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Abstract

It is shown that the attractor of an autonomous Caputo fractional
differential equation of order a € (0,1) in R? whose vector field has
a certain triangular structure and satisfies a smooth condition and
dissipativity condition is essentially the same as that of the ordinary
differential equation with the same vector field. As an application,
we establish several one-parameter bifurcations for scalar fractional
differential equations including the saddle-node and the pichfork bifur-
cations. The proof uses a result of Cong & Tuan [2] which shows that
no two solutions of such a Caputo FDE can intersect in finite time.
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1 Introduction

The asymptotic behaviour of Caputo fractional differential equations (Ca-
puto FDE) in R? has attracted much attention in the literature in recent
years. It has often been asked if such equations on R? generate an au-
tonomous dynamical system, since that would allow the theory of attractors
to applied to them.
Consider an autonomous Caputo FDE of order a € (0,1) in R? of the
following form
DG (t) = gla(t)) (L1)
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where ¢ : R? — R¢ is Lipschitz continuous and satisfies a growth bound.
The Caputo FDE (1.1) with the initial condition x(0) = xg is the integral
equation

1 t
xt—wo—i—/ t —s)* Lg(z(s))ds, 1.2
(1) =0+ gy [ (-9 9(a() (12)
where T'(a) := [;~ t* e dt is the Gamma function.
It is easy to show that the ordinary differential equation (ODE) with the
same vector field, i.e.,

La(t) = g(a(t), (1.3

has an attractor when the vector field satisfies a dissipativity condition such

as for a,b > 0
(2, 9(x)) < a—b|? (1.4)

Specifically, by the chain rule along a solution of (1.3),

d
%Ilfv(if)l\2 = 2(z(t), 9(x(t))) < 2a —20]|z(t)|?,
which integrates to give

le(®)1? < flzol®e™" +

(1 - 6*2’”> .

B::{xeRd:Hx|]2§l+%}

is an absorbing set for the autonomous semi-dynamical system generated
by the solution mapping of the ODE (1.3), which is positive invariant. In
particular, this means that this system has a global attractor,
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Hence the set

A=)zt B) =g,

>0
where z(t, B) = Upepx(t,n) and Qp is the omega limit set defined by

Qp:={yeB: Jxg, € B,t, — oo such that z(t,,xon) = y}.

By a recent result of Aguila-Camacho et al. [1, Lemma 1] it is known
that a solution of the Caputo FDE (1.1) satisfies

DY llz(®)]* < 2(2(t), “Dgya(t)) -



Hence, if the vector field g of (1.1) satisfies the dissipativity condition (1.4),
then along the solutions of (1.1)

D Nla@®))® < 2 (x(t), g(x(t))) < 2a — 2b]l2(t)|?

as in the ODE case. Then, by Wang & Xiao [11, Theorem 1], the correspond-
ing set BB defined in terms of the solutions of the Caputo FDE is an absorbing
set for the solutions of the Caputo FDE (1.1). Since this set is compact in
R?, the corresponding omega limit set 5 exists and is a nonempty compact
subset of B, which attracts all of the future dynamics of the Caputo FDE.
It is clear that Qg contains all of the steady state solutions of (1.1).

In general, 23 cannot be called the attractor of the autonomous Caputo
FDE (1.1). Recently Cong & Tuan [2] confirmed the conjecture in [3, 5] by
showing that the solution mapping of a general autonomous Caputo FDE
(1.1) on R¢ does not generate a semi-group on R? and, hence, there is no
autonomous semi-dynamical system on R¢ corresponding to (1.1). Conse-
quently, since solutions cannot be in general concatenated, there may also
be omega limit points of solutions starting outside B that are not in Qg.
Also, strictly speaking, mathematically, a general Caputo FDE (1.1) has
no attractor on R% since this concept is defined in terms of an autonomous
semi-dynamical system.

However, Cong & Tuan [2] showed that a Caputo FDE (1.1) with a trian-
gular vector field does generate a semi-dynamical system on R?. Recall that
a vector field ¢ : R? — R? is called triangular if it has components with the
structure g1 (1), g2(x1,x2), -, ga(1, 2, - ,x4) which covers scalar vector
fields as a special case. Our aim in this paper is to use the result in [2] to
investigate the attractor of Caputo fractional differential equations with a
triangular vector field. The result for an attractor of scalar Caputo frac-
tional differential equations is presented in Section 2. A generalization to
Caputo fractional differential equations with a certain triangular vector field
is presented in Section 3. Several examples of bifurcations of scalar Caputo
FDEs are presented in Section 4. Section 5 is devoted to discussing a po-
tential approach to attractors of general Caputo FDEs by using the existing
theory of attractors for semi-dynamical systems on function spaces.



2 Attractor of scalar Caputo fractional differential
equations
In this subsection, we consider following scalar fractional differential equa-

tion
Dga(t) = gla(t), 20, (2.1)

where g : R — R is a continuously differentiable function and satisfies that

(H1) (Dissipative condition): There exist a,b > 0 such that

g(x)z <a—bxr? forall z €R.

(H2) (Non-degenerate condition): ¢'(z) # 0 for all x € N(g) :== {z € R :
g(x) = 0}.

Remark 2.1. By (H1), we have N'(g) C [—+/%, /%] By (H2), N(g) has no
accumulation point and therefore A/(g) has a finite elements and the number
of elements is odd. Furthermore, let N'(g) = {z1,...,22k+1}. Then, for all
1=0,1,...,k

g(x) >0 for all z € (z9;, x2i4+1), (2.2)
and
g(z) <0 forall z € (x2i41,%212), (2.3)
where we use the conventions that xg := —oo and zog12 = 0.

The main result of this section is the following theorem about attractors for
a scalar Caputo fractional differential equation (2.1).

Theorem 2.2 (Attractor for scalar Caputo fractional differential equa-
tions). Consider system (2.1). Suppose that the assumptions (H1) and (H2)
hold. Then, the following statements hold:

(i) The global attractor attracting all solutions starting from a bounded set
18

A = [min N (g), max N (g)].

(i1) Each solution of (2.1) converges to an element of N'(g) and the rate
of convergence is t~.

(i1i) Each pair of successive values of N'(g) is a heteroclinic solution of
(2.1)



To prove the above theorem, we need several preparatory results. The
following proposition indicates that the set A = [z1, zox+1] attracts all so-
lutions of (2.1). Note that this set A includes all steady states x1, ..., Tokt1.

For o, 8 € (0,1) the Mittag-Leffler function E, 53 : R — R is defined as

oo Zk
Eop(z) = kzo Tk 15 Eo(z) := Ea1(2).

Let d(A, B) denote the distance between two subsets A and B of R.

Proposition 2.3. Let B be a bounded set of R. For any ¢ > 0, let z(t, B) :=
{z(t,n) : n € B}. Then, there exists A > 0 such that

d(z(t, B), [x1, xog+1]) < Eo(=MY)d(B, [x1,x9x+1]) for all £ > 0.

Consequently,
tlgglo d(x(t, B), [x1, xok11]) = 0.

Proof. Due to the non-intersection of two trajectories of (2.1), we have
z(t,n) € [x(t,inf B), z(t,sup B)] for all n € B.

Then, to conclude the proof it is sufficient to show that for all n € R there
exists v > 0 such that

d(x(t,n), (21, Tori1]) < Eal(=7t")d(n, [21, 2p11])- (2.4)

By using the non-intersection of two trajectories of (2.1) and the fact that
X1, Tok41 are steady state solutions, for all € [x1, zox+1] we have

d(z(t,n), [x1, xop41]) = d(n, [1, Top41]) = 0,

which implies that the preceding conclusion obviously holds. Then, it is
enough to deal with the case that n < 7 and use analogous arguments for
the case n > wopy1. Choose and fix n < 1 and to conclude the proof we
will show that

|x(t,n) — 1] < Eq(—7t*)|z1 —n| for ¢t > 0. (2.5)

for some v > 0. The proof of the preceding fact is divided into two steps:



Step 1: Consider a new fractional differential equation
“Df,y(t) = f(y(1)), (2.6)
where f: R — R is defined as
f(z) =g(x+z1) for all z € R. (2.7)

Then, we show that z(t,n) = =1 + y(t,n — x1), where y(-,{) denotes the
solution of (2.6) satisfying y(0) = ¢. To see that, the integral form of (2.1)
yields that

x(t,m) =n+ 1/0 (t —s)*g(x(s,n)) ds.

I'(a)
Thus,
z(t,n) —x1 = n—x1+ F(loz)/o (t— s)aflg(:r(s,n) —x1+x1) ds

1 t o
= n_m1+f‘(()¢)/0(t_8) lf(x(s,n)—ml)ds,

which implies that y(¢, 21 —n) = z(t,n) —x1. So, to prove (2.5) it is sufficient
to show that
ly(t, Q)| < Ea(—7tY)|(] for (:=x —z1 <O0. (2.8)
Step 2: For this purpose, we first show that there exists v > 0 such that
f(x) > vz for all x <0. (2.9)

Indeed, by (H1) we have g(z) > 0 for z < z; and therefore by (H2), ¢'(x1) <
0. Equivalently, by (2.7) we have f(z) > 0 for all z < 0, f(0) = 0 and
f/(0) < 0. Hence, by mean value theorem, there exists € > 0 such that

/(0)]

|| for all z € [—€, €.

Hence, if x > —e then (2.9) holds for v := |f’§0)\' In the other case, i.e.
T < —¢€, let

- { SO fw) }

2 ,wE[C,*E] ]w|

Then, by strictly positivity of f on [(, —¢] we have v > 0 and obviously (2.9)
also holds for this choice of 7. So, in both cases there exists v > 0 satisfying
(2.9). We now rewrite (2.6) in the following form

“D§,y(t) = —yy(t) + h(y(t)),

6



where h : R — R is defined by

hy) == f(y) +y-
On the one hand, by (2.9) we have
h(y) >0  forall y <0. (2.10)

Thanks to the variation of constants formula (see e.g. [2, Lemma 3.1]) we
arrive at the following representation of the solution y(¢,() as

I _ N
Y00 = ol =)+ g [ (6= 9" Bt = 9)h(u(s.0) s
(2.11)
By the non-intersection of two solutions of (2.6) we have y(t,¢) € [, 0] for
all ¢ > 0. This together with (2.10) gives that

h(y(s,¢)) >0 for all s > 0.
Consequently, by (2.11) and positivity of the function E, . we arrive at
y(t,C) € [Ea(—7tY)¢, 0] for all t > 0,

which shows (2.8). Furthermore, since lim;_, Eqo(—7t%) = 0 it follows that
lim; o y(t,¢) = 0. The proof is complete. O]

In the following result, we establish the asymptotic behavior of solutions
starting inside the attractor. The idea of the proof of this proposition is
quite similar to Proposition 2.3 and we only sketch the main points of the
proof.

Proposition 2.4. The following statements hold:

(i) For ¢ = 0,...,k and 1 € (w2, x2i+1) there exists v > 0 such that
|z(t,n)—z2i4+1] < Eo(—7t%)|n—2x2i41|. Consequently, lim; o z(t,n) =
L2441

(ii) For i = 0,...,k and n € (w241, z2i4+2) there exists v > 0 such that
‘x(t7 77) _I'2i+1| < Ea<_7ta)‘77_$2i+l ‘ . Consequentlya hmt—NX) .%'(t, 77) =
L2441

Proof. We only give a proof of (i) and by using analogous arguments we also

obtain (ii). Let ¢ € {0,1,...,k — 1} be arbitrary but fixed. From (2.6) and
(2.3), we have

g(x) >0 forall x € (wo;,w2,41) and ¢'(w2:41) <O. (2.12)



Now, choose and fix an arbitrary n € (z2;, z2;4+1). Consider a new fractional
differential equation

“Di.y(t) = f(y(t), (2.13)
where f: R — R is defined as

fy) =gy + x241) for all x € R.

Then, for y(t¢,() denoting the solution of (2.13) we have z(t,n) = y(t,n —
22i4+1) + ®2;41 for all ¢ > 0. Then it is sufficient to show that for all ¢ €

(w2 — x2i41,0)
96, Q)] < Ba(—119)|¢|  for some 5 > 0. (2.14)
Now, the property (2.12) is translated into the function f as
fly) >0 forall y € (w2 — x2i+1,0) and f'(0) <0,

which gives that there exists v > 0 (depending on ¢ € (x9; — 22i4+1,0)) such
that f(y) > v|y| for all y € [¢,0]. Thus, by variation of constants formula
we have

y(t,¢) = Eo(—7t*)¢ for all ¢t > 0,

proving (2.14). The proof is complete. O

Next, we discuss the existence of heteroclinic orbits joining the steady
state solutions. Here, we need to discuss how to define the value of solution
in the negative time axis. Roughly speaking, we can extend the solution
z(-,m) in the negative time axis as follows: for any ¢ < 0 then z(¢,n) is the
unique value ¢ € R satisfying that z(—t,{) = 7, it means that

I‘(—t, x(t7 77)) =1.

The well-defined property of this way of extension is confirmed by the result
in [2, Theorem 4.8].

Proposition 2.5 (Heteroclinic trajectory joining the steady states). The
following statements hold:

(i) Fort =0,...,k—1and n € (2, x2;+1) the solution x(¢,n) is a hetero-
clinic trajectory joining the steady states xo; and x2;41. More precisely,
limy oo z(t,n) = x9; and limy_,o0 (£, M) = T2i41.

(ii) For i« = 0,...,k and n € (22i4+1,x2i+2) the solution z(¢,n) is a het-
eroclinic trajectory joining the steady states 9,11 and xg;42. More
precisely, lim;—, o z(t,n) = X242 and limy_, o0 (¢, 1) = T2i41.



Proof. We only give a proof for the part (i) and refer an analogous argument
for the proof of part (ii). In fact, by Proposition 2.4 it is only required to
prove that

lim x(t,n) = x9 for all n € (x9;, T2i+1). (2.15)

t——o0

Analog to the proof of Proposition 2.3 and Proposition 2.4(i), we can intro-
duce the new system to have the property that xo;11 = 0. So, in what follows
we can assume additionally that z2;11 = 0. Choose and fix n € (x2;,0). We
divide the remaining proof into several steps:

Step 1: We show that there exists v > 0 such that

9(Q) 2 (¢ —z2)[¢|  forall ¢ € [22;,0]. (2.16)
To prove this, since ¢'(z2;) > 0 > ¢'(0) it follows that there exists € €
(0, —%21) such that
g (z2)
9(¢) > 5 (¢ — x9;) for all ¢ € (w2;,x2; + €).
and /0
00> T foranc e (-e0)

Then, (2.16) holds for

/ ) /

- mm{g (z20) O L 9(¢) }
2]zai] " 2]e + 2] ¢elwaite—d (¢ — 2:)[C]

The positivity of 7 follows from the fact that g(¢) > 0 for all { € [z2;+€, —€].
Step 2: For any ¢ € (x2;,0), we show that

x(t,¢) > Eq(—7(¢ — x2i)t*)C for all ¢t > 0. (2.17)

To show this inequality, choose and fix ¢ € (z2;,0) and let 7 := (¢ — ;).
Then, we can write the Caputo fractional differential equation (2.1) as

D a(t) = —Fu(t) + (g(z (1)) + (1))

By the variation of constants formula, we have

z(t,¢) = Ea(-3t%)¢

1t o - X A
+F(a)/0 (t =) Ba,a(—3(t — 5)*)(g(2(s,¢)) +72(s,()) ds.

9



Since z(s, ) > ¢ for all s > 0 it follows with (2.17) that
9(x(s,)) +72(s, ) = (¢ — z2i)|z(s, Q) + 7z (s,¢) = 0.
Thus, z(t,{) > E4(—7t*)¢ and (2.17) is proved.
Step 3: Let n € (x2;,0) be arbitrary. Then,
x(—t,x(t,n)) =n for all t <0,

which together with (2.17) implies that

Y

n Eo(—y(z(t,n) — z2i)(—t)*)x(t,n) forallt <O
> BEo(—y(z(t,n) — 32;)(—1)*)xy; forallt <0
Since F,(+) is a montononically increasing function and

lim Eq(—p(=t)*) =0 forallp>0

it follows that lim;—, oo x(t,n) = x2;. The proof is complete. O
We are now in a position to prove the main result of this section.

Proof of Theorem 2.2. The proof of (i) and (iii) are given in Proposition
2.3 and Proposition 2.5, respectively. The first statement in (ii) that each
solution of (2.1) converges to an element of AV/(g) is given in Proposition 2.4.
It remains to show the rate of convergence. In fact, by using Proposition
2.4 for any 7 there exists v > 0 such that

d(x(t,n), N(9)) < Ea(—yt*)d(n, N(g))  forallt=>0. (2.18)
On the other hand, by [2, Theorem 4.1] there exists L > 0 such that
d(x(t,n),N(9)) 2 Ea(=Lt*)d(n,N(g))  forallt>0. (2.19)

Furthermore, for any A > 0 we have lim;_, o t“Eqo(—At?) is finite. Then, by
using (2.18) and (2.19) the rate of convergence of any solution of (2.1) to
the steady states of (2.1) is t7°. O

Remark 2.6 (Comparison to the proof in the scalar ordinary differential
equations). Consider a scalar ordinary differential equation

(t) = g(x(t)) (2.20)
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Figure 1: Attractor A = [~1,1] for g(z) = z — 2.

Let a,b be two successive zeros of g, i.e. g(a) = g(b) = 0 and g(z) # 0 for
x € (a,b). Then, by continuity of g either g(z) > 0 for all x € (a, b) or either
g(x) <0 for all z € (a,b). Then, any solution starting from a value in (a, b)
will be either strictly monotonically increasing or strictly monotonically de-
creasing. Consequently, any solution of (2.20) will converges to one of two
steady states a, b.

The above monotonicity argument of ODEs cannot extend to FDEs with
the same vector field. The main reason is the appearance of the singular
kernel in the integral form

1 t

x(t,n) =n+ / (t —)* 'g(x(s,n)) ds.
I'(a) Jo

Example 2.7. Two specific scalar Caputo FDE | i.e., with a vector field g

: R! — R, namely will be investigated.

g(z) = -z, g(z)=z— 23
These satisfy a dissipativity condition and have steady state solutions 0 and
0, +1, respectively. The ODEs

9 a(t) = g(a(1)

with these vector fields have global attractors A = {0} and A = [-1,1],
respectively. Then, the corresponding Caputo FDEs

D (t) = g((t))

have the same steady state solutions and attractors, see Figure 1. A major
difference is that attraction or repulsion of the steady state solutions is not
at an exponential rate in the Caputo case. Also, in the second example,
the heteroclinic trajectories joining the steady state solutions have the same
geometric image in R!, but different functional representations in the ODE
and Caputo systems.

11



3 Attractor of Caputo fractional differential equa-
tions with triangular vector fields

In this section, we first generalize the result in previous section to a special
class of Caputo fractional differential equations with triangular vector fields
of the following form

“Dfa(t) = g(x(1) = (g1(2(®)), -, galz(t) ", (3.1)

where for i = 1,...,d we assume that the function g; : R* — R is of the
following form

gi(x) = hi(xy, ..., xi—1) fi(z;) fori=1,...,d.

The function g is assumed to be continuously differentiable and to satisfy
the following hypothesises

(H1) (Dissipative condition): There exist a,b > 0 such that
(z,9(z)) < a—b||z]|*> forall 2 € R
(H2) (Non-degenerate condition): g.;(u) # 0 for all u € N(gi;) = {u € R :

Since the structure of vector field in (3.1) is of product form it follows with
the assume (H1) that for all i = 1,...,d the function h; : R~ — R does
not vanishing. Thus, the sign of g; depends only the scalar function f;. So,
applying Theorem 2.2 to every components leads to the following result.

Theorem 3.1 (Attractor for Caputo fractional differential equations of tri-
angular vector fields). Consider system (3.1). Suppose that the assumptions
(H1) and (H2) hold. Then, the following statements hold:

(i) The global attractor attracting all solutions starting from a bounded set
18

A = [min N (g11), max N (g11)] X - -+ x [min V' (ggq), max N (gaq)]-

(i) Each solution of (2.1) converges to an element of the following set
N(g) == N(g11) x - x N(Gaa)

and the rate of convergence is t—.

12
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Figure 2: Attractor A = [—1,1] x [—1, 1] with steady state and heteroclinic
trajectories for the vector field g(z) = (1 —22), f(z,y) = y(1 —y?)(1 +z?).

Example 3.2. Consider the following FDEs with the following vector fields
Dga(t) = a(t)(1—a(t)
Diy(t) = yO)(1—y®)*)(1+z(t)?).

So, the attractor for the above equation is A = [—1, 1] x [-1,1]. The asymp-
totically behavior of solutions are depicted in the Figure 2.

[\

Remark 3.3. It is interesting to know whether Theorem 3.1 remains true
when the vector field is of a more general form of triangular vector fields,

e.g.
“Dia(t) = fla(t)),
Dey(t) = glx(t),y(t)).

Note the result of non-intersection of two solutions is still true for this equa-
tion, see [2]. However, the sign of the vector field g(x(t),y(t)) depends on
both z(t) and y(¢) and we can not use the approach in Section 2 to this
problem.

13



4 One-parameter bifurcations for scalar Caputo
fractional differential equations

Consider a family of scalar Caputo FDEs (2.1)
“Dgx(t) = g(v, ), (4.1)

where « is a parameter. Let x(t,7) denote the solution of (4.1) satisfying
x(0) = n. It follows from Theorem 2.2 that (4.1) has the same bifurcations
as an ODE with the same vector field. This means, in particular, that the
simpler steady states and sign of vector fields for the ODE can be used to de-
termine the bifurcations of the corresponding Caputo FDE. In what follows,
we study the saddle-node and pitchfork bifurcations for fractional differen-
tial equations. We refer the readers to [7, Section 2.1] for a corresponding
bifurcation analysis of ODE.

Example 4.1 (Saddle-node bifurcation). Consider the following family of
scalar Caputo FDEs
“Dg x(t) =~ — x(t)? (4.2)

Then, the following statements hold:

(i) For v < 0, then all solutions of (4.2) tends to —oo.

(ii) For v > 0, then (4.2) has two steady states z = —,/7 and = = /7 and
—oo, ifn<—\/v;
VY, iftn > — /.

An analytical proof for (i) comes from the fact that

t—o00

lim z,(t,n) = {

1 t vt
x (t,n):n+/ (v = 2(s,m)%) ds <+ =
’ (@) Jo ! ()
For the case v > 0, an analogous argument as in (i) implies that lim; o 2~ (t, 1) =
—oo for n < —,/7. Meanwhile, using Theorem 2.2 for the restriction of (4.2)

on (—/7,00) leads to lim; o0 2,(t,n) = /7 if n > —\/7.

Example 4.2 (Pitchfork bifurcation). Consider the following family of
scalar Caputo FDEs

DG, (t) = ya(t) — a() (4.3)

Then, by Theorem 2.2 we obtain the following description of the bifurcation
of the asymptotical behavior of solutions of (4.3) on the parameter ~:

14



(i) For v < 0, then (4.2) has a steady state = 0 attracting all solutions
of (4.2).

(ii) For v > 0, then (4.2) has three steady states x = — /7,2 = 0,z = /7
and
=7, i <0;

lim x.(¢t,n) =
A, 2 (8, m) {\ﬁ, if > 0.

5 Attractors of Caputo semi-dynamical systems:
the general case

Doan & Kloeden [6] showed recently that a general autonomous Caputo
fractional differential equation

Dy, x(t) = g(z(t)), where g : RY — RY, (5.1)

generates a semi-dynamical system on the function space € of continuous
functions f : RT — R? with the topology uniform convergence on compact
subsets. This topology is induced by the metric

supefon) [1f(t) — h(?)||
1+ supyefo.n [1f(£) = ()]

=1
227 a a where pn(f’ )

n=1

Define the operators T, : € — €, 7 € R™, by

(T-1)(0) = f(T—i—G)—i-I,(la) /OT(T—i—H—s)alg(xf(s)) ds, 6 cRY, (5.2)

where xy is a solution of the singular Volterra integral equation for this f,
ie.,

() = () + F(la) /0 (t — ) g(as(s)) ds. (5.3)

It was shown by Doan & Kloeden [6] that the operators Ty, 7 € RT, form
a semi-group on the space €. (The proof in [6] follows Chapter XI, pages
178-179, in Sell [10] closely). This semi-group represents the Caputo FDE
(5.1) as an autonomous semi-dynamical system on the space €.

The theory of autonomous semi-dynamical systems (see e.g., [8]) can be
applied to the Caputo semi-group defined above.

Theorem 5.1. Suppose that the semi-dynamical system {T,,7 € R*} on
the space € has a closed and bounded positively invariant absorbing set B in
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¢ and is asymptotically compact. Then the semi-dynamical system {T-,T €
R™} has a global attractor given by

A= () To(B).

t>0

The solution z(t, o) of the autonomous Caputo FDE (5.1) on R? corre-
sponds to a constant function fy(t) = xo and

x(t,z0) = (13 f0)(0).

Thus, when the semi-group {7,7 € R} has an attractor 2 C €, then
an omega limit point x € R? of trajectories of the Caputo FDE satisfies
= f(0) for some function f € 2. In particular, if g(=*) = 0, then f* € A
for the constant function f*(t) = x*, i.e., z* is a steady state solution of the
system. But there may be functions f* € 2 that are not constant functions,
so the strict inclusion, Qg C 24(0) usually holds, where Q5 the omega limit
point set discussed in the introduction section and 2A(0) is the set of values
in R? of the functions in 2 when evaluated at ¢t = 0.

The application of Theorem 5.1 requires determining an absorbing set 23
in € and showing that the semi-dynamical system {T},7 € RT} is asymp-
totically compact in some sense. This will be investigated in another paper.
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