by r-surgery
along K. Consider the function x(y) in Proposition 5.1. For each y > 2 cos π

2m+1
, we

have x(y) > 2 + Sm(y)
Sm−1(y)

+ Sm−1(y)
Sm(y)

> 4 by Proposition 5.2(1). Let M(y) = 1
2
(
√
x(y) +√

x(y)− 4) > 1, then
√
x(y) = M(y) +M(y)−1. Since RK(x(y), y) = 0, there exists a

non-abelian representation ρy : π1(X) → SL2(R) such that

ρy(a) =

[
M(y) 1
0 M(y)−1

]
and ρy(b) =

[
M(y) 0

2− y(x) M(y)−1

]
.

Moreover, the image of the canonical longitude λ corresponding to the meridian µ = a

has the form ρy(λ) =

[
L(y) ∗
0 L(y)−1

]
, where

L(y) = −M(y)4n
M(y)−1Sm(y)−M(y)Sm−1(y)

M(y)Sm(y)−M(y)−1Sm−1(y)
.

As in the proof of Proposition 5.2, we let G = Sm(y) and H = Sm−1(y). Then G > H >

0 for y > 2 cos π
2m+1

and L(y) = M(y)4n
M(y)2−G

H

M(y)2 G
H
−1

. Since M(y)2 +M(y)−2 = x(y) − 2 >
G
H
+ H

G
, we have M(y)2 > G

H
> 1. This implies that

L(y) =M(y)4n
M(y)2 − G

H

M(y)2 G
H
− 1

> 0.

As y → (2 cos π
2m+1

)+ we have G
H

= Sm(y)
Sm−1(y)

→ 1 and M(y) → ∞ (by Proposition

5.2(2)), so M(y)2−G
H

M(y)2 G
H
−1

→ 1. Hence

logL(y)

logM(y)
= 4n+

log
M(y)2−G

H

M(y)2 G
H
−1

logM(y)
→ 4n.

As y → ∞ we have y2m+2n−2
(
x(y) − 2 − G

H
− H

G

)
→ 1 by Proposition 5.2(3). This is

equivalent to y2m+2n−2(M(y)2− G
H
)(1− 1

M(y)2 G
H

) → 1, which implies that y2m+2n−2(M(y)2−
G
H
) → 1. Thus M(y)2 − G

H
→ 0. Since G and H have degree m and m − 1 respectively

in y with positive highest coefficient, G
H
− y → 0. Then M(y)2 − y → 0. Asymptotically,

M(y)2 − G
H

∼ y2−2m−2n and M(y)2 G
H
− 1 ∼ y2. Hence

logL(y)

logM(y)
= 4n+

log
M(y)2−G

H

M(y)2 G
H
−1

logM(y)
→ 4n− (4m+ 4n) = −4m.

Consider the continuous function f(y) := − logL(y)
logM(y)

for y > 2 cos π
2m+1

. Then from
the above arguments we conclude that the image of f contains the interval (−4n, 4m).
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This implies that for any slope r ∈ (−4n, 4m) there exists y > 2 cos π
2m+1

such that
r = f(y) = − logL(y)

logM(y)
.

The continuous family C of nonabelian representations {ρy}, y > 2 cos π
2m+1

, contains
a special one which is the reducible nonabelian representation ρ2 (i.e. ρy at y = 2). This
representation has index 0 by Corollary 2.2 and so by Lemma 2.1 the continuous family C
has index 0. Applying Proposition 2.3(i) to C, with a(y) = logM(y) and b(y) = logL(y),
we conclude that any slope r ∈ (−4n, 4m) is a left orderable slope of K = C(2m+1,−2n)

detected by hyperbolic SL2(R)-representations of the knot group.
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