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Abstract. We provide necessary and sufficient conditions for a set-valued mapping be-

tween finite dimensional spaces to be directionally open by relating this property with di-

rectional regularity, Hölder continuity of the inverse mapping, coderivatives and variations.

These generalize and refine some previously known results.

1. Introduction

This paper concerns with the following three well-posedness properties of set-valued map-

pings between finite dimensional spaces: openness, metric regularity and Lipschitz/Hölder

continuity. These properties are fundamental in many areas of variational analysis and its

applications, and received a huge amount of attention over the years. For more details,

we refer the reader to the comprehensive monographs [3, 4, 7, 18, 19, 22, 23, 26, 27] with the

references therein.

Let F : Rn ⇒ Rm be a closed set-valued mapping, x̄ ∈ Rn and ȳ ∈ F (x̄). From the work

of Penot [24], the following properties are equivalent (terminology will be explained later):

(i) the mapping F is linearly open around (x̄, ȳ);

(ii) the mapping F is metrically regular around (x̄, ȳ);

(iii) the inverse mapping F−1 is pseudo-Lipschitz continuous (also known as Aubin contin-

uous) around (ȳ, x̄).

Furthermore, these properties may be characterized via the coderivative of F at (x̄, ȳ) as

shown by Mordukhovich [21]. See also [23, Chapter 3].

Thanks to Borwein and Zhuang [5] (see also [17,28]), it is well-known that for any strictly

increasing continuous function φ : [0,+∞)→ [0,+∞) vanishing at 0, the following properties

are equivalent:

(i) the mapping F is φ-open around (x̄, ȳ);

(ii) the mapping F is φ−1-regular around (x̄, ȳ);

(iii) the inverse mapping F−1 is φ−1-continuous around (ȳ, x̄).
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Moreover, when the function φ has the form ctr for some c > 0 and r > 1, these properties

may be characterized in terms of the r-order variation of F at (x̄, ȳ); see also [10].

In recent years, significant progress has been made by several authors to go beyond the

well-posedness properties mentioned above, which imply the action of mappings around the

reference points in all directions, to the case where the relations which define these properties

hold only on some directions (see [1, 2, 13, 14, 16, 18, 25] and the references therein). In

particular, Frankowska and Quincampoix [12, Theorem 5.2] presented a necessary condition

and a sufficient condition for the Hölder metric regularity with respect to a set of directions

belonging to a closed convex cone in output spaces using high order variations.

More recently, motivated by some optimization problems such as differentiating between

minima and maxima, Durea, Panţiruc and Strugariu [9] introduced and studied the following

three directional concepts for set-valued mappings that take into account sets of directions

in both input and output spaces: directional linear openness, directional metric regularity

and directional Aubin continuity; they show their links on the lines of the classical case and

give necessary conditions and sufficient conditions for these directional concepts in terms of

coderivatives.

The purpose of this paper is to generalize and refine the aforementioned results. More

precisely, our main contributions are as follows:

(i) Show relations between the following three directional concepts: directional φ-openness,

directional φ-regularity and directional φ-continuity (Theorem 3.1).

(ii) Give a necessary and sufficient condition in terms of directional coderivatives for a

closed set-valued mapping to be directionally linearly open (Theorem 3.2).

(iii) Provide a necessary and sufficient condition in terms of directional variations for a

closed set-valued mapping to be directionally linear/nonlinear open (Theorem 3.3).

Note that some results can be given in normed vector spaces but we prefer to work with

finite dimensional spaces for simplicity of presentation,

It would be interesting to have a necessary and sufficient condition in terms of (directional)

coderivatives for (directional) nonlinear openness. This question is mostly open, to the best

of the authors’ knowledge; see also [6] and the references therein.

The rest of this paper is organized as follows. The definitions of directional openness,

directional regularity and directional continuity are given in Section 2. The notions of

directional coderivative and directional variation are also introduced in this section. The

main results and their proofs will be presented in Section 3.

2. Preliminaries

Let Rn be equipped with the usual scalar product 〈·, ·〉 and the corresponding Euclidean

norm ‖ · ‖. The open ball and sphere centered at x ∈ Rn of radius r will be denoted by

Bn(x, r) and Sn−1(x, r) respectively. For simplicity, we write Bn and Sn−1 if x = 0 and r = 1.
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For a subset Ω of Rn, the closure of Ω will be written as Ω, the cone at the origin generated

by Ω is designated by coneΩ, and the indicator function of Ω is defined as

ιΩ(x) :=

0 if x ∈ Ω,

+∞ otherwise.

To simplify notation, for a point x ∈ Rn, we write [x+Ω] instead of the set {x+u : u ∈ Ω}.
Let F : Rn ⇒ Rm be a set-valued mapping. The graph of F is denoted by

graphF := {(x, y) ∈ Rn × Rm : y ∈ F (x)}.

The mapping F is called closed if its graph is a closed set. The inverse set-valued mapping

of F is F−1 : Rm → Rn given by F−1(y) := {x ∈ Rn : y ∈ F (x)}.
We shall consider the set

lim sup
x

Ω→x̄

F (x) :=

{
y ∈ Rm : there are sequences xk → x̄, yk → y

with xk ∈ Ω and yk ∈ F (xk) for all k = 1, 2, . . .

}
,

which is called the Painlevé–Kuratowski upper limit of F at x̄ (along Ω).

2.1. Directional minimal time function. We will make use of a special minimal time

function with respect to a set of directions, which was defined and analyzed in [8].

Definition 2.1. Let L and Ω be nonempty subsets of Sn−1 and Rn respectively. Then the

function

TL(x,Ω) := inf{t > 0 : there is u ∈ L such that x+ tu ∈ Ω}
= inf{t > 0 : [x+ tL] ∩ Ω 6= ∅}

is called the directional minimal time function with respect to L.

By convention, set TL(x, ∅) = +∞ for every x ∈ Rn. Moreover, for simplicity, we denote

TL(x, {x′}) by TL(x, x′).

Remark 2.1. By definition, if L = Sn−1, then TL(·,Ω) is the distance function to the set Ω.

Furthermore, if the sets L and Ω are closed, then the infimum in the definition of TL(·,Ω) is

always attained.

2.2. Directional openness, regularity and continuity. In the current and subsequent

sections, let Φ denote the set of all strictly increasing continuous functions φ : [0,+∞) →
[0,+∞) with φ(0) = 0.

Definition 2.2. Let F : Rn ⇒ Rm be a set-valued mapping, (x̄, ȳ) ∈ graphF, L and M be

nonempty subsets of Sn−1 and Sm−1, respectively, and let φ ∈ Φ.
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(i) F is directionally φ-open around (x̄, ȳ) with respect to L and M if there are ε > 0

and open neighborhoods U of x̄ and V of ȳ such that for every t ∈ (0, ε) and every

(x, y) ∈ (U × V ) ∩ graphF,

Bm(y, φ(t)) ∩ [y + coneM ] ⊂ F
(
Bn(x, t) ∩ [x+ coneL]

)
.

(ii) F is directionally φ-regular around (x̄, ȳ) with respect to L and M if there are ε > 0

and open neighborhoods U of x̄ and V of ȳ such that for every (x, y) ∈ (U × V ), with

TM(y, F (x)) < ε,

TL(x, F−1(y)) 6 φ
(
TM(y, F (x))

)
.

(iii) F is directionally φ-continuous around (x̄, ȳ) with respect to L and M if there are open

neighborhoods U of x̄ and V of ȳ such that for every x, x′ ∈ U, and every y ∈ F (x)∩V ,

one has

TM
(
y, F (x′)

)
6 φ

(
TL(x′, x)

)
.

Remark 2.2. Unlike [9], in Definition 2.2(i) above, we write coneM instead of −coneM

since it seems more natural this way; see also the formulation of Theorem 3.1.

The most interesting candidate for our strictly increasing continuous function φ(t) is ctr

for some c > 0 and r > 1.

Definition 2.3. Let F : Rn ⇒ Rm be a set-valued mapping, (x̄, ȳ) ∈ graphF, L and M be

nonempty subsets of Sn−1 and Sm−1, respectively, and let c > 0 and r > 1.

(i) F is directionally open (resp., directionally regular and directionally continuous) at rate

r with modulus c around (x̄, ȳ) with respect to L and M if F is directionally φ-open

(resp., directionally φ-regular and directionally φ-continuous) around (x̄, ȳ) with respect

to L and M for φ = ctr.

(ii) F is directionally linearly open (resp., directionally metrically regular and directionally

Aubin continuous) with modulus c > 0 around (x̄, ȳ) with respect to L and M if F

is directionally φ-open (resp., directionally φ-regular and directionally φ-continuous)

around (x̄, ȳ) with respect to L and M for φ = ct.

Remark 2.3. Assume that F : Rn ⇒ Rm is semi-algebraic set-valued mapping and L,M

are semi-algebraic sets1. Then it is not hard to check that F is directionally φ-open around

(x̄, ȳ) with respect to L and M if and only if there are ε > 0 and open neighborhoods U of

x̄ and V of ȳ such that for every t ∈ (0, ε) there exists s > 0 satisfying

Bm(y, s) ∩ [y + coneM ] ⊂ F
(
Bn(x, t) ∩ [x+ coneL]

)
1A subset of Rn is semialgebraic if it can be written as a finite union and intersection of sets of the form

{x ∈ Rn : f(x) = 0} and {x ∈ Rn : f(x) > 0}, where f is a polynomial function on Rn; a set-valued

mapping F : Rn ⇒ Rm is semialgebraic if its graph is a semialgebraic subset of Rn × Rm. (See, e.g., [15].)
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for every (x, y) ∈ (U ×V )∩ graphF. Furthermore, the function φ can be chosen to be ctr for

some c > 0 and r > 1. As we shall not use these facts, we leave the proof to the reader; see

also [20].

2.3. Directional normal cones and coderivatives. In order to characterize the direc-

tional linear openness in terms of coderivatives, we recall the following notions; confer [23].

Definition 2.4. Let Ω ⊂ Rn × Rm, (x, y) ∈ Ω, L and M be nonempty subsets of Sn−1 and

Sm−1, respectively.

(i) The regular (or Fréchet) normal cone to Ω at (x, y) with respect to L and M, denoted

by N̂L,M(Ω, (x, y)), is the set of vectors (x∗, y∗) ∈ Rn × Rm such that for every ε > 0

there exists δ > 0 such that

〈x∗, x′ − x〉+ 〈y∗, y′ − y〉 6 ε
(
‖x′ − x‖+ ‖y′ − y‖

)
whenever (x′, y′) ∈ Ω with x′ ∈ Bn(x, δ)∩ [x+ coneL] and y′ ∈ Bm(y, δ)∩ [y + coneM ].

(ii) The limiting (or Mordukhovich) normal cone to Ω at (x̄, ȳ) with respect to L and M is

given by

NL,M(Ω, (x̄, ȳ)) := lim sup
(x,y)

Ω→(x̄,ȳ)

N̂L,M(Ω, (x, y)),

where lim sup is the Painlevé–Kuratowski upper limit.

Definition 2.5. Let F : Rn ⇒ Rm be a set-valued mapping, (x̄, ȳ) ∈ graphF, L and M be

nonempty subsets of Sn−1 and Sm−1, respectively.

(i) The regular (or Fréchet) directional coderivative of F at (x̄, ȳ) with respect to L and M

is the set-valued mapping D̂∗L,MF (x̄, ȳ) : Rm ⇒ Rn defined by

D̂∗L,MF (x̄, ȳ)(y∗) := {x∗ ∈ Rn : (x∗,−y∗) ∈ N̂L,M(graphF, (x̄, ȳ))}, y∗ ∈ Rm.

(ii) The limiting (or Mordukhovich) directional coderivative of F at (x̄, ȳ) with respect to L

and M is the set-valued mapping D∗L,MF (x̄, ȳ) : Rm ⇒ Rn given by

D∗L,MF (x̄, ȳ)(y∗) := {x∗ ∈ Rn : (x∗,−y∗) ∈ NL,M(graphF, (x̄, ȳ))}, y∗ ∈ Rm.

If L = Sn−1 and M = Sm−1, for simplicity, we will omit the subscripts L and M in the

above definitions.

2.4. Subdifferentials.

Definition 2.6. Let f : Rn → R∪ {+∞} be a lower semicontinuous function which is finite

at x̄ ∈ Rn. The limiting (or Mordukhovich) subdifferential of f at x̄ is defined by

∂f(x̄) := {x∗ ∈ Rn : (x∗,−1) ∈ N(epif, (x̄, f(x̄)))},

where epif := {(x, y) ∈ Rn × R : y > f(x)} is the epigraph of f.
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Let us recall some properties of subdifferentials which will be needed later (see [23, Propo-

sition 1.30, Corollary 2.20]).

Proposition 2.1. Let f : Rn → R ∪ {+∞} be a lower semi-continuous function which is

finite at x̄ ∈ Rn. The following assertions hold:

(i) If x̄ is a local minimizer of f , then 0 ∈ ∂f(x̄).

(ii) If g : Rn → R ∪ {+∞} is locally Lipschitz around x̄, then

∂(f + g)(x̄) ⊂ ∂f(x̄) + ∂g(x̄).

(iii) We have the representation

∂(‖ · −x̄‖)(x) =


x− x̄
‖x− x̄‖

if x 6= x̄,

Bn otherwise.

2.5. Directional variations. In order to characterize the directional linear/nonlinear open-

ness in terms of variations, we need the following concept.

Definition 2.7. Let F : Rn ⇒ Rm be a set-valued mapping, (x̄, ȳ) ∈ graphF, L and M

be nonempty subsets of Sn−1 and Sm−1, respectively, and let r > 0. The r-th directional

variation of F at (x̄, ȳ) with respect to L and M, denoted by F
(r)
L,M(x̄, ȳ), is the set of vectors

v ∈ coneM such that for all sequences tk > 0 and (xk, yk) ∈ graphF converging to zero and

(x̄, ȳ) respectively, there exists a sequence vk ∈ Rm satisfying the following conditions

vk ∈
F
(
B(xk, tk) ∩ [xk + coneL]

)
− yk

trk
, v ∈ vk + coneM and lim

k→∞
vk = v.

Remark 2.4. Observe that this definition is nothing else than a directional version of high

order variations, which was introduced by Frankowska [10].

2.6. A directional Ekeland variational principle. We recall here a directional Ekeland

variational principle, which makes use of the directional minimal time function and which

will be an important tool in the proof of Theorem 3.2.

Proposition 2.2 (see [9, Corollary 3.4]). Let L ⊂ Sn−1 and M ⊂ Sm−1 be nonempty closed

sets such that coneL and coneM are convex. Let Ω ⊂ Rn × Rm be a closed set and f : Ω→
R ∪ {+∞} be a bounded from below and lower semi-continuous function, which is finite at

(x0, y0) ∈ Ω. Then for every ε > 0, there exists (xε, yε) ∈ Ω such that

f(xε, yε) 6 f(x0, y0)− ε
(
TL(xε, x0) + TM(yε, y0)

)
and for any (x, y) ∈ Ω \ {(xε, yε)},

f(xε, yε) < f(x, y) + ε
(
TL(x, xε) + TM(y, yε)

)
.
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3. Main results

3.1. Directional openness, regularity and continuity. As in the classical case, the

relations between the concepts given before are presented in the following result.

Theorem 3.1. Let F : Rn ⇒ Rm be a set-valued mapping, (x̄, ȳ) ∈ graphF, L and M

be nonempty subsets of Sn−1 and Sm−1, respectively, and let φ ∈ Φ. Then the following

statements are equivalent:

(i) F is directionally φ-open around (x̄, ȳ) with respect to L and M.

(ii) F is directionally φ−1-regular around (x̄, ȳ) with respect to L and −M.

(iii) F−1 is directionally φ−1-continuous around (ȳ, x̄) with respect to −M and L.

Proof. Since φ ∈ Φ, the inverse function φ−1 exists and belongs to Φ, and so the statements

make sense.

(i) ⇒ (ii). By definition, there is ρ > 0 such that for all t ∈ (0, ρ) and all (x, y) ∈
graph(F ) ∩

(
Bn(x̄, ρ)× Bm(ȳ, ρ)

)
we have

Bm(y, φ(t)) ∩ [y + coneM ] ⊂ F
(
Bn(x, t) ∩ [x+ coneL]

)
. (1)

Let ε ∈ (0,min{ρ
2
, φ(ρ)}). Take any (x, y) ∈ Bn(x̄, ε)×Bm(ȳ, ε) such that T−M(y, F (x)) < ε.

We will show that

TL(x, F−1(y)) 6 φ−1 (T−M(y, F (x))) .

To this end, take arbitrary δ > 0 such that T−M(y, F (x)) + δ < ε. By the definition of the

infimum, there exist a scalar s ∈ [T−M(y, F (x)), T−M(y, F (x)) + δ) and a vector v ∈ −M
such that y′ := y + sv ∈ F (x). We have

‖y′ − ȳ‖ = ‖y + sv − ȳ‖ 6 ‖y − ȳ‖+ s < ε+ T−M(y, F (x)) + δ < 2ε < ρ.

Observe that s ∈ [0, ε) ⊂ [0, φ(ρ)) and so t := φ−1(s) ∈ [0, ρ). Take arbitrary t′ ∈ (t, ρ). It

follows from (1) that

Bm(y′, φ(t′)) ∩ [y′ + coneM ] ⊂ F (Bn(x, t′) ∩ [x+ coneL]).

Consequently, y = y′ − sv ∈ F (x′) for some x′ ∈ Bn(x, t′) ∩ [x+ coneL]. Hence

TL(x, F−1(y)) 6 ‖x− x′‖ < t′.

Letting t′ → t we obtain

TL(x, F−1(y)) 6 t = φ−1(s) 6 φ−1 (T−M(y, F (x)) + δ) .

Since δ > 0 is chosen arbitrarily small and φ−1 is continuous, we have

TL(x, F−1(y)) 6 φ−1 (T−M(y, F (x))) .
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(ii) ⇒ (iii). By assumption, there exists ρ > 0 such that for every (x, y′) ∈ Bn(x̄, ρ) ×
Bm(ȳ, ρ) with T−M(y′, F (x)) < ρ we have

TL(x, F−1(y′)) 6 φ−1
(
T−M(y′, F (x))

)
. (2)

Let ε ∈
(
0, ρ

2

)
. Take any y, y′ ∈ Bm(ȳ, ε). We will show that

TL(x, F−1(y′)) 6 φ−1
(
T−M(y′, y)

)
for all x ∈ F−1(y) ∩ Bn(x̄, ε).

Clearly, if y 6∈ y′−coneM or F−1(y)∩Bn(x̄, ε) = ∅ then the above inequality holds trivially. So

assume that y ∈ y′−coneM and F−1(y)∩Bn(x̄, ε) 6= ∅. Take arbitrary x ∈ F−1(y)∩Bn(x̄, ε).

Then x ∈ Bn(x̄, ρ), y ∈ F (x) and

T−M(y′, F (x)) 6 ‖y′ − y‖ 6 ‖y′ − ȳ‖+ ‖y − ȳ‖ < 2ε < ρ.

It follows from (2) that

TL(x, F−1(y′)) 6 φ−1
(
T−M(y′, F (x))

)
6 φ−1(‖y′ − y‖) = φ−1

(
T−M(y′, y)

)
,

which is the desired result.

(iii) ⇒ (i). By assumption, there exists ρ > 0 such that for all y, y′ ∈ Bm(ȳ, ρ) and all

x ∈ F−1(y) ∩ Bn(x̄, ρ), we have

TL(x, F−1(y′)) 6 φ−1
(
T−M(y′, y)

)
. (3)

Let ε ∈ (0,min{ρ
2
, φ−1(ρ

2
)}). Take any t ∈ (0, ε) and any (x, y) ∈ graph(F ) ∩

(
Bn(x̄, ε) ×

Bm(ȳ, ε)
)
. We will show that

Bm(y, φ(t)) ∩ [y + coneM ] ⊂ F
(
Bn(x, t) ∩ [x+ coneL]

)
.

Indeed, take any y′ ∈ Bm(y, φ(t))∩ [y+ coneM ]. Then y′ = y+ sv for some s ∈ [0, φ(t)) and

some v ∈M. We have

‖y′ − ȳ‖ = ‖y + sv − ȳ‖ 6 ‖y − ȳ‖+ s < ε+ s < ε+ φ(t) < ε+ φ(ε) < ρ.

Since the function φ−1 is increasing, it follows from (3) that

TL(x, F−1(y′)) 6 φ−1
(
T−M(y′, y)

)
= φ−1(s) < φ−1(φ(t)) = t < +∞.

In particular, the set F−1(y′) is nonempty and contains a point x′ ∈ Bn(x, t) ∩ [x + coneL].

Consequently,

y′ ∈ F (Bn(x, t) ∩ [x+ coneL]),

which completes the proof. �

The following two corollaries follow directly from Theorem 3.1.

Corollary 3.1. Let F : Rn ⇒ Rm be a set-valued mapping, (x̄, ȳ) ∈ graphF, L and M

be nonempty subsets of Sn−1 and Sm−1, respectively. Then the following statements are

equivalent for c > 0 and r > 1:
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(i) F is directionally open at rate r with modulus c around (x̄, ȳ) with respect to L and M ;

(ii) F is directionally regular at rate 1
r

with modulus 1
c

around (x̄, ȳ) with respect to L and

−M ;

(iii) F−1 is directionally continuous at rate 1
r

with modulus 1
c

around (ȳ, x̄) with respect to

−M and L.

Corollary 3.2 (see [9, Proposition 2.4]). Let F : Rn ⇒ Rm be a set-valued mapping, (x̄, ȳ) ∈
graphF, L and M be nonempty subsets of Sn−1 and Sm−1, respectively. Then the following

statements are equivalent for c > 0:

(i) F is directionally linearly open with modulus c around (x̄, ȳ) with respect to L and M ;

(ii) F is directionally metrically regular with modulus 1
c

around (x̄, ȳ) with respect to L and

−M ;

(iii) F−1 is directionally Aubin continuous with modulus 1
c

around (ȳ, x̄) with respect to −M
and L.

3.2. Directional openness and coderivatives. The following result is a directional ver-

sion of the Mordukhovich criterion [21]; see also [9, Propositions 4.1, 4.2 and Theorem 4.3].

Theorem 3.2. Let F : Rn ⇒ Rm be a closed set-valued mapping, (x̄, ȳ) ∈ graphF, L and M

be nonempty closed subsets of Sn−1 and Sm−1, respectively, such that coneL and coneM are

convex. Then the following statements are equivalent for c > 0:

(i) For every a ∈ (0, c), the mapping F is directionally linearly open with modulus a around

(x̄, ȳ) with respect to L and M.

(ii) There exists ρ > 0 such that for every (x, y) ∈ graphF ∩ [Bn(x̄, ρ) × Bm(ȳ, ρ)], every

y∗ ∈ Rm, every x∗ ∈ D∗L,MF (x, y)(y∗), and every v ∈ M there exists u ∈ coneL ∩ Bn

such that

〈x∗, u〉 6 c〈y∗, v〉.

Proof. (i) ⇒ (ii). Let a ∈ (0, c). By assumption and Corollary 3.2, F−1 is directionally

Aubin continuous with modulus 1
a

around (ȳ, x̄) with respect to −M and L. Hence, there

is ρ > 0 such that for every y, y′ ∈ Bn(ȳ, 2ρ) with y′ ∈ [y + coneM ], y′ 6= y, every x ∈
F−1(y) ∩ Bn(x̄, ρ), we have

TL(x, F−1(y′)) 6
1

a
T−M(y′, y) =

1

a
‖y′ − y‖. (4)

By definition, it suffices to prove (ii) with D∗L,MF being replaced by D̂∗L,MF. So let (x, y) ∈
graphF ∩ [Bn(x̄, ρ) × Bm(ȳ, ρ)], y∗ ∈ Rm, x∗ ∈ D̂∗L,MF (x, y)(y∗), and v ∈ M . By definition,

(x∗,−y∗) ∈ N̂L,M(graphF, (x, y)). Take any ε ∈ (0, 1
a
). There is δ ∈ (0, ρ) such that for every

(x′, y′) ∈ graphF ∩ [(Bn(x, δ) ∩ [x+ coneL])× (Bm(y, δ) ∩ [y + coneM ])], we have

〈x∗, x′ − x〉 − 〈y∗, y′ − y〉 6 ε
(
‖x′ − x‖+ ‖y′ − y‖

)
. (5)
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Let y′ ∈ [y + coneM ] be such that y′ 6= y, ‖y′ − y‖ < min{δ, a
2
δ} and v = y′−y

‖y′−y‖ . Then

‖y′ − ȳ‖ 6 ‖y′ − y‖+ ‖y − ȳ‖ < δ + ρ < 2ρ.

Since the sets graphF and L are closed, the infimum in the definition of TL(x, F−1(y′)) is

always attained. This, together with (4), implies that there exists x′ ∈ F−1(y′)∩ [x+ coneL]

such that

‖x′ − x‖ = TL(x, F−1(y′)) 6
1

a
‖y′ − y‖ <

1

a

a

2
δ =

δ

2
< δ. (6)

Hence, by (5) and the first inequality in (6), one has

〈x∗, x′ − x〉 − 〈y∗, y′ − y〉 6 ε

(
1

a
+ 1

)
‖y′ − y‖.

Equivalently,〈
x∗,

x′ − x
‖y′ − y‖

〉
−
〈
y∗,

y′ − y
‖y′ − y‖

〉
=

〈
x∗,

x′ − x
‖y′ − y‖

〉
− 〈y∗, v〉 6 ε

(
1

a
+ 1

)
.

Since ε can be taken arbitrarily small and the sets graphF and L are closed, in view of (6),

there must exists x′ ∈ F−1(y′) ∩ Bn(x, δ) ∩ [x+ coneL] such that〈
x∗,

x′ − x
‖y′ − y‖

〉
6 〈y∗, v〉 and ‖x′ − x‖ 6 1

a
‖y′ − y‖.

Furthermore, since a can be taken arbitrarily close to c, the point x′ can be chosen so that

‖x′ − x‖ 6 1
c
‖y′ − y‖. Clearly, u := c(x′−x)

‖y′−y‖ has the desired properties.

(ii) ⇒ (i). Let a ∈ (0, c), b ∈
(

a
a+1

, c
c+1

)
and ε > 0 be such that

a

a+ 1
< b+ ε <

c

c+ 1
and

aε

b
<

ρ

2
.

Take any t ∈ (0, ε) and (x0, y0) ∈ graphF ∩
[
Bn
(
x̄, ρ

2

)
× Bm

(
ȳ, ρ

2

)]
. We will show that

Bm(y0, at) ∩ [y0 + coneM ] ⊂ F
(
Bn(x0, t) ∩ [x0 + coneL]

)
.

To this end, let y′ ∈ Bm(y0, at) ∩ [y0 + coneM ] and define the function

f : graphF → R ∪ {+∞}, (x, y) 7→ T−M(y′, y).

It is easy to see that f is bounded from below, lower semi-continuous and finite at (x0, y0) ∈
graphF. By applying Proposition 2.2 for the function f and the closed sets −L and −M , we

get (xb, yb) ∈ graphF such that

T−M(y′, yb) 6 T−M(y′, y0)− b
(
T−L(xb, x0) + T−M(yb, y0)

)
(7)

and for any (x, y) ∈ graphF,

T−M(y′, yb) 6 T−M(y′, y) + b
(
T−L(x, xb) + T−M(y, yb)

)
. (8)
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Since y′ ∈ y0 + coneM, we have T−M(y′, y0) = ‖y′ − y0‖. It follows from (7) that T−M(y′, yb)

and T−L(xb, x0) + T−M(yb, y0) are finite, (xb, yb) ∈ (x0 + coneL, y0 + coneM). So from (8),

one has

‖y′ − yb‖ 6 ‖y′ − y0‖ − b
(
‖x0 − xb‖+ ‖y0 − yb‖

)
. (9)

Consequently,

‖x0 − xb‖+ ‖y0 − yb‖ 6
1

b
‖y0 − y′‖ <

1

b
at <

aε

b
<

ρ

2
.

Hence

‖x̄− xb‖ 6 ‖x̄− x0‖+ ‖x0 − xb‖ < ρ,

‖ȳ − yb‖ 6 ‖ȳ − y0‖+ ‖y0 − yb‖ < ρ.

Therefore (xb, yb) ∈ graphF ∩
[
(Bn(x̄, ρ) ∩ [x0 + coneL])× (Bm(ȳ, ρ) ∩ [y0 + coneM ])

]
.

If yb = y′, then from (9), we have

b‖xb − x0‖ 6 (1− b)‖y0 − y′‖ < (1− b)at < bt.

So xb ∈ Bn(x0, t) ∩ [x0 + coneL] and y′ = yb ∈ F (xb) ⊂ F (Bn(x0, t) ∩ [x0 + coneL]) which is

exactly the conclusion.

Now the statement follows if we can show that y′ = yb is the only possibility. Suppose for

contradiction that y′ 6= yb. From (8), it follows that the pair (xb, yb) is a global minimizer

for the function

graphF → R ∪ {+∞}, (x, y) 7→ T−M(y′, y) + b
(
T−L(x, xb) + T−M(y, yb)

)
.

Equivalently, the pair (xb, yb) is a global minimizer for the function

Rn × Rm → R ∪ {+∞}, (x, y) 7→ ‖y − y′‖+ b
(
‖x− xb‖+ ‖y − yb‖

)
+ ιΩ(x, y),

where ιΩ is the indicator function of the closed set

Ω :=

{
(x, y) ∈ Rn × Rm : y ∈ F (x), y ∈ y′ − coneM,

x ∈ xb + coneL, y ∈ yb + coneM

}
.

Observe that the function (x, y) 7→ ‖y− y′‖+ b
(
‖x− xb‖+ ‖y− yb‖

)
is locally Lipschitz and

the function ιΩ is lower semi-continuous. In view of Proposition 2.1, these imply that

(0, 0) ∈ bBn × {0}+ {0} ×
(

yb − y′

‖yb − y′‖
+ bBm

)
+ ∂ιΩ(xb, yb).

(Note that yb 6= y′.) On the other hand, since the cones coneL and coneM are closed convex,

it follows easily from definitions that

∂ιΩ(xb, yb) ⊂ NL,M(graphF, (xb, yb)).

Therefore, there exists x∗ ∈ Bn and y∗ ∈ Bm such that

(−bx∗, v − by∗) ∈ NL,M(graphF, (xb, yb)),

11



where v := − yb−y′
‖yb−y′‖

∈M. By definition,

−bx∗ ∈ D∗L,MF (xb, yb)(−v + by∗).

Our assumption gives the existence of u ∈ coneL ∩ Bn satisfying

〈−bx∗, u〉 6 c〈−v + by∗, v〉.

Note that

〈−bx∗, u〉 = −b〈x∗, u〉 > −b and 〈−v + by∗, v〉 = −1 + b〈y∗, v〉 6 −1 + b.

So −b 6 c(−1 + b), i.e., b > c
c+1

which contradicts the fact b < c
c+1

. Hence we must have

y′ = yb. This ends the proof of the theorem. �

3.3. Directional openness and variations. Similar to the classical case (see [5, Theo-

rem 4.4]), a necessary and sufficient condition in terms of directional variations for a closed

set-valued mapping to be directionally open is presented in the next result.

Theorem 3.3 (compare [12, Theorem 5.2]). Let F : Rn ⇒ Rm be a closed set-valued map-

ping, (x̄, ȳ) ∈ graphF, L and M be nonempty closed subsets of Sn−1 and Sm−1, respectively,

such that coneL and coneM are convex. Then the following statements are equivalent for

r > 1:

(i) The mapping F is directionally open at rate r around (x̄, ȳ) with respect to L and M.

(ii) There exists a constant c > 0 such that cBm ∩ coneM ⊂ F
(r)
L,M(x̄, ȳ).

In order to prove Theorem 3.3, we need to make use of the following lemma.

Lemma 3.1. Consider a closed set-valued mapping F : Rn ⇒ Rm, a closed convex cone

C ⊂ Rn, and a bounded subset K ⊂ Rm. Let (x̄, ȳ) ∈ graphF, r > 0 and ε > 0 be given.

Assume that for some 0 6 α < 1, we have for all t ∈ [0, ε] and all (x, y) ∈ graphF ∩(
Bn(x̄, ε)× Bm(ȳ, ε)

)
,

y + trK ⊂ F
(
Bn(x, t) ∩ [x+ C]

)
+ αtrK. (10)

Then there exists δ ∈ (0, ε) such that for all t ∈ [0, δ] and all (x, y) ∈ graphF ∩
(
Bn(x̄, δ)×

Bm(ȳ, δ)
)
, we have

y +
(
1− α

1
r

)r
trK ⊂ F

(
Bn(x, t) ∩ [x+ C]

)
.

Proof. The proof is similar to that in [11, Theorem 1.1]. Nevertheless, for the convenience of

the reader, we give a complete proof here. Set c := supy∈K ‖y‖. Pick a constant δ > 0 such

that

2δ 6 ε and cδr
(
1− α

1
r

)r
(1 + α) + δ 6 ε. (11)

Let t ∈ [0, δ], (x, y) ∈ graphF ∩
(
Bn(x̄, δ)× Bm(ȳ, δ)

)
and y′ ∈ y +

(
1− α 1

r

)r
trK. We will

construct a convergent sequence xk converging to some point x′ ∈ Bn(x, t) ∩ [x + C] such

12



that y′ ∈ F (x′). To this end, set (x0, y0) := (x, y). By (10), there is (x1, y1) ∈ graphF such

that

x1 ∈ [x0 + C], ‖x1 − x0‖ 6
(
1− α

1
r

)
t and y′ ∈ y1 + α

((
1− α

1
r

)
t
)r
K.

Hence

‖y1 − y′‖ 6 cα
((

1− α
1
r

)
t
)r
.

Assume that we already constructed (xi, yi) ∈ graphF, i = 1, . . . , k such that

xi ∈ [xi−1 + C] and ‖xi − xi−1‖ 6 α
i−1
r

(
1− α

1
r

)
t (12)

and

y′ ∈ yi + αi
((

1− α
1
r

)
t
)r
K. (13)

Then

‖xk − x‖ 6
k∑
i=1

‖xi − xi−1‖ 6 t
(
1− α

1
r

) k∑
i=1

α
i−1
r 6 t. (14)

Therefore

‖xk − x̄‖ 6 ‖xk − x‖+ ‖x− x̄‖ 6 t+ δ 6 2δ 6 ε.

Furthermore, by (11) and (13), we have

‖yk − ȳ‖ 6 ‖yk − y′‖+ ‖y′ − y‖+ ‖y − ȳ‖
6 cαk

(
1− α 1

r

)r
tr + c

(
1− α 1

r

)r
tr + δ

6 cδr
(
1− α 1

r

)r
(1 + αk) + δ 6 ε.

Applying (10) and (13) to (xk, yk), there exists (xk+1, yk+1) ∈ graphF satisfying (12) and (13)

with i = k + 1. From (12), it follows that xk is a Cauchy sequence converging to some x′

and (13) implies that limk→∞ yk = y′. Since F is a closed set-valued mapping, y′ ∈ F (x′).

Furthermore, by the assumption that C is a closed convex cone and (12), it follows that

xk ∈ [x + C] for all k, so x′ ∈ [x + C]. Moreover, by taking the limit in (14), we obtain

‖x′ − x‖ 6 t. The lemma is proved. �

Proof of Theorem 3.3. (i)⇒ (ii). Assume that F is directionally open at rate r with modulus

c > 0 around (x̄, ȳ) with respect to L and M, i.e., there is a constant ρ > 0 such that for all

t ∈ (0, ρ) and all (x, y) ∈ graphF ∩ (Bn(x̄, ρ)× Bm(ȳ, ρ)) , we have

Bm(y, ctr) ∩ [y + coneM ] ⊂ F
(
Bn(x, t) ∩ [x+ coneL]

)
.

Equivalently,

cBm ∩ coneM ⊂ F (Bn(x, t) ∩ [x+ coneL])− y
tr

,

from which the desired result follows easily.

13



(ii) ⇒ (i). Let c > 0 be such that cBm ∩ coneM ⊂ F
(r)
L,M(x̄, ȳ). By shrinking c if necessary

we may assume that cBm ∩ coneM ⊂ F
(r)
L,M(x̄, ȳ). Pick α ∈ (0, 1) and take any ε > 0 such

that 2ε < αc.

Observe that if v ∈ cBm ∩ coneM, then v ∈ F
(r)
L,M(x̄, ȳ) and so there exists a constant

δv > 0 such that for all t ∈ (0, δv) and all (x, y) ∈ graphF ∩ (Bn(x̄, δv)× Bm(ȳ, δv)) , we have

v ∈ F (Bn(x, t) ∩ [x+ coneL])− y
tr

+ ε(Bm ∩ coneM).

Hence

y + trv ∈ F (Bn(x, t) ∩ [x+ coneL]) + εtr(Bm ∩ coneM).

Since coneM is convex, (Bm ∩ coneM) + (Bm ∩ coneM) ⊂ 2(Bm ∩ coneM). Therefore

y + trw ∈ F (Bn(x, t) ∩ [x+ coneL]) + 2εtr(Bm ∩ coneM)

for all w ∈ Bm(v, ε)∩ [v + coneM ]. Note that the set cBm ∩ coneM is compact, and so there

exists a finite subset {v1, . . . , vN} of cBm ∩ coneM such that

cBm ∩ coneM ⊂
N⋃
k=1

Bm(vk, ε) ∩ [vk + coneM ].

Let δ := mink=1,...,N δvk > 0. Then for all t ∈ (0, δ) and all (x, y) ∈ graphF∩(Bn(x̄, δ)× Bm(ȳ, δ)) ,

we have

y + tr(cBm ∩ coneM) ⊂ F (Bn(x, t) ∩ [x+ coneL]) + 2εtr(Bm ∩ coneM).

The choice of ε yields

y + tr(cBm ∩ coneM) ⊂ F (Bn(x, t) ∩ [x+ coneL]) + αtr(cBm ∩ coneM)

⊂ F (Bn(x, t) ∩ [x+ coneL]) + αtr(cBm ∩ coneM).

In view of Lemma 3.1, for all t > 0 sufficiently small and all (x, y) ∈ graphF close to (x̄, ȳ)

we have

y + (1− α
1
r )rtr(cBm ∩ coneM) ⊂ F (Bn(x, t) ∩ [x+ coneL]).

Equivalently,

Bm(y, c(1− α
1
r )rtr) ∩ [y + coneM ] ⊂ F (Bn(x, t) ∩ [x+ coneL]).

Replacing t by (1− α 1
r )t, we get

Bm
(
y, c(1− α 1

r )2rtr
)
∩ [y + coneM ] ⊂ F

(
Bn
(
x, (1− α 1

r )t
)
∩ [x+ coneL]

)
⊂ F (Bn (x, t) ∩ [x+ coneL]) .

Hence F is directionally open at rate r with modulus c(1−α 1
r )2r around (x̄, ȳ) with respect

to L and M. �
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Remark 3.1. A useful information that may be extracted from the proof of Theorem 3.3 is

the following equality:

c̄ = sup
{
c : cBm ∩ coneM ⊂ F

(r)
L,M(x̄, ȳ)

}
,

where c̄ stands for the supremum of real numbers c > 0 for which F is directionally open at

rate r with modulus c around (x̄, ȳ) with respect to L and M.
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