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Abstract. For a definable continuous mapping f from a definable connected open

subset Ω of Rn into Rn, we show that the following statements are equivalent:

(i) The mapping f is open.

(ii) The fibers of f are finite and the Jacobian of f does not change sign on the set of

points at which f is differentiable.

(iii) The fibers of f are finite and the set of points at which f is not a local homeomor-

phism has dimension at most n− 2.

As an application, we prove that Whyburn’s conjecture is true for definable map-

pings: A definable open continuous mapping of one closed ball into another which maps

boundary homeomorphically onto boundary is necessarily a homeomorphism.

1. Introduction

We are interested in the possible necessary and sufficient conditions for a continuous

mapping to be open. Recall that a mapping is open if it maps open sets onto open sets.

By Remmert’s open mapping theorem (see, for example, [19, Theorem 2, p. 297]

or [23, Proposition 4, p. 132]), it is well known that a holomorphic mapping f : Cn → Cn

is open if and only if its fibers are discrete.

From the work of Church [2] (see also [4]) we know that if a mapping f : Rn → Rn

is Cn and light (i.e., the fibers of f are totally disconnected), then f is open if and only

if the Jacobian (i.e., the determinant of the Jacobian matrix) of f does not change sign,

equivalently, the set of points at which f is not a local homeomorphism has dimension at

most n− 2.

For a real polynomial mapping f : Rn → Rn, Gamboa and Ronga [11] proved that

f is open if and only if the fibers of f are finite and the Jacobian of f does not change

sign. After that, Hirsch [15] affirmed that the Jacobian of a real analytic open mapping

f : Rn → Rn does not change sign. Recently in [9, Theorem 3.14], Denkowski and Loeb

showed that a subanalytic (or definable in some o-minimal structure) mapping f of class
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C1 is open if and only if the fibers of f are discrete and the Jacobian of f does not change

sign.

In the non-smooth setting, a result of Scholtes [27] (see Corollary 3.1 below) stated

that a piecewise affine mapping f : Rn → Rn is open if and only if it is coherently oriented

(meaning that the Jacobian of affine mappings associated to f have the same nonzero

sign). See also [1, 12,17,22,24,37] for related works.

We present here a definable non-smooth version of the above results. Namely, let

f : Ω→ Rn be a definable continuous mapping, where Ω is a definable connected open set

in Rn. Denote by Df the set of points in Ω at which f is differentiable; this set is dense

in Ω (see, e.g., [6,31]). We also denote by Bf the set of points in Ω at which f fails to be

a local homeomorphism. Then the following statements are equivalent:

(i) The mapping f is open.

(ii) The fibers of f are finite and the Jacobian of f does not change sign on Df .

(iii) The fibers of f are finite and the set Bf has dimension at most n− 2.

The idea of the proof of the equivalence (i) ⇔ (ii) is similar to those in [9, 11, 15].

However, more arguments need to be taken into account in the non-smooth case.

In [35] Whyburn stated the following conjecture and verified it for the case n = 2:

Suppose that f is a light open continuous mapping of one closed ball of dimension n onto

another. If f maps the boundary homeomorphically, then f is a homeomorphism.

Whyburn’s conjecture has been proved for several class of continuous mappings by

McAuley [21]. The conjecture has been verified for differentiable mappings with an ad-

ditional hypothesis by Cronin and McAuley [7]. It is also valid for C2 mappings due to

Marx [20]. On the other hand, it has been shown by Wilson [36] that the conjecture is

false for continuous mappings on higher dimensional spaces. However, the second result

of this paper shows that the conjecture is still true for definable continuous mappings.

The rest of this paper is organized as follows. Section 2 contains some properties of

definable sets and mappings in o-minimal structures. For the convenience of the reader,

the classical invariance of domain theorem and some properties of the Brouwer degree are

also recalled here. Finally, results are given in Section 3.

2. Preliminaries

2.1. Notation and definitions. We suppose 1 ≤ n ∈ N and abbreviate (x1, . . . , xn) by

x. The space Rn is equipped with the usual scalar product 〈·, ·〉 and the corresponding

Euclidean norm ‖ · ‖. The open ball and sphere of radius r centered at the origin in Rn
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will be denoted by Bn
r and Sn−1

r , respectively. If x ∈ Rn and Ω ⊂ Rn is a non-empty set

then the distance from x to Ω is defined by dist(x,Ω) := infy∈Ω ‖x− y‖. The closure and

boundary of a set Ω ⊂ Rn will be written as Ω and ∂Ω, respectively.

Let f be a mapping from a subset Ω of Rn into Rm. Then f is an open mapping if

f(U) is an open subset of Rm whenever U is an open subset of Ω; f has finite fibers if for

each y ∈ Rn, the fiber f−1(y) is a finite (possibly empty) set. Suppose that m = n and Ω is

open. Let Df denote the set of points in Ω at which f is differentiable. If x ∈ Df then we

denote the Jacobian matrix of f at x by df(x) =
[
∂fi
∂xj

(x)
]
, and the determinant of df(x)

is the Jacobian of f at x, denoted by Jf(x). Let Rf denote the set of points x ∈ Ω such

that f is of class C1 in a neighborhood of x and the Jacobian Jf(x) is nonzero. Observe

that Rf is an open set but it is not necessarily connected. As in [2], the branch set of f,

denoted by Bf , is the set of points in Ω at which f fails to be a local homeomorphism.

Note that Bf ⊂ Ω \Rf by the inverse mapping theorem.

2.2. The invariance of domain theorem and the Brouwer degree. For the conve-

nience of the reader, we recall here the classical invariance of domain theorem and some

properties of the Brouwer degree.

Lemma 2.1 (Invariance of domain). Let Ω be an open subset of Rn. Then every injective

continuous mapping from Ω into Rn is open.

Proof. See, for example, [10, Chapter 4, Proposition 7.4]. �

Suppose Ω is an open and bounded set in Rn, f : Ω→ Rn is a continuous mapping,

and y 6∈ f(∂Ω). The Brouwer degree of f on Ω with respect to y, denoted by deg(f,Ω, y),

is a function of integer values which enjoys several important properties (normalization,

domain decomposition, local constancy, homotopy invariance, etc.). The Brouwer degree

is a power tool used in analysis and topology, in particular, it gives an estimation and the

nature of the solution(s) of the equation f(x) = y in Ω. For more details, the reader may

refer to [8, 18] and the references therein.

The two lemmas below provide some useful properties of the Brouwer degree.

Lemma 2.2. Let Ω be an open and bounded set in Rn, f : Ω → Rn be a continuous

mapping, and y 6∈ f(∂Ω). Then the following statements hold:

(i) If deg(f,Ω, y) 6= 0, then there is x ∈ Ω such that f(x) = y.

(ii) For all y′ ∈ Rn with ‖y′ − y‖ < dist(y, f(∂Ω)) we have

deg(f,Ω, y′) = deg(f,Ω, y).
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(iii) If H : Ω × [0, 1] → Rn is continuous, γ : [0, 1] → Rn is continuous, and γ(t) 6∈
H(∂Ω, t) for every t ∈ [0, 1], then deg(H(·, t),Ω, γ(t)) is independent of t ∈ [0, 1].

Proof. See, for example, [8, 18]. �

Lemma 2.3. Let Ω be an open and bounded set in Rn and f : Ω → Rn be a continuous

mapping. Then the following statements hold:

(i) Let x ∈ Ω be such that the Jacobian matrix df(x) exists and is nonsingular. Then

there exists a neighborhood W of x such that W ∩ f−1(f(x)) = {x} and

deg(f,W, f(x)) = signJf(x).

(ii) Let y 6∈ f(∂Ω) be such that for every x ∈ f−1(y), the Jacobian matrix df(x) exists

and is nonsingular. Then

deg(f,Ω, y) =
∑

x∈f−1(y)

signJf(x).

Proof. See [8, 18] for the smooth case and see [13,26,28] for the non-smooth case. �

2.3. O-minimal structures and definable mappings. The notion of o-minimality

was developed in the late 1980s after it was noticed that many proofs of analytic and

geometric properties of semi-algebraic sets and mappings can be carried over verbatim for

subanalytic sets and mappings. We refer the reader to [6, 31, 32] for the basic properties

of o-minimal structures used in this paper.

Definition 2.1. An o-minimal structure on (R,+, ·) is a sequence D := (Dn)n∈N such

that for each n ∈ N:

(a) Dn is a Boolean algebra of subsets of Rn.

(b) If X ∈ Dm and Y ∈ Dn, then X × Y ∈ Dm+n.

(c) If X ∈ Dn+1, then π(X) ∈ Dn, where π : Rn+1 → Rn is the projection on the first

n coordinates.

(d) Dn contains all algebraic subsets of Rn.

(e) Each set belonging to D1 is a finite union of points and intervals.

A set belonging to D is said to be definable (in that structure). Definable mappings

in structure D are mappings whose graphs are definable sets in D.
Examples of o-minimal structures are

• the semi-algebraic sets (by the Tarski–Seidenberg theorem),
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• the globally subanalytic sets, i.e., the subanalytic sets of Rn whose (compact)

closures in the real projective space RPn are subanalytic (using Gabrielov’s com-

plement theorem).

In this note, we fix an arbitrary o-minimal structure on (R,+, ·). The term “definable”

means definable in this structure. We recall some useful facts which we shall need later.

Lemma 2.4 (Monotonicity). Let f : (a, b)→ R be a definable function and p be a positive

integer. Then there are finitely many points a = t0 < t1 < · · · < tk = b such that the

restriction of f to each interval (ti, ti+1) is of class Cp, and either constant or strictly

monotone.

Lemma 2.5 (Path connectedness). The following statements hold:

(i) Every definable set has a finite number of connected components and each such com-

ponent is definable.

(ii) Every definable connected set X is path connected, i.e., for every points x, y in X,

there exists a definable continuous curve γ : [0, 1] → X such that γ(0) = x and

γ(1) = y.

By the cell decomposition theorem (see, for example [32, 4.2]), for any p ∈ N and any

nonempty definable subset X of Rn, we can write X as a disjoint union of finitely many

definable Cp-manifolds of different dimensions. The dimension dimX of a nonempty de-

finable set X can thus be defined as the dimension of the manifold of highest dimension of

such a decomposition. This dimension is well defined and independent on the decomposi-

tion of X. By convention, the dimension of the empty set is taken to be negative infinity.

A point x ∈ X is generic if there exists a neighborhood U of x in Rn such that X ∩ U is

a definable C1-manifold of dimension dimX.

Lemma 2.6. Let X ⊂ Rn be a nonempty definable set. Then the following statements

hold:

(i) The set X has measure zero if and only if dimX < n.

(ii) The interior of X is nonempty if and only if dimX = n.

(iii) dim(X \X) < dimX. In particular, dimX = dimX.

(iv) Let Y ⊂ Rn be a definable set containing X. If X is dense in Y then dim(Y \X) <

dimY.

(v) If Y ⊂ Rn is definable, then dim(X ∪ Y ) = max{dimX, dimY }.
(vi) Let f : X → Rm be a definable mapping. Then dim f(X) ≤ dimX.

(vii) The complement in X of the set of generic points in X is a definable set of dimension

less than dimX.
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Lemma 2.7. Let X ⊂ Rn be a definable open set and f : X → Rm be a definable mapping.

Then for each positive integer p, the set of points where f is not of class Cp is a definable

set of dimension less than n.

In the sequel we will make use of Hardt’s triviality (see [14,31]).

Theorem 2.1 (Hardt’s triviality). Consider a definable continuous mapping f : X → Y

where X ⊂ Rn and Y ⊂ Rm are definable sets. Then there exists a finite partition

Y = Y1 ∪ · · · ∪ Yk of Y into definable sets Yi such that f is definably trivial over each Yi,

that is, there exists a definable set Fi ⊂ Rni , for some ni, and a definable homeomorphism

hi : f
−1(Yi)→ Yi×Fi such that the composition hi with the projection Yi×Fi → Yi, (y, z) 7→

y, is equal to the restriction of f to f−1(Yi).

3. Results and proofs

The following result provides necessary and sufficient conditions for a definable con-

tinuous mapping to be open. For related results, we refer the reader to [2–5, 9, 11, 15, 29,

30,33,34].

Theorem 3.1. , Let f : Ω→ Rn be a definable continuous mapping, where Ω is a definable

connected open set in Rn. Then the following two conditions are equivalent:

(i) The mapping f is open.

(ii) The fibers of f are finite and the Jacobian Jf does not change sign on Df .

(iii) The fibers of f are finite and the Jacobian Jf does not change sign on Rf .

(iv) The fibers of f are finite and the branch set Bf has dimension at most n− 2.

In order to prove Theorem 3.1, we need some lemmas. The first one is [25, Fact 2.2],

which is a consequence of [16, Proposition 2]; we recall it here together with a direct proof.

Lemma 3.1. Let Ω be a definable connected open subset of Rn and R be a definable open

dense subset of Ω. Consider the graph Γ whose vertices are the connected components of R

with two components Ri and Rj connected by an edge if and only if dim(Ω∩Ri∩Rj) > n−1.

Then Γ is connected.

Proof. Suppose for contradiction that the graph Γ is not connected. There exists a con-

nected component of Γ whose vertices are R1, . . . , Rp for some p > 1, and let Rp+1, . . . , Rq

with q > p+ 1 be the remaining vertices of Γ. By assumption, we have for all i = 1, . . . , p,

and all j = p+ 1, . . . , q,

dim(Ω ∩Ri ∩Rj) < n− 1.
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Set

X1 :=

p⋃
i=1

(Ω ∩Ri) and X2 :=

q⋃
j=p+1

(Ω ∩Rj).

Observe that

X1 ∩X2 =

(
p⋃

i=1

(Ω ∩Ri)

)⋂(
q⋃

j=p+1

(Ω ∩Rj)

)
=

⋃
i=1,...,p

j=p+1,...,q

(Ω ∩Ri ∩Rj).

Hence dim(X1 ∩X2) < n− 1 and so Ω \ (X1 ∩X2) is path connected. On the other hand,

since R = ∪i=1,...,qRi is dense in Ω, we have Ω = X1 ∪X2 and so

Ω \ (X1 ∩X2) = (X1 \X2) ∪ (X2 \X1).

Therefore, there is a continuous path

γ : [0, 1]→ Ω \ (X1 ∩X2)

such that γ(0) ∈ X1 \X2 and γ(1) ∈ X2 \X1. Set

t∗ := sup{t ∈ [0, 1] : γ(s) ∈ X1 \X2 for all s ∈ [0, t)}.

Then it is easy to check that γ(t∗) ∈ X1 ∩ X2, which is a contradiction. The lemma is

proved. �

The following result is taken from [25, Lemma 3.1].

Lemma 3.2. Let W ⊂ Rn−1 and U ⊂ Rn be definable open sets such that the set W̃ :=

W × {0} is contained in the boundary of U. Let f : U ∪ W̃ → R be a definable function

continuous on U ∪W̃ and C1 on U. Let g : W → R be the function y 7→ f(y, 0) and a ∈ W
be a generic point. Then g is differentiable at a and, for all i = 1, . . . , n− 1,

∂g

∂xi
(a) = lim

x→(a,0), x∈U

∂f

∂xi
(x).

The following fact is simple but useful.

Lemma 3.3. Let f : Ω → Rn be a definable continuous mapping, where Ω is a definable

open set in Rn. Assume that the fibers of f are finite. Then the following two statements

hold:

(i) If X is a definable subset of Ω, then dimX = dim f(X).

(ii) The set Rf is dense in Ω.
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Proof. (i) Let X be a definable subset of Ω. Applying Hardt’s Trivial Theorem 2.1 to the

restriction mapping f |X of f to X, we obtain a finite definable partition of f(X) onto

Y1, . . . , Yk such that f |X is definably trivial over each Yi. Since the fibers of f are finite,

it follows that

dim(f |X)−1(Yi) = dimYi for i = 1, . . . , k.

Hence

dimX = max
i=1,...,k

dim(f |X)−1(Yi) = max
i=1,...,k

dimYi = dim f(X),

which yields (i).

(ii) Let B be the set of points x ∈ Ω such that f is not C1 in a neighborhood of x.

Then B is closed in Ω. Further, in view of Lemma 2.7, B is a definable set of dimension

less than n. Consider the definable set

C := {x ∈ Ω \B : Jf(x) = 0}.

Applying Sard’s theorem to the C1-mapping

Ω \B → Rn, x 7→ f(x),

we have that f(C) has measure zero, and so it has dimension less than n in view of

Lemma 2.6(i). This, together with the statement (i), implies that

dimC = dim f(C) < n.

Consequently, dim(B ∪ C) < n. Now (ii) follows immediately since Rf = Ω \ (B ∪ C).

This ends the proof of the lemma. �

We can prove the following lemma by the same argument as in [11, Proposition,

page 298].

Lemma 3.4. Let f : Ω → Rd be a definable open continuous mapping, where Ω is a

definable subset of Rn. Then

dim f−1(y) 6 dim Ω− d for all y ∈ Rd.

In particular, if dim Ω = d, then the fibers of f are finite.

Proof. The proof is the same as that of [11, Proposition, page 298]. For the convenience

of the reader we repeat the proof here. We proceed by induction on d; the case d = 0 is

trivial. If d > 0, let y ∈ Rd and let H ⊂ Rd be a hyperplane containing y. Since f is open,

the restriction of f on f−1(H) is also open and the induction hypothesis implies that

dim f−1(y) 6 dim f−1(H)− (d− 1).
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If dim f−1(H) = dim Ω then the set of generic points in f−1(H) is open in Ω, but its

image by f is contained in H, contradicting that f is open, and the desired inequality

follows. �

We are now in position to prove Theorem 3.1.

Proof of Theorem 3.1. (cf. [9, Theorem 3.14], [11, Theorem, page 297], [25, Theorem 3.2]).

(ii) ⇒ (iii): Obviously.

(iii) ⇒ (i): To see that f is open, take any x ∈ Ω and let W be a neighborhood of x.

Since the fiber f−1(f(x)) is finite, there exists an open ball U centered at x with U ⊂ W

such that U ∩ f−1(f(x)) = {x}. Since ∂U is compact and f(x) 6∈ f(∂U), we can find an

open ball V ⊂ Rn centered at f(x) such that f(∂U) ∩ V = ∅. Now the conclusion follows

if we can show that f(U) ⊃ V.

Recall that Rf denotes the set Rf of points x ∈ Ω such that f is of class C1 on a

neighborhood of x and the Jacobian Jf(x) is nonzero. In view of Lemma 3.3(ii), Rf is

dense in Ω. Since U is an open subset of Ω, there exists a point u in U ∩ Rf . Then f is

of class C1 on a neighborhood of u and the Jacobian matrix of f at u is nonsingular. By

the inverse mapping theorem, the image f(U) must contain an open set Y ⊂ V. On the

other hand, it follows from Lemmas 3.3 and 2.6(iv) that

dim f(Ω \Rf ) = dim(Ω \Rf ) < n.

So there must exist some point y in Y with f−1(y) ⊂ Rf . Therefore, U∩f−1(y) is nonempty

and for every x ∈ U ∩ f−1(y), the Jacobian matrix df(x) exists and is nonsingular.

Furthermore, by construction, y is not in f(∂U). For simplicity of notation, we let g

stand for the restriction of f to U. Then the Brouwer degree deg(g, U, y) is defined. In

light of Lemma 2.3(ii), we have

deg(g, U, y) =
∑

x∈g−1(y)

signJg(x).

On the other hand, by assumption, the Jacobian Jf is positive (or negative) on Rf , and

so ∑
x∈g−1(y)

signJg(x) 6= 0.

Therefore deg(g, U, y) 6= 0.

Finally, to prove that V ⊂ f(U), take any y ∈ V and consider the continuous curve

γ : [0, 1]→ V, t 7→ (1− t)y + ty,
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connecting y to y. Since f(∂U) ∩ V = ∅, we have γ(t) 6∈ g(∂U) for all t ∈ [0, 1]. This,

together with Lemma 2.2(iii), implies that

deg(g, U, y) = deg(g, U, y) 6= 0.

By Lemma 2.2(i), g(x) = y for some x in U, and this proves the openness of f.

(i) ⇒ (ii): Assume that f is open. If n = 1, then f is strictly monotone and there is

nothing to prove. So for the rest of the proof we assume that n > 1.

By Lemma 3.4, the fibers of f are finite.

We first show that the Jacobian Jf has constant sign on Rf which means that Jf is

positive (or negative) on Rf .

Obviously, the set Rf is definable open, and according to Lemma 3.3(ii), it is dense

in Ω. By Lemma 2.5, Rf has a finite number of connected components, say R1, . . . , Rk,

and these components are path connected. By definition, Jf has constant sign on each

Ri. According to Lemma 3.1, we need to show that for any two components Ri, Rj with

dim(Ω ∩ Ri ∩ Rj) > n − 1, the sign of Jf on Ri is the same as on Rj. We consider two

such components Ri, Rj and assume that they are R1 and R2. Let Σ := Ω ∩ R1 ∩ R2. In

view of Lemma 2.6(iii), it is easy to see that dim Σ = n− 1.

Let x be a generic point in Σ; then Σ is a C1-submanifold of Rn of dimension n−1 near

x. Hence, there is a definable connected open neighborhood U ⊂ Ω of x and a definable

diffeomorphism Φ from U onto an open subset of Rn such that Φ(U ∩ Σ) ⊂ {xn = 0}.
Shrinking U and composing Φ with the reflection with respect to the hyperplane {xn = 0}
if necessary, we may assume that Φ(U ∩R1) ⊂ {xn > 0} and Φ(U ∩R2) ⊂ {xn < 0}.

Since Φ is a diffeomorphism and U is connected, the sign of JΦ is constant on U.

Furthermore f ◦ Φ−1 is open on Φ(U). Hence we may replace Ω by Φ(U), f by f ◦ Φ−1

and assume that

R1 ⊂ {xn > 0}, R2 ⊂ {xn < 0} and Σ ⊂ {xn = 0}.

On the other hand, since the fibers of f are finite, it follows from Lemma 3.3(i) that

dim f(Σ) = dim Σ = n− 1.

Let y be a generic point in f(Σ); then f(Σ) is a C1-submanifold of Rn of dimension

n − 1 near y. As before, by applying an appropriate definable diffeomorphism on an

open neighborhood of y we may assume that f(Σ) ⊂ {yn = 0}. Applying Hardt’s Trivial

Theorem 2.1 to the restriction of f to f−1(f(Σ)), we obtain a finite definable partition

of f(Σ) onto Y1, . . . , Yk such that this restriction mapping is definably trivial over each

Yi. By Lemma 2.5, f−1(Yi) has a finite number of connected components and each such
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component is homeomorphic to Yi because f has finite fibers. Observe that there exists

an index i such that the set f−1(Yi) ∩ Σ is of dimension n − 1. Let Σ̃ be a connected

component of f−1(Yi) ∩ Σ of dimension n− 1. Now, by shrinking Ω we may assume that

Ω ∩ f−1(f(Σ̃)) = Σ̃.

By construction, it is easy to see that each of the (connected open) sets f(R1) and

f(R2) is contained in either {yn > 0} or {yn < 0} but not in both. Furthermore, since f

is open, the sets f(R1) and f(R2) cannot lie in the same half-space {yn > 0} or {yn < 0}.
Hence, without lost of generality, we may assume that

f(R1) ⊂ {yn > 0} and f(R2) ⊂ {yn < 0}.

Write f := (f1, . . . , fn) and let (a, 0) ∈ Rn−1 × {0} be a generic point in Σ̃. Observe

that

fn(a,−t) < fn(a, 0) = 0 < fn(a, t)

for all t > 0 sufficiently small. By Lemma 2.4, it is easy to see that fn(a, t) is strictly

increasing in t near 0. Consequently, we can find ε > 0 small enough such that ∂fn
∂xn

(a, t) > 0

for all t ∈ (−ε, ε) different from 0. Since (a, 0) is generic in Σ̃, we may assume, by shrinking

Ω if needed, that for all (x1, . . . , xn) ∈ Ω, if xn 6= 0, then ∂fn
∂xn

(x1, . . . , xn) > 0. If this last

change of Ω makes the point (a, 0) not generic in Σ̃, we replace (a, 0) by another generic

point and continue to assume that (a, 0) is generic in Σ̃.

Define the definable continuous mapping Ψ: Ω→ Rn by

Ψ(x1, . . . , xn) := (x1, . . . , xn−1, fn(x1, . . . , xn)).

Obviously, Ψ is identity on Σ̃ and differentiable on Ω\Σ̃. Furthermore, Ψ is injective since

for every (x1, . . . , xn−1, 0) ∈ Σ̃, the function xn 7→ fn(x1, . . . , xn) is strictly increasing. In

light of Lemma 2.1, Ψ is a homeomorphism from Ω onto Ψ(Ω). Observe that JΨ(x) =
∂fn
∂xn

(x) for all x ∈ Ω \ Σ̃, hence JΨ is positive outside of Σ̃. Consequently, we can replace

the mapping f by the mapping f ◦ Ψ−1 without changing the sign of the Jacobian of f

on Ω \ Σ̃. Without loss of generality, assume from now on that fn(x1, . . . , xn) = xn on Ω.

For x = (x1, . . . , xn) ∈ Ω \ Σ̃ we have

Jf(x) =

∣∣∣∣∣∣∣∣∣∣

∂f1
∂x1

(x) · · · ∂f1
∂xn−1

(x) ∂f1
∂xn

(x)
...

. . .
...

...
∂fn−1

∂x1
(x) · · · ∂fn−1

∂xn−1
(x) ∂fn−1

∂xn
(x)

0 · · · 0 1

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
∂f1
∂x1

(x) · · · ∂f1
∂xn−1

(x)
...

. . .
...

∂fn−1

∂x1
(x) · · · ∂fn−1

∂xn−1
(x)

∣∣∣∣∣∣∣∣ . (1)
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As f is open, the restriction of f to f−1(Rn−1 × {0}) is an open mapping from

f−1(Rn−1 × {0}) into Rn−1 × {0}. Hence the mapping

g : W → Rn−1, x′ 7→ (f1(x′, 0), . . . , fn−1(x′, 0)),

is definable, open and continuous, where W := {x′ ∈ Rn−1 : (x′, 0) ∈ Σ̃} is a definable

open subset of Rn−1. By Lemma 3.4, the fibers of g are finite. Applying Lemma 3.3(ii) to

the mapping g, we have that the set Rg is dense in W. Thus, replacing a by a point in Rg

if necessary, we may assume that Jg(a) 6= 0.

By Lemma 3.2, for 1 6 i, j 6 n− 1, we have

lim
x→(a,0), x∈Ω

∂fi
∂xj

(x) =
∂gi
∂xj

(a).

It follows then from (1) that

lim
x→(a,0), x∈Ω

Jf(x) = Jg(a).

Hence, for x ∈ Ω close enough to (a, 0), whether in R1 or in R2, the sign of Jf(x) is the

same as the sign of Jg(a). In particular, the sign of Jf is the same in R1 and in R2.

We have thus proved that the Jacobian Jf has constant sign on Rf . So, without loss

of generality, we may assume that the Jacobian Jf is positive on Rf . It remains to show

that

Jf(x) > 0 for all x ∈ Df .

To see this, let x ∈ Df be such that Jf(x) 6= 0. In view of Lemma 2.3(i), there exists a

definable open and bounded neighborhood W of x such that W ∩ f−1(f(x)) = {x} and

deg(f,W, f(x)) = signJf(x). (2)

On the other hand, by Lemma 3.3, the set f(Rf ) is dense in f(Ω). Note that f(W ) is an

open subset of f(Ω) because the mapping f is open. Consequently, there exists a point

y ∈ f(W ) with ‖y− f(x)‖ < dist(f(x), f(∂W )) such that f−1(y) ⊂ Rf . In particular, for

every w ∈ f−1(y), the Jacobian matrix df(w) exists and is nonsingular. It follows from

Lemmas 2.2(ii) and 2.3(ii) that

deg(f,W, f(x)) = deg(f,W, y) =
∑

w∈f−1(y)

signJf(w) > 0. (3)

Combining (2) and (3), we get Jf(x) > 0, which completes the proof of the implication

(i) ⇒ (ii).

(i) ⇒ (iv): If n = 1, then f is strictly monotone and there is nothing to prove. So

for the rest of the proof we assume that n > 1.
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By Lemma 3.4, the fibers of f are finite. Hence, it suffices to show that dimBf 6 n−2.

(Recall that Bf denotes the set of points at which f is not a local homeomorphism.) By

the inverse mapping theorem, we have Bf ⊂ Ω \Rf . This, together with Lemmas 2.6 and

2.7, implies

dimBf 6 dim(Ω \Rf ) 6 n− 1.

Suppose for contradiction that dimBf = n − 1. By analysis similar to that in the

proof of the implication (i) ⇒ (ii), we may assume the following conditions hold:

(a) Ω \Rf = Bf ;

(b) Bf ⊂ {xn = 0} and f(Bf ) ⊂ {yn = 0};
(c) Ω \Bf has two connected components, denoted by R1 and R2 with

R1 ⊂ {xn > 0}, R2 ⊂ {xn < 0}, f(R1) ⊂ {yn > 0} and f(R2) ⊂ {yn < 0};

(d) fn(x1, . . . , xn) = xn on Ω;

(e) the mapping

g : W → Rn−1, x′ 7→ (f1(x′, 0), . . . , fn−1(x′, 0)),

is definable, open and continuous, where W := {x′ ∈ Rn−1 : (x′, 0) ∈ Bf} is a

definable open subset of Rn−1;

(f) Jg(x′) 6= 0 for all x′ ∈ W.

Let x := (a, 0) ∈ Bf . Then f is not a local homeomorphism at x, and so it is

not injective. Hence there are sequences xk → x and yk → x such that xk 6= yk and

f(xk) = f(yk) for all k. Taking subsequences if needed, we can suppose that the sequences

xk and yk belong to only one of the sets R1, R2 and Bf . Note that by Item (f), the

restriction of f on Bf is a local diffeomorphism at x. So xk, yk 6∈ Bf for all k large enough.

With no loss of generality, assume that xk, yk ∈ R1. Furthermore, by construction, we can

assume that the segment joining xk and yk is contained in R1 for all k.

Clearly f is C1 on R1. So for each i = 1, . . . , n− 1 and for each k, by the mean value

theorem, there is a point zik in the segment joining xk and yk such that

0 = fi(y
k)− fi(xk) = [dfi(z

ik)](yk − xk). (4)

Let

vk :=
yk − xk

‖yk − xk‖
.
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By Item (d), we have fn(x) = xn for all x ∈ R1, so the condition f(xk) = f(yk) implies

xkn = ykn, i.e., vkn = 0 for all k. Furthermore, in view of (4), we have

[dfi(z
ik)](vk) =

1

‖yk − xk‖
[dfi(z

ik)](yk − xk) = 0.

Equivalently
n−1∑
j=1

∂fi
∂xj

(zik)vkj = 0. (5)

On the other hand, by Lemma 3.2, for 1 6 i, j 6 n− 1, we have

lim
x→(a,0), x∈Ω

∂fi
∂xj

(x) =
∂gi
∂xj

(a).

In addition, since xk → x and yk → x, it follows that zik → x. Hence

lim
k→+∞

∂fi
∂xj

(zik) =
∂gi
∂xj

(a).

Furthermore, taking a subsequence if necessary, we can assume that the sequence vk

converges to a limit v = (v′, 0). It follows then from (5) that

n−1∑
j=1

∂gi
∂xj

(a)vj = 0.

Equivalently dg(a)(v′) = 0. On the other hand, dg(a) is a linear isomorphism by Item (f).

In addition, since vk → v = (v′, 0) and ‖vk‖ = 1 for all k, it follows that ‖v′‖ = ‖v‖ = 1.

These imply dg(a)(v′) 6= 0, which is a contradiction. Therefore the dimension of Bf must

be smaller than n− 1.

(iv) ⇒ (iii): Let x0, x1 ∈ Rf . By the inverse mapping theorem, x0, x1 ∈ Ω \ Bf .

On the other hand, the set Ω \ Bf is path connected because of our assumption that

dimBf 6 n − 2. Hence, there exists a continuous curve α : [0, 1] → Ω \ Bf such that

α(0) = x0 and α(1) = x1. For each t ∈ [0, 1], we can find an open neighbourhood Ut of

α(t) with U t ⊂ Ω such that the restriction of f to Ut, denoted by f |Ut , is a homeomorphism.

Using properties of the Brouwer degree, it is not hard to check that the function

[0, 1]→ Z, t 7→ deg(f |Ut , Ut, f(α(t))),

is constant. In particular, we have

deg(f |U0 , U0, f(x0)) = deg(f |U1 , U1, f(x1)).

This relation, together with Lemma 2.3(i), gives

signJf(x0) = signJf(x1).

Since x0, x1 are two arbitrary points in Rf , we get the desired conclusion. �
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Remark 3.1. The equivalence (i) ⇔(iv) also can be deduced from Lemma 3.4 and [4,

Theorem 2], but we include a different proof here for self-containment of the paper.

Recall that a continuous mapping f : Rn → Rn is piecewise affine if there exists a

set of triples (Ωi, Ai, bi), i = 1, . . . , k, such that each Ωi is a polyhedral set in Rn with

non-empty interior, each Ai is an n× n-matrix, each bi is a vector in Rn, and

(a) Rn = ∪ki=1Ωi;

(b) for i 6= j, Ωi ∩ Ωj is either empty or a proper common face of Ωi and Ωj;

(c) f(x) = Aix+ bi on Ωi, i = 1, . . . , k.

We say that f is coherently oriented if all the matrices Ai have the same nonzero determi-

nant sign. The following result is well-known; for more details, please refer to [27, Theo-

rem 2.3.1] and the references therein.

Corollary 3.1. Let f : Rn → Rn be a piecewise affine mapping. Then f is open if and

only if it is coherently oriented.

Proof. This is a direct consequence of Theorem 3.1. �

Finally we prove that Whyburn’s conjecture is true for definable mappings.

Theorem 3.2. Let f : Bn
r → Bn

s be a definable open continuous mapping such that

f−1(Sn−1
s ) = Sn−1

r and the restriction of f to Sn−1
r is a homeomorphism. Then f is a

homeomorphism.

Proof. By the invariance of domain theorem (Lemma 2.1), it suffices to show that f is

injective. To this end, define the mapping g : Rn → Rn by

g(x) :=

f(x) if ‖x‖ < r,

‖x‖
r
f
(

r
‖x‖x

)
otherwise.

Then it is easy to see that g is a definable open continuous mapping. By Theorem 3.1,

the fibers of g are finite and the Jacobian Jg does not change sign on Rg. Moreover, in

view of Lemma 3.3(ii), Rf is dense in Rn. Fix r′ > r. There exists a point x ∈ Rg with

r < ‖x‖ < r′. By construction, g−1(g(x)) = {x}. It follows from Lemma 2.3 that

deg(g|Bn
r′
,Bn

r′ , g(x)) = signJg(x) = ±1,

where g|Bn
r′

stands for the restriction of g to Bn
r′ . This, together with Lemma 2.2(iii), yields

deg(g|Bn
r′
,Bn

r′ , y) = ±1 for all y ∈ Bn
s . (6)

We now show that f is injective, or equivalently, the restriction of g to Bn
r is injec-

tive. By contradiction, suppose that there exist two distinct points x0, x1 ∈ Bn
r whose
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image point y ∈ g(Bn
r ) = Bn

s . Let U0 and U1 be disjoint open sets containing x0 and x1,

respectively. Then g(U0) ∩ g(U1) is a nonempty open set and thus contains a point y′ of

Bn
s \ g(Rn \ Rg). This means that g−1(y′) is a subset of Bn

r ∩ Rg and it contains at least

two points. Since the Jacobian Jg does not change sign on Rg, it follows from Lemma 2.3

that ∣∣ deg(g|Bn
r′
,Bn

r′ , y
′)
∣∣ =

∣∣ ∑
x∈g−1(y′)

signJg(x)
∣∣ > 2,

which contradicts (6). The theorem is proved. �

Remark 3.2. Another proof of Theorem 3.2 can be obtained by applying Theorem 3.1

and [30, Theorem 5.5]; the detail is left to the reader.
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