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Abstract. In the present paper, a maximum principle for finite horizon state
constrained problems is analyzed via parametric examples. These parametric
examples resemble typical optimal growth problems in mathematical econom-
ics. Since the maximum principle is only a necessary condition for local opti-
mal processes, a large amount of additional investigations is needed to obtain
a comprehensive synthesis of finitely many processes suspected for being local
minimizers. Our analysis not only helps to understand the principle in depth,
but also serves as a sample of applying it to meaningful prototypes of optimal
economic growth models. Problems with unilateral state constraints have been
studied in Part 1 [J. Nonlinear Convex Anal. 21 (2020), 157–182] of the paper.
Problems with bilateral state constraints are addressed in this Part 2.

1. Introduction

It is well known that optimal control problems with state constraints are models
of importance, but one usually faces with a lot of difficulties in analyzing them.
These models have been considered since the early days of the optimal control
theory. For instance, the whole Chapter VI of the classical work [1, pp. 257–316]
is devoted to problems with restricted phase coordinates. There are various forms
of the maximum principle for optimal control problems with state constraints; see,
e.g., [2], where the relations between several forms are shown and a series of nu-
merical illustrative examples have been solved. To deal with state constraints, one
has to use functions of bounded variation, Borel measurable functions, Lebesgue-
Stieltjes integral, nonnegative measures on the σ-algebra of the Borel sets, the
Riesz Representation Theorem for the space of continuous functions, and so on.

By using the maximum principle presented in [3, pp. 233–254], Phu proposed two
ingenious methods called the Method of Region Analysis (MRA) [4, 5, 6, 7] and the
Method of Orienting Curves (MOC) [8, 9] to solve several classes of optimal control
problems with state constraints. The effectiveness of MRA and MOC in dealing
with difficulties caused by state constraints in the just-mentioned papers has been
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shown [10, 11, 12, 13, 14] in the analysis of many important theoretical and practical
problems. Afterwards, MRA and MOC were developed for more general models
in [15, 16, 17, 18, 19] with concrete applications being given in [20, 21, 22, 23].

In the present paper, the maximum principle for finite horizon state constrained
problems from the book by Vinter [24, Theorem 9.3.1] is analyzed via three para-
metric examples, which have the origin in Example 1 of the recent paper by Basco,
Cannarsa, and Frankowska [25], where infinite horizon optimal control problems
with state constraints are studied. Each of the considered three parametric ex-
amples is an optimal control problem of the Lagrange type with five parameters:
the first one appears in the description of the objective function, the second one
appears in the differential equation, the third one is the initial value, the fourth
one is the initial time, and the fifth one is the terminal time. The difference among
three problems is in the appearance of state constraints: The first one does not
contain state constraints, the second one is a problem with an unilateral state con-
straint, and the third one is a problem with a bilateral state constraint. Due to the
exponential term in the description of the objective function, the linearity w.r.t.
the control variable in the differential equation, and the pure state constraints,
these optimal control problems resemble optimal growth models in mathemati-
cal economics (see, e.g., [26, pp. 617–625]). Thus, our analysis not only helps to
understand the principle in depth, but also serves as a sample of applying it to
meaningful prototypes of optimal economic growth models. In fact, the similarity
of the optimal control problems considered in our paper and the parametric opti-
mal economic growth models in [27, 28, 29] can be easily observed. It is worthy to
stress that the techniques of reasoning in this paper were successfully used in the
just cited three papers.

The solution existence of optimal control problems considered herein is estab-
lished by invoking Filippov’s existence theorem [30, Theorem 9.2.i and Section 9.4].
Since the maximum principle is only a necessary condition for local optimal pro-
cesses, a large amount of additional investigations is needed to obtain a comprehen-
sive synthesis of finitely many processes suspected for being local minimizers. In
the vast literature on optimal control, we have not found any synthesis of optimal
processes like the ones in our paper, where the dependence of the optimal processes
on all the involved parameters can be explicitly seen.

Note that the maximum principle for finite horizon state constrained problems
in [24, Chapter 9] covers several known ones for smooth problems and allows us
to deal with nonsmooth problems by using the concepts of limitting normal cone
and limitting subdifferential of Mordukhovich [31, 32]. This principle is a neces-
sary optimality condition which asserts the existence of a nontrivial multipliers set
consisting of an absolutely continuous function, a function of bounded variation, a
Borel measurable function, and a real number, such that the four conditions (i)–(iv)
in Theorem 2.5 below are satisfied. The relationships among these conditions in
concrete optimal control problems are worthy a detailed analysis. Just to have an
idea about the importance of such analysis, observe that Section 22.1 of the book
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by Clarke [33] presents a maximum principle [33, Theorem 22.2] for an optimal con-
trol problem without state constraints denoted by (OC). The whole Section 22.2
of [33] (see also [33, Exercise 26.1]) is devoted to applying this maximum principle
to solve a very special example of (OC) having just one parameter. The analysis
contains a series of additional propositions on the properties of the unique global
solution.

Problems without state constraints and problems with unilateral state con-
straints have been studied in Part 1 ([34]) of the paper. Problems with bilat-
eral state constraints are addressed in this Part 2, which is organized as follows.
Section 2 presents the above-mentioned maximum principle from [24, Chapter 9].
Control problems with bilateral state constraints are studied in Section 3. Sec-
tion 4 is devoted to a discussion on the degeneracy phenomenon of the maximum
principle, which sheds new lights on the synthesis of the optimal processes given
in the previous section. Some concluding remarks are given in the last section.

In comparison with Part 1, to deal with bilateral state constraints, herein we
have to prove a series of delicate lemmas and auxiliary propositions. Moreover,
the synthesis of finitely many processes suspected for being local minimizers is
rather sophisticated, and it requires a lot of refined arguments. Interestingly, the
maximum principle plays a very important role in obtaining the synthesis of the
optimal solutions of problems with bilateral state constraints. This is, firstly, due to
the special structure of the problems in question. Secondly and more importantly,
because we can fully exploit the relationships between the optimal solutions of
problems with bilateral state constraints and the ones of problems with unilateral
state constraints by means of the maximum principle.

We end this section by two remarks which are mainly due to one of the three
anonymous referees of this paper. First, it would be interesting to apply the
above-mentioned methods MRA and MOC to solve the optimal control problems
considered herein and compare the obtained results with the ones of us. Second,
one may try to find out what happens if the relationships of the parameters a and
λ in the problem (3.1)–(3.2) below are described by the inequalities λ > a > 0.

2. Background Materials

In this section, we give some notations, definitions, and results that will be used
repeatedly in the sequel.

2.1. Notations. The symbol R (resp., N) denotes the set of real numbers (resp.,
the set of positive integers). The norm (resp., the inner product) in the n-
dimensional Euclidean space Rn is denoted by ‖.‖ (resp., 〈·, ·〉). The closed unit
ball in Rn is denoted by B̄.

For a subset C ⊂ Rn, we abbreviate its convex hull to coC. For a given segment
[t0, T ] of the real line, we denote the σ-algebra of its Lebesgue measurable subsets
(resp., the σ-algebra of its Borel sets) by L (resp., B). The σ-algebra of the Borel
sets in Rm is denoted by Bm. The Sobolev space W 1,1([t0, T ],Rn) is the linear
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space of the absolutely continuous functions x : [t0, T ] → Rn endowed with the

norm ‖x‖W 1,1 = ‖x(t0)‖ +
∫ T
t0
‖ẋ(t)‖dt (see, e.g., [3, p. 21] for this and another

equivalent norm).

2.2. An Optimal Control Problem of the Mayer Type. As in [24, p. 321],
we consider the following finite horizon optimal control problem of the Mayer type,
denoted by M,

(2.1) Minimize g(x(t0), x(T )),

over x ∈ W 1,1([t0, T ],Rn) and measurable functions u : [t0, T ]→ Rm satisfying

(2.2)


ẋ(t) = f(t, x(t), u(t)), a.e. t ∈ [t0, T ]

(x(t0), x(T )) ∈ C
u(t) ∈ U(t), a.e. t ∈ [t0, T ]

h(t, x(t)) ≤ 0, ∀t ∈ [t0, T ],

where [t0, T ] is a given interval, g : Rn × Rn → R, f : [t0, T ] × Rn × Rm → Rn,
and h : [t0, T ] × Rn → R are given functions, C ⊂ Rn × Rn is a closed set, and
U : [t0, T ] ⇒ Rm is a set-valued map.

A measurable function u : [t0, T ] → Rm satisfying u(t) ∈ U(t) for almost every
t ∈ [t0, T ] is called a control function. A process (x, u) consists of a control function
u and an arc x ∈ W 1,1([t0, T ];Rn) that is a solution to the differential equation
in (2.2). A state trajectory x is the first component of some process (x, u). A
process (x, u) is called feasible if the state trajectory satisfies the endpoint constraint
(x(t0), x(T )) ∈ C and the state constraint h(t, x(t)) ≤ 0 for all t ∈ [t0, T ].

Due to the appearance of the state constraint h(t, x(t)) ≤ 0, t ∈ [t0, T ], the
problem M in (2.1)–(2.2) is said to be an optimal control problem with state con-
straints. But, if the state constraint is fulfilled for any state trajectory x with
(x(t0), x(T )) ∈ C, i.e., the state constraint can be removed from (2.2), then one
says that M an optimal control problem without state constraints.

Definition 2.1. A feasible process (x̄, ū) is called a W 1,1 local minimizer forM if
there exists δ > 0 such that g(x̄(t0), x̄(T )) ≤ g(x(t0), x(T )) for any feasible process
(x, u) satisfying ‖x̄− x‖W 1,1 ≤ δ.

Definition 2.2. A feasible process (x̄, ū) is called a W 1,1 global minimizer for M
if, for any feasible process (x, u), one has g(x̄(t0), x̄(T )) ≤ g(x(t0), x(T )).

2.3. A Maximum Principle for State Constrained Problems. The max-
imum principle for state constrained optimal control problems from [24, Theo-
rem 9.3.1] was given in full in Part 1 of this paper (see [34, Theorem 2.4 ]). To
simplify our presentation, here we will only present a version of that maximum prin-
ciple for the problemM of which the input data have a certain level of smoothness
and convexity. We first give some explanations and definitions.

Due to the appearance of the constraint h(t, x(t)) ≤ 0 in M, one has to intro-
duce a multiplier that is an element in the topological dual C∗([t0, T ];R) of the
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space of continuous functions C([t0, T ];R) with the supremum norm. By the Riesz
Representation Theorem (see, e.g., [35, Theorem 6, p. 374] and [36, Theorem 1,
pp. 113–115]), any bounded linear functional f on C([t0, T ];R) can be uniquely
represented in the form f(x) =

∫
[t0,T ]

x(t)dv(t) with v being a function of bounded

variation on [t0, T ] vanishing at t0 and continuous from the right at every point
τ ∈ (t0, T ), and

∫
[t0,T ]

x(t)dv(t) is the Riemann-Stieltjes integral of x w.r.t. v (see,

e.g., [35, p. 364]). We denote by C⊕(t0, T ) the set of the elements of C∗([t0, T ];R)
which are given by nondecreasing functions v. Every v ∈ C∗([t0, T ];R) corresponds
to a finite regular measure, which is denoted by µv, on the σ-algebra B of the Borel
subsets of [t0, T ] by µv(A) :=

∫
[t0,T ]

χA(t)dv(t), where χA(t) = 1 for t ∈ A and

χA(t) = 0 if t /∈ A. Due to the correspondence v 7→ µv, we call every element
v ∈ C∗([t0, T ];R) a “measure” and identify v with µv. Clearly, the measure corre-
sponding to each v ∈ C⊕(t0, T ) is nonnegative.

The integrals
∫

[t0,t)
ν(s)dµ(s) and

∫
[t0,T ]

ν(s)dµ(s) of a Borel measurable function

ν in Theorem 2.5 below are understood in the sense of the Lebesgue-Stieltjes
integration [35, p. 364].

Definition 2.3. The Hamiltonian H : [t0, T ]×Rn×Rn×Rm → R of the dynamic
equation in (2.2) is defined by

(2.3) H(t, x, p, u) := 〈p, f(t, x, u)〉, (t, x, p, u) ∈ [t0, T ]× Rn × Rn × Rm.

Definition 2.4 (See [24, p. 329]). The partial hybrid subdifferential ∂>x h(t, x) of
h(t, x) w.r.t. x is given by

∂>x h(t, x) := co
{
ξ : there exists (tk, xk)

h→ (t, x) such that

h(tk, xk) > 0 for all k and ∇xh(tk, xk)→ ξ
}
,(2.4)

where (tk, xk)
h→ (t, x) means (tk, xk)→ (t, x) with h(tk, xk)→ h(t, x).

Theorem 2.5 (See [24, Theorem 9.3.1]). Suppose that C is a closed convex subset
of Rn × Rn and U(t) = U for all t ∈ [t0, T ] with U being a compact subset of Rm.
Let (x̄, ū) be a W 1,1 local minimizer for M. Assume that, for some δ > 0,

(A1) f : [t0, T ] × Rn × Rm → Rn is continuous, f(t, ·, u) is continuously differ-
entiable on the ball B(x̄(t), δ) for all (t, u) ∈ [t0, T ]× U , and the derivative
fx(t, x, u) of f(t, ·, u) at x is continuous on the set of vectors (t, x, u) satis-
fying (t, u) ∈ [t0, T ]× U and x ∈ B(x̄(t), δ);

(A2) g : Rn × Rn → R is continuously differentiable;
(A3) h : [t0, T ] × Rn → R is upper semicontinuous and there exists K > 0 such

that

‖h(t, x)− h(t, x′)‖ ≤ K‖x− x′‖, ∀x, x′ ∈ x̄(t) + δB̄, ∀t ∈ [t0, T ].

Then there exist p ∈ W 1,1([t0, T ];Rn), γ ≥ 0, µ ∈ C⊕(t0, T ), and a Borel measur-
able function ν : [t0, T ] → Rn with the property that (p, µ, γ) 6= (0, 0, 0), and for
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q(t) := p(t) + η(t) with

η(t) :=

∫
[t0,t)

ν(s)dµ(s), t ∈ [t0, T )

and

η(T ) :=

∫
[t0,T ]

ν(s)dµ(s),

the following holds true:

(i) ν(t) ∈ ∂>x h(t, x̄(t)) µ-a.e.;
(ii) −ṗ(t) = ∇xH(t, x̄(t), q(t), ū(t)) a.e., where ∇xH(t, x̄(t), q(t), ū(t)) denotes the

Fréchet derivative of the function H(t, ., q(t), ū(t)) at x̄(t);
(iii) (p(t0),−q(T )) ∈ γ∇g(x̄(t0), x̄(T )) + NC(x̄(t0), x̄(T )), where ∇g(x̄(t0), x̄(T ))

stands for the Fréchet derivative of g at (x̄(t0), x̄(T )) and NC(x̄(t0), x̄(T ))
denotes the normal cone to the convex set C at (x̄(t0), x̄(T )) in the sense of
convex analysis (see, e.g., [3, p. 205]);

(iv) H(t, x̄(t), q(t), ū(t)) = maxu∈U(t)H(t, x̄(t), q(t), u) a.e.

It remains to show that the assumptions made in Theorem 2.5 guarantee that
the hypothesis (H1) in [24, Theorem 9.3.1] is fulfilled. To do so, take any δ′ ∈ (0, δ)
and note that the set of all (t, x, u) satisfying (t, u) ∈ [t0, T ]×U and x ∈ B̄(x̄(t), δ′),
denoted by A, is compact. Hence, assumption (A1) in Theorem 2.5 implies that
the number γ = max{‖fx(t, x, u)‖ : (t, x, u) ∈ A} is well defined. By the mean
value theorem for vector-valued functions (see, e.g., [3, p. 27]) we have

‖f(t, x, u)− f(t, x′, u)‖ ≤ γ‖x− x′‖, ∀t ∈ [t0, T ], x, x′ ∈ B̄(x̄(t), δ′), u ∈ U.

Thus, condition (H1) in [24, Theorem 9.3.1] is satisfied.

3. Optimal Control Problems with Bilateral State Constraints

By (FP3) we denote the following optimal control problem of the Lagrange type

(3.1) Minimize J(x, u) =

∫ T

t0

[
− e−λt(x(t) + u(t))

]
dt

over x ∈ W 1,1([t0, T ],R) and measurable functions u : [t0, T ]→ R satisfying

(3.2)


ẋ(t) = −au(t), a.e. t ∈ [t0, T ]

x(t0) = x0

u(t) ∈ [−1, 1], a.e. t ∈ [t0, T ]

−1 ≤ x(t) ≤ 1, ∀t ∈ [t0, T ]

with a > λ > 0, T > t0 ≥ 0, and −1 ≤ x0 ≤ 1 being given.
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In order to treat (FP3) in (3.1)–(3.2) as a problem of the Mayer type, we set
x(t) = (x1(t), x2(t)), where x1(t) plays the role of x(t) in (FP3) and

(3.3) x2(t) :=

∫ t

t0

[
− e−λτ (x1(τ) + u(τ))

]
dτ

for all t ∈ [0, T ]. Thus, (FP3) is equivalent to the problem

(3.4) Minimize x2(T )

over x = (x1, x2) ∈ W 1,1([t0, T ],R2) and measurable functions u : [t0, T ] → R
satisfying

(3.5)



ẋ1(t) = −au(t), a.e. t ∈ [t0, T ]

ẋ2(t) = −e−λt(x1(t) + u(t)), a.e. t ∈ [t0, T ]

(x(t0), x(T )) ∈ {(x0, 0)} × R2

u(t) ∈ [−1, 1], a.e. t ∈ [t0, T ]

−1 ≤ x1(t) ≤ 1, ∀t ∈ [t0, T ].

The problem (3.4)–(3.5) is abbreviated to (FP3a).
The solution existence of (FP3) is studied similarly as in Subsection 4.1 of [34].

Namely, we can apply the Filippov’s Existence Theorem for Mayer problems (see
[34, Theorem 2.6] and [30, Theorem 9.2.i and Section 9.4]) to conclude that (FP3a)
has a W 1,1 global minimizer. Thus, by the equivalence of (FP3) and (FP3a), we
can assert that (FP3) has a W 1,1 global minimizer.

To solve (FP3a) by applying Theorem 2.5, we note that (FP3a) is in the form
of the Mayer problem M with g(x, y) = y2, f(t, x, u) = (−au,−e−λt(x1 + u)),
C = {(x0, 0)} × R2, U(t) = [−1, 1], and h(t, x) = |x1| − 1 for all t ∈ [t0, T ],
x = (x1, x2) ∈ R2, y = (y1, y2) ∈ R2 and u ∈ R. By (2.3), the Hamiltonian of
(FP3a) is

(3.6) H(t, x, p, u) = −aup1 − e−λt(x1 + u)p2, (t, x, p, u) ∈ [t0, T ]× R2 × R2 × R.

By (2.4), the partial hybrid subdifferential of h at (t, x) ∈ [t0, T ]× R2 is the set

(3.7) ∂>x h(t, x) =


{(−1, 0)}, if x1 ≤ −1

∅, if |x1| < 1

{(1, 0)}, if x1 ≥ 1.

Let (x̄, ū) be a W 1,1 local minimizer for (FP3a). Since all the assumptions
(A1)–(A3) of Theorem 2.5 are satisfied for (FP3a), by that theorem there exist
p ∈ W 1,1([t0, T ];R2), γ ≥ 0, µ ∈ C⊕(t0, T ), and a Borel measurable function
ν : [t0, T ] → R2 such that (p, µ, γ) 6= (0, 0, 0), and for q(t) := p(t) + η(t) with
η(t) :=

∫
[t0,t)

ν(τ)dµ(τ) for t ∈ [t0, T ) and η(T ) :=
∫

[t0,T ]
ν(τ)dµ(τ), the conditions

(i)–(iv) in Theorem 2.5 hold true.
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Condition (i): As −1 ≤ x̄1(t) ≤ 1 for every t, using formula (3.7), one has

µ{t ∈ [t0, T ] : ν(t) /∈ ∂>x h(t, x̄(t))} =µ{t ∈ [t0, T ] : −1 < x̄1(t) < 1}
+ µ{t ∈ [t0, T ] : x̄1(t) = 1, ν(t) 6= (1, 0)}
+ µ{t ∈ [t0, T ] : x̄1(t) = −1, ν(t) 6= (−1, 0)}.

So, from (i) it follows that

(3.8) µ{t ∈ [t0, T ] : −1 < x̄1(t) < 1} = 0,

(3.9) µ
{
t ∈ [t0, T ] : x̄1(t) = 1, ν(t) 6= (1, 0)

}
= 0,

and µ
{
t ∈ [t0, T ] : x̄1(t) = −1, ν(t) 6= (−1, 0)

}
= 0.

Condition (ii): By (3.6), H is differentiable in x and

∇xH(t, x, p, u) = {(−e−λtp2, 0)}, (t, x, p, u) ∈ [t0, T ]× R2 × R2 × R.

Thus, (ii) implies that −ṗ(t) = (−e−λtq2(t), 0) for a.e. t ∈ [t0, T ]. Therefore,
ṗ1(t) = e−λtq2(t) for a.e. t ∈ [t0, T ] and p2(t) is a constant for all t ∈ [t0, T ].

Condition (iii): It is not hard to verify that ∇g(x̄(t0), x̄(T )) = {(0, 0, 0, 1)}
and NC(x̄(t0), x̄(T )) = R2 × {(0, 0)} from the formulas for g and C. Thus, (iii)
yields (p(t0),−q(T )) ∈ {(0, 0, 0, γ)} + R2 × {(0, 0)}, which means that q1(T ) = 0
and q2(T ) = −γ.

Condition (iv): By (3.6), from (iv) one gets

[aq1(t) + e−λtq2(t)]ū(t) = min
u∈[−1,1]

{
[aq1(t) + e−λtq2(t)]u

}
, a.e. t ∈ [t0, T ].

If the curve x̄1(t) remains in the interior of [−1, 1] for all t from an open interval
(τ1, τ2) of the time axis and touches the boundary of the segment at the moments
τ1 and τ2, then it must have some special form. A formal formulation of this
observation is as follows.

Proposition 3.1. Suppose that [τ1, τ2], τ1 < τ2, is a subsegment of [t0, T ] with
x̄1(t) ∈ (−1, 1) for all t ∈ (τ1, τ2). Then, next statements hold true.

S1) If x̄1(τ1) = −1 and x̄1(τ2) = 1, then τ2 − τ1 = 2a−1 and

x̄1(t) = −1 + a(t− τ1), t ∈ [τ1, τ2].

S2) If x̄1(τ1) = 1 and x̄1(τ2) = −1, then τ2 − τ1 = 2a−1 and

x̄1(t) = 1− a(t− τ1), t ∈ [τ1, τ2].

S3) If x̄1(τ1) = x̄1(τ2) = −1, then τ2 − τ1 < 4a−1 and

x̄1(t) =

{
−1 + a(t− τ1), t ∈ [τ1, (τ1 + τ2)/2]

−1− a(t− τ2), t ∈ ((τ1 + τ2)/2, τ2].

S4) The situation where x̄1(τ1) = x̄1(τ2) = 1 cannot happen.
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Proof. Choose ε1 > and ε2 > 0 small enough so as [τ1 +ε1, τ2−ε2] ⊂ [τ1, τ2]. Then,
x̄1(t) ∈ (−1, 1) for all t ∈ [τ1+ε1, τ2−ε2], i.e., h(t, x̄(t)) < 0 for all t ∈ [τ1+ε1, τ2−ε2].
Thus, applying Proposition 4.3 in Part 1 ([34]) with (FP3a) in the place of (FP2a)
in its formulation, one finds that the formula for x̄1(.) on [τ1 + ε1, τ2 − ε2] belongs
to one of the following categories C1−C3:

x̄1(t) = x̄1(τ1 + ε1) + a(t− τ1 − ε1), t ∈ [τ1 + ε1, τ2 − ε2],

x̄1(t) = x̄1(τ1 + ε1)− a(t− τ1 − ε1), t ∈ [τ1 + ε1, τ2 − ε2],

and

x̄1(t) =

{
x̄1(τ1 + ε1) + a(t− τ1 − ε1), t ∈ [τ1 + ε1, tζ ]

x̄1(tζ)− a(t− tζ), t ∈ (tζ , τ2 − ε2],

where tζ is some point in (τ1 + ε1, τ2 − ε2).
To prove the statement S1, let ε2 = k−1 with k being a positive integer, as

large as k−1 ∈ (τ1 + ε1, τ2). Since for each k the formula for x̄1(.) on the segment
[τ1 +ε1, τ2−k−1] must be of the three types C1–C3, by the Dirichlet principle there
must exist a subsequence {k′} of {k} such that the corresponding formulas belong
to a fixed category. If the latter happens to be C2, then by the continuity of x̄1(.)
one has

x̄1(τ2) = lim
k′→∞

x̄1(τ2 −
1

k′
) = lim

k′→∞

[
x̄1(τ1 + ε1)− a(τ2 −

1

k′
− τ1 − ε1)

]
= x̄1(τ1 + ε1)− a(τ2 − τ1 − ε1).

This is impossible, because x̄1(τ2) = 1. Similarly, the situation where the fixed
category is C3 must also be excluded. In the case where the formulas for x̄1(.)
belong to the category C1, we have x̄1(t) = x̄1(τ1 + ε1) + a(t − τ1 − ε1) for t ∈
[τ1 + ε1, τ2]. Now, letting ε1 tend to zero and using the continuity of x̄1(.), we
obtain x̄1(t) = x̄1(τ1) + a(t− τ1) for t ∈ [τ1, τ2]. As x̄1(τ1) = −1, the statement S1
is proved.

The statements S2 and S3 are proved similarly. To prove the assertion S4, it
suffices to apply some arguments similar to the ones of Case 3 in Subsection 4.2 in
Part 1 ([34]). �

The forthcoming technical lemma will be in use very frequently.

Lemma 3.2. Given any t1, t2 ∈ [t0, T ], t1 < t2, one puts

(3.10) J(x, u)|[t1,t2] :=

∫ t2

t1

[
− e−λt

(
x1(t) + u(t)

)]
dt

for any feasible process (x, u) of (FP3a). If (x̃, ũ) and (x̌, ǔ) are feasible processes
for (FP3a) with x̃1(t) = 1 for all t ∈ [t1, t2] and

x̌1(t) =

{
1− a(t− t1), t ∈ [t1, ť]

1 + a(t− t2), t ∈ (ť, t2],



10 V. T. HUONG, J.-C. YAO, AND N. D. YEN

where ť := 2−1(t1 + t2), then one has

J(x̌, ǔ)|[t1,t2] − J(x̃, ũ)|[t1,t2] =
1

λ

(a
λ
− 1
)
∆(t1, t2)(3.11)

with

∆(t1, t2) := e−λt1 − 2e−
1
2
λ(t1+t2) + e−λt2 .(3.12)

Besides, it holds that ∆(t1, t2) > 0 and J(x̌, ǔ)|[t1,t2] > J(x̃, ũ)|[t1,t2].

Proof. Using the equation ẋ1(t) = −au(t) in (3.5), which is fulfilled for almost all
t ∈ [t0, T ], and the assumed properties of the processes (x̃, ũ) and (x̌, ǔ), we have
ũ(t) = 0 for almost t ∈ [t1, t2], ǔ(t) = 1 for almost t ∈ [t1, ť], and ǔ(t) = −1 for
almost t ∈ (ť, t2]. By the formulas for x̃1 and ũ on [t1, t2],

J(x̃, ũ)|[t1,t2] =

∫ t2

t1

[
− e−λt

(
x̃1(t) + ũ(t)

)]
dt =

1

λ
e−λt2 − 1

λ
e−λt1 .

Similarly, from the formulas for x̌1 and ǔ on [t1, t2] it follows that

J(x̌, ǔ)|[t1,t2] =

∫ t2

t1

[
− e−λt

(
x̌1(t) + ǔ(t)

)]
dt

=(
2

λ
− 2a

λ2
)e−λť + (

a

λ2
− 2

λ
)e−λt1 +

a

λ2
e−λt2 .

Therefore,

J(x̌, ǔ)|[t1,t2] − J(x̃, ũ)|[t1,t2] =
1

λ

(a
λ
− 1
)(
e−λt1 − 2e−λť + e−λt2

)
.(3.13)

So, formula (3.11) is proved. To obtain the second assertion of the lemma, put
ψ(t) = e−λt for all t ∈ R. Since ψ′′(t) > 0 for every t, the function ψ is strictly
convex. So, one has ψ

(
1
2
t1 + 1

2
t2
)
< 1

2
ψ(t1)+ 1

2
ψ(t2). It follows that ∆(t1, t2) > 0 for

any t1 < t2. Combining this with (3.13) and the inequality
a

λ
− 1 > 0, we obtain

J(x̌, ǔ)|[t1,t2] > J(x̃, ũ)|[t1,t2]. �

The following analogue of Lemma 3.2 will be used latter on.

Lemma 3.3. Let t1, t2 be as in Lemma 3.2. Let J(x, u)|[t1,t2] and ∆(t1, t2) be
defined, respectively, by (3.10) and (3.12). If (x̃, ũ) and (x̂, û) are feasible processes
for (FP3a) with x̃1(t) = −1 for all t ∈ [t1, t2] and

x̂1(t) =

{
−1 + a(t− t1), t ∈ [t1, t̂]

−1− a(t− t2), t ∈ (t̂, t2],

where t̂ := 2−1(t1 + t2), then one has

J(x̂, û)|[t1,t2] − J(x̃, ũ)|[t1,t2] = −1

λ

(a
λ
− 1
)
∆(t1, t2).

Therefore, J(x̂, û)|[t1,t2] < J(x̃, ũ)|[t1,t2].
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Proof. By (3.5), by our assumptions, ũ(t) = 0 for almost t ∈ [t1, t2], û(t) = −1 for
almost t ∈ [t1, t̂], and û(t) = 1 for almost t ∈ (t̂, t2]. From formulas for x̃, ũ, x̂1,

and û on [t1, t2], we have J(x̃, ũ)|[t1,t2] = −1

λ
e−λt2 +

1

λ
e−λt1 and

J(x̂, û)|[t1,t2] = −(
2

λ
− 2a

λ2
)e−λť − (

a

λ2
− 2

λ
)e−λt1 − a

λ2
e−λt2 .

Thus, changing the sign of the expression J(x̂, û)|[t1,t2] − J(x̃, ũ)|[t1,t2] we get the
expression on the left-hand-side of (3.13). So, the desired results follow from
Lemma 3.2. �

We will need two more lemmas.

Lemma 3.4. Consider the function ∆ : R2 → R defined by (3.12). For any
t1, t2 ∈ R with t1 < t2 and for any ε̄ ∈ (0, t2 − t1), one has

(3.14) ∆(t1 + ε̄, t2) < ∆(t1, t2)

and

(3.15) ∆(t1, t2) > ∆(t1, t1 + ε̄) + ∆(t1 + ε̄, t2).

Proof. Fix a value ε̄ ∈ (0, t2− t1). To obtain the inequality (3.14), we consider the
function ψ1(ε) := ∆(t1 + ε, t2) of the variable ε ∈ R. Since

ψ1(ε) = e−λ(t1+ε) − 2e−
1
2
λ(t1+ε+t2) + e−λt2 ,

one sees that ψ1(.) is continuously differentiable on R and

ψ′1(ε) = λ
(
e−

1
2
λ(t1+ε+t2) − e−λ(t1+ε)

)
.

As the function r(t) := e−λt is strictly decreasing on R, the last equality implies
that ψ′1(ε) < 0 for every ε ∈ [0, t2 − t1). Hence, the function ψ1(.) is strictly
decreasing on [0, t2 − t1). So, the inequality (3.14) is valid.

To obtain (3.15), we use (3.12) to calculate and get

∆(t1, t2)−∆(t1, t1 + ε̄)−∆(t1 + ε̄, t2)

= 2
[
e−λ(

t1+t2
2

+ ε̄
2

) − e−λ
t1+t2

2

]
− 2
[
e−λ(t1+ε̄) − e−λ(t1+ ε̄

2
)
]
.

Applying the classical mean value theorem to the function r(t) = e−λt, one can
find τ1 ∈ (t1 + ε̄

2
, t1 + ε̄) and τ2 ∈ ( t1+t2

2
, t1+t2

2
+ ε̄

2
) such that

e−λ(t1+ε̄) − e−λ(t1+ ε̄
2

) =
−ε̄λ

2
e−λτ1 and e−λ(

t1+t2
2

+ ε̄
2

) − e−λ
t1+t2

2 =
−ε̄λ

2
e−λτ2 .

Thus, ∆(t1, t2)−∆(t1, t1 + ε̄)−∆(t1 + ε̄, t2) = ε̄λ
[
e−λτ1 − e−λτ2

]
. As the function

r(t) is strictly decreasing on R and τ1 < τ2, one gets e−λτ1 − e−λτ2 > 0; hence the
inequality (3.15) is proved. �
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Lemma 3.5. Let there be given t1, t2 ∈ [t0, T ], t1 < t2, and ξ > 0. Suppose

that (x̃ξ, ũξ) and (x̌ξ, ǔξ) are feasible processes for (FP3a) with x̃ξ1(t) = ξ for all
t ∈ [t1, t2] and

x̌ξ1(t) =

{
ξ − a(t− t1), t ∈ [t1, ť]

ξ + a(t− t2), t ∈ (ť, t2],

where ť := 2−1(t1 + t2). Then one has

J(x̌ξ, ǔξ)|[t1,t2] − J(x̃ξ, ũξ)|[t1,t2] =
1

λ

(a
λ
− 1
)
∆(t1, t2),

with J(x, u)|[t1,t2] and ∆(t1, t2) being defined respectively by (3.10) and (3.12). Be-
sides, the strict inequality J(x̌ξ, ǔξ)|[t1,t2] > J(x̃ξ, ũξ)|[t1,t2] is valid.

Proof. The proof is similar to that of Lemma 3.2. �

The following propositions are crucial for describing the behavior of the local
solutions of (FP3a).

Proposition 3.6. The situation where x̄1(t) = −1 for all t from a subsegment
[t1, t2] of [t0, T ] with t1 < t2 cannot happen.

Proof. Since (x̄, ū) is a W 1,1 local minimizer of (FP3a), by Definition 2.1 there
exists δ > 0 such that (x̄, ū) minimizes the quantity g(x(t0), x(T )) = x2(T ) over
all feasible processes (x, u) of (FP3a) with ‖x̄− x‖W 1,1([t0,T ];R2) ≤ δ.

To prove our assertion, suppose on the contrary that there are t1, t2 satisfying
t0 ≤ t1 < t2 ≤ T such that x̄1(t) = −1 for all t ∈ [t1, t2]. Fixing a number
ε ∈ (0, t2 − t1), we consider the pair of functions (x̂ε, ûε), where

x̂ε1(t) :=


x̄1(t), t ∈ [t0, t1[∪(t1 + ε, T ]

−1 + a(t− t1), t ∈ [t1, t1 + 2−1ε]

−1− a(t− t1 − ε), t ∈ (t1 + 2−1ε, t1 + ε]

and ûε(t) := −a−1dx̂
ε
1(t)

dt
for almost all t ∈ [t0, T ]. Clearly, (x̂ε, ûε) is a feasible

process of (FP3a). By (3.3), (3.10), and the definition of x̂ε1(.), we have

x̄2(T )− x̂ε2(T ) = J(x̄, ū)|[t1,t1+ε] − J(x̂ε, ûε)|[t1,t1+ε].(3.16)

Besides, it follows from Lemma 3.3 and the constructions of x̄ and x̂ε on the interval
[t1, t1 + ε] that J(x̄, ū)|[t1,t1+ε] − J(x̂ε, ûε)|[t1,t1+ε] > 0. Combining this with (3.16)
yields x̄2(T ) > x̂ε2(T ), which contradicts the W 1,1 local optimality of (x̄, ū), because
‖x̄− x̂ε‖W 1,1([t0,T ];R2) ≤ δ for ε > 0 small enough. �

Proposition 3.7. One must have x̄1(t) > −1 for all t ∈ (t0, T ).

Proof. By our standing assumption, (x̄, ū) is a W 1,1 local minimizer for (FP3a).
Let δ > 0 be chosen as in the proof of Proposition 3.6. If the assertion is false,
there would exist ť ∈ (t0, T ) with x̄1(ť) = −1.
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If there are ε1 > 0 and ε2 > 0 such that x̄1(t) > −1 for every t ∈ (ť − ε1, ť) ∪
(ť, ť+ ε2). Then, thanks to the continuity of x̄1(.), by shrinking ε1 > 0 and ε2 > 0
(if necessary) one may assume that x̄1(t) ∈ (−1, 1) for all t ∈ (ť− ε1, ť)∪ (ť, ť+ ε2).
Then, since the curve x̄1(.) cannot have more than one turning on the interval
(ť−ε1, ť) (resp., on the interval (ť, ť+ε2)) by the observation given at the beginning
of the proof of Proposition 3.1. So, replacing ε1 (resp., ε2) by a smaller positive
number, one may assume that

x̄1(t) =

{
−1− a(t− ť), t ∈ [ť− ε1, ť]

−1 + a(t− ť), t ∈ (ť, ť+ ε2].

To get a contradiction, we can apply the construction given in Lemma 3.5. Namely,
choose ε > 0 as small as ε < min{ε1, ε2} and define a feasible process (x̃ε, ũε) for
(FP3a) by setting

ũε(t) =

{
0, t ∈ [ť− ε, ť+ ε]

ū(t), t ∈ [t0, ť− ε) ∪ (ť+ ε, T ]

and

x̃ε(t) =

{
x̄1(ť− ε), t ∈ [ť− ε, ť+ ε]

x̄(t), t ∈ [t0, ť− ε) ∪ (ť+ ε, T ].

Then, by Lemma 3.5 one has J(x̄, ū) > J(x̃ε, ũε). This contradicts the W 1,1 local
optimality of (x̄, ū), as ‖x̄− x̂ε‖W 1,1([t0,T ];R2) ≤ δ for ε > 0 small enough.

Since one cannot find ε1 > 0 and ε2 > 0 such that the strict inequality x̄1(t) > −1
holds for all t ∈ (ť − ε1, ť) ∪ (ť, ť + ε2), there must exist a sequence {tk} in (t0, T )
converging to ť such that either tk < ť for all k or tk > ť for all k, and x̄1(tk) = −1
for each k. It suffices to consider the case tk < ť for all k, as the other case can
be treated similarly. By considering a subsequence (if necessary), we may assume
that tk < tk+1 for all k. Choose k̄ as large as

(3.17) ť− tk̄ < min{2δa−1, 4a−1}.

This choice of k̄ guarantees that x̄1(t) < 1 for every t ∈ [tk̄, ť]. Indeed, otherwise
there is some α ∈ (tk̄, ť) with x̄1(α) = 1. Setting

α1 = min
{
t ∈ [tk̄, α] : x̄1(t) = 1

}
, α2 = max

{
t ∈ [α, ť] : x̄1(t) = 1

}
,

one has α1 ≤ α2, [α1, α2] ⊂ [tk̄, ť], and x̄1(t) ∈ (−1, 1) for all t ∈ (tk̄, α1) ∪ (α2, ť).
Then, by assertion S1 of Proposition 3.1, one has α1 − tk̄ = 2a−1. Similarly, by
assertion S2 in that proposition, one has ť−α2 = 2a−1. So, one gets ť− tk̄ ≥ 4a−1,
which comes in conflict with (3.17).

By Proposition 3.6, one cannot have x̄1(t) = −1 for all t ∈ [tk̄, tk̄+1]. Thus, there
is some τ ∈ (tk̄, tk̄+1) with x̄1(τ) > −1. Setting

τ1 = max
{
t ∈ [tk̄, τ ] : x̄1(t) = −1

}
, τ2 = min

{
t ∈ [τ, tk̄+1] : x̄1(t) = −1

}
,
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one has τ1 < τ2, [τ1, τ2] ⊂ [tk̄, tk̄+1], and x̄1(t) ∈ (−1, 1) for all t ∈ (τ1, τ2). Hence,
replacing tk̄ (resp., tk̄+1) by τ1 (resp., τ2), one sees that all the above-described
properties of the sequence {tk} remain and, in addition,

(3.18) x̄1(t) ∈ (−1, 1), t ∈ (tk̄, tk̄+1).

Let F := {t ∈ [tk̄, ť] : x̄1(t) = −1} and E := [tk̄, ť] \ F . Since F is a closed
subset of R and E = (tk̄, ť) \ F , E is an open subset of R. So, E is the union of
a countable family of disjoint open intervals (see [37, Proposition 9, p. 17]). Since
tk /∈ E for all k, we have a representation E =

⋃∞
i=1Ei, where the intervals Ei =

(τ
(i)
1 , τ

(i)
2 ), i ∈ N, are nonempty and disjoint. Thanks to (3.18), one may suppose

that E1 = (τ
(1)
1 , τ

(1)
2 ) = (tk̄, tk̄+1). Note also that, for any i ∈ N, x̄1(t) ∈ (−1, 1) for

all t ∈ Ei. Since x̄1(τ
(i)
1 ) = x̄1(τ

(i)
2 ) = −1, by assertion S3 of Proposition 3.1 one

gets

x̄1(t) =

{
−1 + a(t− τ (i)

1 ), t ∈ [τ
(i)
1 , 2−1(τ

(i)
1 + τ

(i)
2 )]

−1− a(t− τ (i)
2 ), t ∈ (2−1(τ

(i)
1 + τ

(i)
2 ), τ

(i)
2 ].

If the set F1 := F \ {tk̄} has an isolated point in the induced topology of [tk̄, ť],
says, t̄. Then, one must have t̄ ∈ [tk̄+1, ť). Thus, there exists ε > 0 such that
(t̄− ε, t̄+ ε) is contained in (tk̄, ť) and we have x̄1(t) ∈ (−1, 1) for all t ∈ (t̄− ε, t̄)∪
(t̄, t̄ + ε). Applying the construction given in the first part of this proof, we find
a feasible process (x̃ε, ũε) for (FP3a) with the property that J(x̄, ū) > J(x̃ε, ũε).
This contradicts the W 1,1 local optimality of (x̄, ū), because (3.17) assures that
‖x̄− x̂ε‖W 1,1([t0,T ];R2) ≤ δ.

Now, suppose that every point in the compact set F1 is a limit point of this set
in the induced topology of [tk̄, ť]. Then, if the Lebesgue measure µL(F1) of F1 is
null, then the structure of F1 is similar to that of the Cantor set1, constructed from
the segment [tk̄+1, ť] ⊂ R. If µL(F1) > 0, the structure of F1 is similar to that of a
fat Cantor set, which is also called a Smith-Volterra-Cantor set2. Putting

(3.19) ũ(t) =

{
0, t ∈ [tk̄, ť]

ū(t), t ∈ [t0, tk̄) ∪ (ť, T ]

and

(3.20) x̃1(t) =

{
−1, t ∈ [tk̄, ť]

x̄1(t), t ∈ [t0, tk̄) ∪ (ť, T ],

we see that (x̃, ũ) is a feasible process for (FP3a). Similarly, define

u(t) =


−1, t ∈ [tk̄+1, 2

−1(tk̄+1 + ť)]

1, t ∈ (2−1(tk̄+1 + ť), ť]

ū(t), t ∈ [t0, tk̄+1) ∪ (ť, T ]

1https://en.wikipedia.org/wiki/Cantor set.
2https://en.wikipedia.org/wiki/Smith-Volterra-Cantor set.
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and

(3.21) x1(t) =


−1 + a(t− tk̄+1), t ∈ [tk̄+1, 2

−1(tk̄ + ť)]

−1− a(t− ť), t ∈ (2−1(tk̄+1 + ť), ť]

x̄1(t), t ∈ [t0, tk̄+1) ∪ (ť, T ],

and observe that (x, u) is a feasible process for (FP3a). Using (3.17), it is easy to
verify that ‖x− x̄‖W 1,1([t0,T ];R2) ≤ δ. Thus, if it can be shown that

(3.22) J(x, u) < J(x̄, ū),

then we get a contradiction to the W 1,1 local optimality of (x̄, ū). Hence, the proof
of the lemma will be completed.

By (3.19)–(3.21) and Lemma 3.3, J(x̃, ũ)− J(x, u) = J(x̃, ũ)|[tk̄,ť] − J(x, u)|[tk̄,ť].
Therefore, we have

J(x̃, ũ)− J(x, u) =
1

λ

(a
λ
− 1
)[

∆(tk̄, tk̄+1) + ∆(tk̄+1, ť)
]
,(3.23)

where ∆(t1, t2), for any t1, t2 with t1 < t2, is given by (3.12). In addition, using
(3.19), (3.20), the decomposition [tk̄+1, ť] =

(⋃∞
i=2 Ei

)
∪ F1, and the sum rule [35,

Theorem 1’, p. 297] and the decomposition formula [35, Theorem 4, p. 298] for the
Lebesgue integrals, one gets

J(x̄, ū)− J(x̃, ũ) = J(x̄, ū)|[tk̄,ť] − J(x̃, ũ)|[tk̄,ť]

=

∫
[tk̄,ť]

[
− e−λt(

[
x̄1(t) + ū(t)

]
−
[
x̃1(t) + ũ(t)]

)]
dt

=
∞∑
i=2

∫
Ei

[
− e−λt(

[
x̄1(t) + ū(t)

]
−
[
x̃1(t) + ũ(t)]

)]
dt

+

∫
F1

[
− e−λt(

[
x̄1(t) + ū(t)

]
−
[
x̃1(t) + ũ(t)]

)]
dt.

Hence, it holds that

J(x̄, ū)− J(x̃, ũ) = −1

λ

(a
λ
− 1
) ∞∑
i=2

∆
(
τ

(i)
1 , τ

(i)
2

)
+ I,(3.24)

where I :=

∫
F1

[
− e−λt(

[
x̄1(t) + ū(t)

]
−
[
x̃1(t) + ũ(t)]

)]
dt. Given any t ∈ F1, we

observe that x̄1(t) = x̃1(t) = −1 and ũ(t) = 0. Since every point in F1 is a limit
point of this set in the induced topology of [tk̄, ť], we can find a sequence {ξtj} in

F1 satisfying lim
j→∞

ξtj = t. As the derivative x̄1(t) exists a.e. on [t0, T ], it exists

a.e. on F1. In combination with the first differential equation in (3.5), this yields
˙̄x1(t) = −aū(t) a.e. t ∈ F1. Since x̄1(t) = −1 for all t ∈ F1, for a.e. t ∈ F1 it holds
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that

ū(t) = −1

a
˙̄x1(t) = −1

a
lim
j→∞

x̄1(ξtj)− x̄1(t)

ξtj − t
= 0.

We have thus shown that
[
x̄1(t) + ū(t)

]
−
[
x̃1(t) + ũ(t)] = 0 for a.e. t ∈ F1. This

implies that I = 0. Now, adding (3.23) and (3.24), we get

J(x̄, ū)− J(x, u) =
1

λ

(a
λ
− 1
)[

∆(tk̄, tk̄+1) + ∆(tk̄+1, ť)−
∞∑
i=2

∆
(
τ

(i)
1 , τ

(i)
2

)]
.(3.25)

We have
∞∑
i=2

∆
(
τ

(i)
1 , τ

(i)
2

)
≤ ∆(tk̄+1, ť).(3.26)

To establish this inequality, we first show that

m∑
i=2

∆
(
τ

(i)
1 , τ

(i)
2

)
< ∆(tk̄+1, ť)(3.27)

for any integer m ≥ 2. Taking account of the fact that every point in F1 is a
limit point of this set in the induced topology of [tk̄, ť], by reordering the intervals(
τ

(i)
1 , τ

(i)
2

)
for i = 2, . . . ,m, we may assume that

tk̄+1 < τ
(2)
1 < τ

(2)
2 < τ

(3)
1 < τ

(3)
2 < · · · < τ

(m)
1 < τ

(m)
2 < ť.

Then, by Lemma 3.4 and by induction, we have

m∑
i=2

∆
(
τ

(i)
1 , τ

(i)
2

)
<

[
∆
(
tk̄+1, τ

(2)
1 ) + ∆

(
τ

(2)
1 , τ

(2)
2

)]
+

m∑
i=3

∆
(
τ

(i)
1 , τ

(i)
2

)
<

[
∆
(
tk̄+1, τ

(2)
2 ) + ∆

(
τ

(2)
2 , τ

(3)
1

)]
+

m∑
i=3

∆
(
τ

(i)
1 , τ

(i)
2

)
...

< ∆
(
tk̄+1, τ

(m)
2 ) + ∆

(
τ

(m)
2 , ť

)
< ∆(tk̄+1, ť).

Thus, (3.27) is valid. Since ∆
(
τ

(i)
1 , τ

(i)
2

)
> 0 for all i = 2, 3, . . . , the estimate (3.27)

shows that the series
∞∑
i=2

∆
(
τ

(i)
1 , τ

(i)
2

)
is convergent. Letting m → ∞, from (3.27)

one obtains (3.26). Since ∆(tk̄, tk̄+1) > 0, the equality (3.25) and the inequality
(3.26) imply (3.22).

The proof is complete. �
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To continue, using the parameters tube (λ, a, x0, t0, T ) of the problem (FP3a),

we define ρ =
1

λ
ln

a

a− λ
> 0, t̄ = T − ρ. Besides, for a given x0 ∈ [−1, 1], let

(3.28) ρ1 := a−1(1 + x0) and ρ2 := a−1(1− x0).

As x0 ∈ [−1, 1], one has ρ1 ∈ [0, 2a−1] and ρ2 ∈ [0, 2a−1]. Moreover, since x̄1(t) is
a continuous function, T1 := {t ∈ [t0, T ] : x̄1(t) = 1} is a compact set (which may
be empty). If T1 is nonempty, then we consider the numbers α1 := min{t : t ∈ T1}
and α2 := max{t : t ∈ T1}.

By Proposition 3.7, one of next four cases must occur.

Case 1: x0 > −1 and x̄1(t) > −1 for all t ∈ (t0, T ]. Then, condition (i) means
that (3.8) and (3.9) are satisfied, while conditions (ii)–(iv) remain the same as
those in Subsection 4.2 of Part 1 ([34]). Moreover, it is clear that (x̄, ū) is a W 1,1

local minimizer of the problem considered therein. So, the curve x̄1(t) must be of
one of the four types (a)–(d) depicted in Theorem 4.4 of Part 1 ([34]), where we
let x̄1(t) play the role of x̄(t). Of course, the condition x̄1(t) > −1 for all t ∈ [t0, T ]
must be satisfied. With respect to the just mentioned four types of x̄(t), we have
the following four subcases.

Subcase 1a: x̄1(t) is given by

(3.29) x̄1(t) = x0 − a(t− t0), t ∈ [t0, T ].

By statement (a) of Theorem 4.4 of Part 1 ([34]), this situation happens when
T − t0 ≤ ρ (i.e., t̄ ≤ t0). By (3.29), the condition x̄1(t) > −1 for all t ∈ (t0, T ] is
equivalent to x̄1(T ) > −1 or, equivalently, T − t0 < ρ1. Therefore, if either ρ < ρ1

and T − t0 ≤ ρ, or ρ ≥ ρ1 and T − t0 < ρ1, then x̄1(t) is given by (3.29).

Subcase 1b: x̄1(t) is given by

(3.30) x̄1(t) =

{
x0 + a(t− t0), t ∈ [t0, t̄]

x0 − a(t+ t0 − 2t̄), t ∈ (t̄, T ].

According to statement (b) of Theorem 4.4 of Part 1 ([34]), this situation occurs
when ρ < T − t0 < ρ + ρ2. By (3.30), the condition x̄1(t) > −1 for all t ∈ (t0, T ]
is equivalent to the requirement x̄1(T ) > −1, which means that T − t0 > 2ρ− ρ1.
Thus, if max{ρ; 2ρ− ρ1} < T − t0 < ρ+ ρ2, then x̄1(t) is given by (3.30).

Subcase 1c: x̄1(t) is given by

x̄1(t) =

{
x0 + a(t− t0), t ∈ [t0, t̄]

1− a(t− t̄), t ∈ (t̄, T ].
(3.31)

In this situation, statement (c) of Theorem 4.4 of Part 1 ([34]) requires that ρ < T−
t0 = ρ+ρ2. By (3.31), the condition x̄1(t) > −1 for all t ∈ (t0, T ] is equivalent to the
requirement x̄1(T ) > −1, which means that ρ < 2a−1. Thus, if ρ < T − t0 = ρ+ρ2

and ρ < 2a−1, then x̄1(t) is given by (3.31).
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Subcase 1d : x̄1(t) is given by

x̄1(t) =


x0 + a(t− t0), t ∈ [t0, t0 + ρ2)

1, t ∈ [t0 + ρ2, t̄)

1− a(t− t̄), t ∈ [t̄, T ].

(3.32)

By statement (d) of Theorem 4.4 of Part 1 ([34]), one need ρ + ρ2 < T − t0.
Meanwhile, by (3.32), the condition x̄1(t) > −1 for all t ∈ (t0, T ] is equivalent to
the requirement x̄1(T ) > −1, which means that ρ < 2a−1. So, if ρ + ρ2 < T − t0
and ρ < 2a−1, then x̄1(t) is given by (3.32).

Case 2: x0 = −1 and x̄1(t) > −1 for all t ∈ (t0, T ]. Let ε̄ > 0 be such that
t0 + ε̄ < T . For any k ∈ N with k−1 ∈ (0, ε̄), based on the comments before
Proposition 4.1 of Part 1 ([34]) and Proposition 4.2 therein, we can assert that
the restriction of (x̄, ū) on [t0 + k−1, T ] is a W 1,1 local minimizer for the Mayer
problem obtained from (FP3a) by replacing t0 with t0 + k−1. Since x̄1(t) > −1
for all t ∈ [t0 + k−1, T ], repeating the arguments already used in Case 1 yields
a formula for x̄1(t) on [t0 + k−1, T ]. With ρ1(k) := a−1[1 + x̄1(t0 + k−1)] and
ρ2(k) := a−1[1 − x̄1(t0 + k−1)], for every k ∈ N we see that the function x̄1(t) on
[t0 + k−1, T ] must belong to one of the following four categories, which correspond
to the four forms of the function x̄1(t) in Case 1.

(C1) x̄1(t) is given by

x̄1(t) = x̄1(t0 + k−1)− a(t− t0 − k−1), t ∈ [t0 + k−1, T ],

provided that ρ < ρ1(k) and T−t0−k−1 ≤ ρ, or ρ ≥ ρ1(k) and T−t0−k−1 <
ρ1(k).

(C2) x̄1(t) is given by

x̄1(t) =

{
x̄1(t0 + k−1) + a(t− t0 − k−1), t ∈ [t0 + k−1, t̄]

x̄1(t0 + k−1)− a(t+ t0 + k−1 − 2t̄), t ∈ (t̄, T ],

provided that max{ρ; 2ρ− ρ1(k)} < T − t0 − k−1 < ρ+ ρ2(k).
(C3) x̄1(t) is given by

x̄1(t) =

{
x̄1(t0 + k−1) + a(t− t0 − k−1), t ∈ [t0 + k−1, t̄]

1− a(t− t̄), t ∈ (t̄, T ],

provided that ρ < T − t0 − k−1 = ρ+ ρ2(k), and ρ < 2a−1.
(C4) x̄1(t) is given by

x̄1(t) =


x̄1(t0 + k−1) + a(t− t0 − k−1), t ∈ [t0 + k−1, t0 + ρ2(k)]

1, t ∈ (t0 + ρ2(k), t̄]

1− a(t− t̄), t ∈ (t̄, T ],

provided that ρ+ ρ2(k) < T − t0 − k−1 and ρ < 2a−1.
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By the Dirichlet principle, there exist an infinite number of indexes k with k−1 ∈
(0, ε̄) such that the formula for x̄1(t) is given in the category C1 (resp., C2, C3, or
C4). By considering a subsequence if necessary, we may assume that this happens
for all k with k−1 ∈ (0, ε̄) .

If the first situation occurs, then x̄1(t) = −1−a(t−t0) for all t ∈ [t0, T ] by letting
k → ∞. This is impossible since the requirement x̄1(t) > −1 for all t ∈ (t0, T ] is
violated.

If the second situation occurs, then by letting k →∞ we have

x̄1(t) =

{
−1 + a(t− t0), t ∈ [t0, t̄]

−1− a(t+ t0 − 2t̄), t ∈ (t̄, T ],

provided that max{ρ; 2ρ−ρ1} ≤ T−t0 ≤ ρ+ρ2. Since x̄1(t) > −1 for all t ∈ (t0, T ],
one must have x̄1(T ) > −1; hence 2ρ < T − t0. Since x0 = −1, by (3.28) one has
ρ1 = 0 and ρ2 = 2a−1. Thus, this situation happens when 2ρ < T − t0 ≤ ρ+ 2a−1.

If the third situation occurs, then x̄1(t) is given by

x̄1(t) =

{
−1 + a(t− t0), t ∈ [t0, t̄]

1− a(t− t̄), t ∈ (t̄, T ],

provided that T − t0 = ρ+ 2a−1, and ρ < 2a−1.
If the fourth situation occurs, then x̄1(t) is given by

x̄1(t) =


x̄1(t0) + a(t− t0), t ∈ [t0, t0 + 2a−1]

1, t ∈ (t0 + 2a−1, t̄]

1− a(t− t̄), t ∈ (t̄, T ],

provided that ρ+ 2a−1 < T − t0 and ρ < 2a−1.

Case 3: x̄1(T ) = −1 and x̄1(t) > −1 for all t ∈ [t0, T ).
Subcase 3a: T1 = ∅. Then x̄1(t) ∈ (−1, 1) for all t ∈ [t0, T ) and x̄1(T ) = −1. By

some arguments similar to those of the proof of Proposition 3.1, one can show that
formula for x̄1(.) on [t0, T ] is one of the following two types:

(3.33) x̄1(t) = x0 − a(t− t0), t ∈ [t0, T ],

and

(3.34) x̄1(t) =

{
x0 + a(t− t0), t ∈ [t0, tζ ]

−1− a(t− T ), t ∈ (tζ , T ],

with tζ ∈ (t0, T ).
If x̄1(.) is given by (3.33), then x̄1(T ) = −1 if and only if T − t0 = ρ1. Since

x0 ∈ (−1, 1], the latter yields 0 < T − t0 = ρ1 ≤ 2a−1.
If x̄1(.) is of the form (3.34), then tζ = 2−1[T + t0 − ρ1] as x̄1(T ) = −1. Since

tζ > t0, one must have T − t0 > ρ1. Meanwhile, by (3.34) and our standing
assumption in this subcase, x̄1(tζ) < 1. So, T − t0 < ρ1 + 2ρ2 = a−1(3 − x0).
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Combining this and the inequality T − t0 > ρ1 yields ρ1 < T − t0 < a−1(3 − x0).
Our results in this subcase can be summarized as follows:
• x̄1(.) is given by (3.33), provided that T − t0 = ρ1.
• x̄1(.) is given by (3.34), provided that ρ1 < T − t0 < a−1(3− x0).

Subcase 3b: T1 6= ∅. Then we have t0 ≤ α1 ≤ α2 < T . It follows from asser-
tion S2 of Proposition 3.1 that T − α2 = 2a−1 and x̄1(t) = 1 − a(t − α2) for all
t ∈ [α2, T ]. Thus, we have α2 = T − 2a−1 and x̄1(t) = 1 − a(t − T + 2a−1) for all
t ∈ [T − 2a−1, T ].

If α1 < α2, then x̄1(t) = 1 for all t ∈ [α1, α2]. Indeed, suppose on the contrary
that there exists t̄ ∈ (α1, α2) satisfying x̄1(t̄) < 1. Set

ᾱ1 = max{t ∈ [α1, t̄] : x̄1(t) = 1} and ᾱ2 = min{t ∈ [t̄, α2] : x̄1(t) = 1}.
Clearly, [ᾱ1, ᾱ2] ⊂ [α1, α2] ⊂ [t0, T ) and x̄1(t) < 1 for all t ∈ (ᾱ1, ᾱ2). This and
the condition x̄1(t) > −1 for all t ∈ [t0, T ) imply that x̄1(t) ∈ (−1, 1) for all
t ∈ (ᾱ1, ᾱ2). So, by assertion S4 of Proposition 3.1, we obtain a contradiction. Our
claim has been proved.

If t0 < α1, then x̄1(t) ∈ (−1, 1) for all t ∈ [t0, α1) and x̄1(α1) = 1. Thus,
repeating the arguments in the proof of assertion S1 of Proposition 3.1, we find
that x̄1(t) = x0 + a(t− t0) for all t ∈ [t0, α1]. As x̄1(α1)=1, we have α1 = t0 + ρ2.
Consequently, the inequality T − t0 ≥ (α1 − t0) + (T − α2) implies that T − t0 ≥
ρ2 + 2a−1 = a−1(3−x0). Our results in this subcase can be summarized as follows:
• x̄1(.) is given by

x̄1(t) =

{
x0 + a(t− t0), t ∈ [t0, T − 2a−1]

−1− a(t− T ), t ∈ (T − 2a−1, T ],

provided that T − t0 = a−1(3− x0).
• x̄1(.) is given by

x̄1(t) =


x0 + a(t− t0), t ∈ [t0, t0 + ρ2]

1, t ∈ (t0 + ρ2, T − 2a−1]

−1− a(t− T ), t ∈ (T − 2a−1, T ],

provided that T − t0 > a−1(3− x0).

Case 4: x̄1(t0) = x̄1(T ) = −1 and x̄1(t) > −1 for all t ∈ (t0, T ).

Subcase 4a: T1 = ∅. Then, x̄1(t) ∈ (−1, 1) for all t ∈ (t0, T ). Thus, by assertion

S3 of Proposition 3.1 one has T − t0 < 4a−1 and

x̄1(t) =

{
−1 + a(t− t0), t ∈ [t0, 2

−1(t0 + T )]

−1− a(t− T ), t ∈ (2−1(t0 + T ), T ].

Subcase 4b: T1 6= ∅. Then, the numbers α1 and α2 exist and t0 < α1 ≤ α2 < T .

It follows from statements S1 and S2 of Proposition 3.1 that α1−t0 = T−α2 = 2a−1,
x̄1(t) = −1 + a(t − t0) on the segment [t0, α1], and x̄1(t) = 1 − a(t − α2) on the
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segment [α2, T ]. Thus, α1 = t0 + 2a−1, α2 = T − 2a−1, x̄1(t) = −1 + a(t − t0) for
every t ∈ [t0, t0+2a−1], and x̄1(t) = 1−a(t−T+2a−1) for all t ∈ [T−2a−1, T ]. Note
that one must have T − t0 ≥ 4a−1 in this subcase as T − t0 ≥ (α1− t0) + (T −α2).

If T − t0 > 4a−1, i.e., α1 < α2, then by the result given in Subcase 3b we have
x̄1(t) = 1 for all t ∈ [t0 + 2a−1, T − 2a−1].

Our results in this case can be summarized as follows:
• x̄1(.) is given by

x̄1(t) =

{
−1 + a(t− t0), t ∈ [t0, 2

−1(t0 + T )]

−1− a(t− T ), t ∈ (2−1(t0 + T ), T ],

provided that T − t0 ≤ 4a−1.
• x̄1(.) is given by

x̄1(t) =


−1 + a(t− t0), t ∈ [t0, t0 + 2a−1]

1, t ∈ (t0 + 2a−1, T − 2a−1]

−1− a(t− T ), t ∈ (T − 2a−1, T ],

provided that T − t0 > 4a−1.
Now we turn our attention back to the original problem (FP3). In the paragraph

after formulating (FP3a), it was observed that (FP3) has a global solution. So, the
set of the local solutions of (FP3) is nonempty. Consequently, given the parameters
tube (λ, a, x0, t0, T ), if we can show that for any W 1,1 local solution (x̄, ū) of (FP3),
x̄ is described by a unique formula, then we can assert that the pair (x̄, ū) is a unique
local solution of (FP3), which is also a unique global solution of the problem.

Using the given constants a, λ with a > λ > 0, we define

ρ =
1

λ
ln

a

a− λ
> 0 and t̄ = T − ρ.

The number ρ is a characteristic constant of (FP3). From the analysis given in the
present section we can obtain a complete synthesis of optimal processes. Due to
the complexity of the possible trajectories, we prefer to present our results in six
separate theorems. The first one deals with the situation where ρ ≥ 2a−1, while
the other five treat the situation where ρ < 2a−1.

Based on the results obtained in Cases 1–4, we will provide a complete synthesis
of the global solutions of (FP3). Recall that x̄1(t) in (FP3a) plays the role of x̄(t)
in (FP3).

Theorem 3.8. If ρ ≥ 2a−1, then problem (FP3) has a unique local solution (x̄, ū),
which is a unique global solution, where ū(t) = −a−1 ˙̄x(t) for almost every t ∈ [t0, T ]
and x̄(t) can be described as follows:

(a) If T − t0 ≤ a−1(1 + x0), then

x̄(t) = x0 − a(t− t0), t ∈ [t0, T ].
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(b) If a−1(1 + x0) < T − t0 < a−1(3− x0), then

x̄(t) =

{
x0 + a(t− t0), t ∈ [t0, tζ ]

−1− a(t− T ), t ∈ (tζ , T ],

with tζ := 2−1[T + t0 − a−1(1 + x0)].
(c) If T − t0 ≥ a−1(3− x0), then

x̄(t) =


x0 + a(t− t0), t ∈ [t0, t0 + a−1(1− x0)]

1, t ∈ (t0 + a−1(1− x0), T − 2a−1]

−1− a(t− T ), t ∈ (T − 2a−1, T ].

Proof. Suppose that ρ ≥ 2a−1. Let ρ1, ρ2 be defined as in (3.28). Then, one has
ρ ≥ ρ1, 2ρ− ρ1 ≥ ρ+ ρ2, ρ+ ρ2 ≥ 2a−1 + ρ2, 2ρ ≥ ρ+ 2a−1, and ρ+ 2a−1 ≥ 4a−1.
Thus, the above Case 2 and the situations in Subcase 1b, Subcase 1c, Subcase 1d
of Case 1 cannot happen. The situation in Subcase 1a happens when T − t0 < ρ1.
Combining this with the results formulated in Case 3 and Case 4, we obtain the
assertions of the theorem. �

If ρ < 2a−1, then the locally optimal processes of (FP3) depend greatly on the
relative position of x0 in the segment [−1, 1]. In the forthcoming theorems, we
distinguish five alternatives (one instance must occur, and any instance excludes
others):

(i) x0 = −1;
(ii) x0 > −1 and a−1(1 + x0) ≤ ρ;
(iii) x0 > −1, ρ < a−1(1 + x0), and a−1(1 + x0) < ρ+ a−1(1− x0);
(iv) x0 > −1, ρ < a−1(1 + x0), and a−1(1 + x0) = ρ+ a−1(1− x0);
(v) x0 > −1, ρ < a−1(1 + x0), and ρ+ a−1(1− x0) < a−1(1 + x0).

It is worthy to stress that to describe the possibilities (i)–(v) we have used just
the parameters a, λ, and x0. In each one of the situations (i)–(v), the synthesis of
the trajectories suspected for local minimizers of (FP3) is obtained by considering
the position of the number T − t0 > 0 on the half-line [0,+∞), which is divided
into sections by the values ρ, 2ρ, ρ+ 2a−1, 4a−1, and other constants appeared in
(i)–(v).

Theorem 3.9. If ρ < 2a−1 and x0 = −1, then any local solution of problem (FP3)
must have the form (x̄, ū), where ū(t) = −a−1 ˙̄x(t) for a.e. t ∈ [t0, T ] and x̄(t) is
described as follows:

(a) If T − t0 ≤ 2ρ, then

(3.35) x̄(t) =

{
−1 + a(t− t0), t ∈ [t0, 2

−1(t0 + T )]

−1− a(t− T ), t ∈ (2−1(t0 + T ), T ].

In this situation, (x̄, ū) is a unique local solution of (FP3), which is also a
unique global solution of the problem.
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(b) If 2ρ < T − t0 < ρ+ 2a−1, then x̄(t) is given by either

(3.36) x̄(t) =

{
−1 + a(t− t0), t ∈ [t0, t̄]

−1− a(t+ t0 − 2t̄), t ∈ (t̄, T ],

or (3.35).
(c) If T − t0 = ρ+ 2a−1, then x̄(t) is given by either

(3.37) x̄(t) =

{
−1 + a(t− t0), t ∈ [t0, t̄]

1− a(t− t̄), t ∈ (t̄, T ],

or (3.35).
(d) If ρ+ 2a−1 < T − t0 ≤ 4a−1, then x̄(t) is given by either

x̄(t) =


−1 + a(t− t0), t ∈ [t0, t0 + 2a−1]

1, t ∈ (t0 + 2a−1, t̄]

1− a(t− t̄), t ∈ (t̄, T ],

(3.38)

or (3.35).
(e) If T − t0 > 4a−1, then x̄(t) is given by either (3.38) or

x̄(t) =


−1 + a(t− t0), t ∈ [t0, t0 + 2a−1]

1, t ∈ (t0 + 2a−1, T − 2a−1]

−1− a(t− T ), t ∈ (T − 2a−1, T ].

In situations (b)–(e), the unique global solution of the problem (FP3) is given
correspondingly by (3.36), (3.37), (3.38), and (3.38), where the last switching time
of the optimal control function ū(·) is t̄.

Proof. Suppose that ρ < 2a−1 and x0 = −1. Since the above Case 1 and Case 3
are excluded, to obtain the assertions (a)–(e) we just need to combine the results
formulated in Case 2 and Case 4. Here we have 2ρ < ρ + 2a−1 < 4a−1. In what
follows, we will consider the position of the number T − t0 on the half-line [0,+∞)
marked by the values 2ρ, ρ+ 2a−1, and 4a−1.

First, consider situation (a), where T − t0 ≤ 2ρ. Since all the three possibilities
depicted in the conclusion part of Case 2 are excluded, Case 4 must occur. Since
T − t0 ≤ 2ρ < 4a−1, from the results in Case 4 it follows that x̄ is described
by (3.35). Thus, assertion (a) of the theorem is proved.

Now, consider situations (b)–(e). Here we have T − t0 > 2ρ. So, our assertions
follow from the results formulated in Case 2 and Case 4.

The fact that (FP3) has a global solution has been observed before. To prove
the last assertion of the theorem about the uniqueness of the global solution of
(FP3) in situations (b)–(e), we suppose on the contrary that the set of the global
optimal processes of (FP3) is not a singleton. In each situation, by assertions(b)–
(e) we know that the set of the local optimal processes contains no more than
two elements. Hence, our supposition means that both distinctly feasible processes
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depicted therein in each situation are global ones. Observe that, in situations (b)–
(c), we have 2−1(t0 + T ) < t̄ because T − t0 > 2ρ and t̄ = T − ρ. Moreover,
the formulas given in each situation show that the state trajectories of the two
global processes coincide on [t0, 2

−1(t0 + T )]. Consider the problem denoted by
(FP2)|[2−1(t0+T ),T ], which is obtained from (FP3) by replacing the initial time t0
and the bilateral state constraints −1 ≤ x(t) ≤ 1 respectively by 2−1(t0 + T ) and
the unilateral state constraints x(t) ≤ 1. As 2−1(t0 + T ) < t̄, it follows from
[34, Theorem 4.1] that (FP2)|[2−1(t0+T ),T ] has a unique global process, in which
the switching time of the optimal control is t̄. Consequently, (FP3) has a unique
global process, in which the switching time of the optimal control function is t̄, a
contradiction. Similarly, observing that 2−1(t0 + T ) ≤ t0 + 2a−1 < t̄ in situation
(d) (resp., T −2a−1 < t̄ in situation (e)) and using the previous arguments, we will
arrive at a contradiction.

�

Theorem 3.10. If ρ < 2a−1, x0 > −1, and a−1(1 + x0) ≤ ρ, then any local
solution of problem (FP3) must have the form (x̄, ū), where ū(t) = −a−1 ˙̄x(t) for
almost everywhere t ∈ [t0, T ] and x̄(t) can be described as follows:

(a) If T − t0 ≤ a−1(1 + x0), then x̄(t) is given by

(3.39) x̄(t) = x0 − a(t− t0), t ∈ [t0, T ].

In this situation, (x̄, ū) is a unique local solution of (FP3), which is also a
unique global solution of the problem.

(b) If a−1(1 + x0) < T − t0 ≤ 2ρ− a−1(1 + x0), then x̄(t) is given by

(3.40) x̄(t) =

{
x0 + a(t− t0), t ∈ [t0, tζ ]

−1− a(t− T ), t ∈ (tζ , T ],

with tζ := 2−1[T +t0−a−1(1+x0)]. In this situation, (x̄, ū) is a unique local
solution of (FP3), which is also a unique global solution of the problem.

(c) If 2ρ− a−1(1 + x0) < T − t0 < ρ+ a−1(1− x0), then x̄(t) is given by either

(3.41) x̄(t) =

{
x0 + a(t− t0), t ∈ [t0, t̄]

x0 − a(t+ t0 − 2t̄), t ∈ (t̄, T ],

or (3.40).
(d) If T − t0 = ρ+ a−1(1− x0), then x̄(t) is given by either

(3.42) x̄(t) =

{
x0 + a(t− t0), t ∈ [t0, t̄]

1− a(t− t̄), t ∈ (t̄, T ],

or (3.40).
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(e) If ρ+ a−1(1− x0) < T − t0 < a−1(3− x0), then x̄(t) is given by either

x̄(t) =


x0 + a(t− t0), t ∈ [t0, t0 + a−1(1− x0))

1, t ∈ [t0 + a−1(1− x0), t̄)

1− a(t− t̄), t ∈ [t̄, T ],

(3.43)

or (3.40).
(f) If T − t0 = a−1(3− x0), then x̄(t) is given by either (3.43) or

(3.44) x̄(t) =

{
x0 + a(t− t0), t ∈ [t0, T − 2a−1]

−1− a(t− T ), t ∈ (T − 2a−1, T ].

(g) If T − t0 > a−1(3− x0), then x̄(t) is given by either (3.43) or

(3.45) x̄(t) =


x0 + a(t− t0), t ∈ [t0, t0 + a−1(1− x0)]

1, t ∈ (t0 + a−1(1− x0), T − 2a−1]

−1− a(t− T ), t ∈ (T − 2a−1, T ].

In situations (c)–(g), the unique global solution of the problem (FP3) is the one in
which the last switching time of the optimal control function ū(·) is t̄.

Proof. Suppose that ρ < 2a−1, x0 > −1, a−1(1 + x0) ≤ ρ, and let ρ1, ρ2 be given
by (3.28). Then, it is easy to verify that max{ρ, 2ρ− ρ1} = 2ρ− ρ1 and

ρ1 ≤ 2ρ− ρ1 < ρ+ ρ2 < a−1(3− x0).

The above Case 2 and Case 4 are excluded by the condition x0 > −1. So, to
obtain the desired assertions (a)–(g), it suffices to combine the results formulated
in Case 1 and Case 3 with an observation on the position of the number T − t0
on the half-line [0,+∞), which is marked by the values ρ1, 2ρ − ρ1, ρ + ρ2, and
a−1(3− x0).

Recall that (FP3) has a global solution. To prove the last assertion of the
theorem about the uniqueness of the global solution of (FP3) in situations (c)–
(g), we suppose on the contrary that the set of the global optimal processes of
(FP3) is not a singleton. In each situation, by assertions(c)–(g) we know that the
set of the local optimal processes contains no more than two elements. Hence, our
supposition means that both distinctly feasible processes depicted in each situation
are global ones. In situations (c)–(g), as T − t0 > 2ρ − ρ1 ≥ ρ and t̄ = T − ρ, we
have t0 < t̄. Thus, by [34, Theorem 4.1], the problem (FP2) obtained from (FP3)
by replacing the constraint −1 ≤ x(t) ≤ 1 by x(t) ≤ 1 has a unique global solution,
which is the one where the last switching time of the optimal control function ū(·)
is t̄. Consequently, (FP3) has a unique global solution, in which the switching time
of the optimal control function is t̄, a contradiction.

�

Theorem 3.11. If ρ < 2a−1, x0 > −1, ρ < a−1(1 + x0), and

a−1(1 + x0) < ρ+ a−1(1− x0),(3.46)
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then any local solution of problem (FP3) must have the form (x̄, ū), where ū(t) =
−a−1 ˙̄x(t) for a.e. t ∈ [t0, T ] and x̄(t) is described as follows:

(a) If T − t0 ≤ ρ, then x̄(t) is given by (3.39). In this situation, (x̄, ū) is a
unique local solution of (FP3), which is also a unique global solution of the
problem.

(b) If ρ < T − t0 < a−1(1 + x0), then x̄(t) is given by (3.41). In this situation,
(x̄, ū) is a unique local solution of (FP3), which is also a unique global
solution of the problem.

(c) If T − t0 = a−1(1 + x0), then x̄(t) is given by either (3.41), or (3.39).
(d) If a−1(1+x0) < T −t0 < ρ+a−1(1−x0), then x̄(t) is given by either (3.41),

or (3.40).
(e) If T − t0 = ρ+ a−1(1− x0), then x̄(t) is given by either (3.42), or (3.40).
(f) If ρ+a−1(1−x0) < T −t0 < a−1(3−x0), then x̄(t) is given by either (3.43),

or (3.40).
(g) If T − t0 = a−1(3− x0), then x̄(t) is given by either (3.43), or (3.44).
(h) If T − t0 > a−1(3− x0), then x̄(t) is given by either (3.43), or (3.45).

In situations (c)–(h), the unique global solution of (FP3) is the one in which the
last switching time of the optimal control function ū(·) is t̄.

Proof. Suppose that ρ < 2a−1, x0 > −1, ρ < a−1(1 +x0), and the inequality (3.46)
holds. Let ρ1, ρ2 be defined as in (3.28). By the assumptions made, max{ρ, 2ρ −
ρ1} = ρ and ρ < ρ1 < ρ + ρ2 < a−1(3 − x0). Due to the condition x0 > −1, the
above Case 2 and Case 4 are excluded. So, to obtain the assertions in (a)–(h), it
suffices to combine the results formulated in Case 1 and Case 3 and observe the
position of the number T − t0 on the half-line [0,+∞), which is marked by the
values ρ, ρ1, ρ+ ρ2, and a−1(3− x0).

The last assertion of the theorem about the uniqueness of the global solution of
(FP3) in situations (c)–(h) is proved similarly as in the second part of the proof of
Theorem 3.10. �

Theorem 3.12. If ρ < 2a−1, x0 > −1, ρ < a−1(1 + x0), and

a−1(1 + x0) = ρ+ a−1(1− x0),(3.47)

then any local solution of problem (FP3) must have the form (x̄, ū), where ū(t) =
−a−1 ˙̄x(t) for a.e. t ∈ [t0, T ] and x̄(t) is described as follows:

(a) If T − t0 ≤ ρ, then x̄(t) is given by (3.39). In this situation, (x̄, ū) is a
unique local solution of (FP3), which is also a unique global solution of the
problem.

(b) If ρ < T − t0 < a−1(1 + x0), then x̄(t) is given by (3.41). In this situation,
(x̄, ū) is a unique local solution of (FP3), which is also a unique global
solution of the problem.

(c) If T − t0 = a−1(1 + x0), then x̄(t) is given by either (3.42), or (3.39).
(d) If a−1(1 + x0) < T − t0 < a−1(3 − x0), then x̄(t) is given by either (3.43),

or (3.40).
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(e) If T − t0 = a−1(3− x0), then x̄(t) is given by either (3.43) or (3.44)
(f) If T − t0 > a−1(3− x0), then x̄(t) is given by either (3.43) or (3.45).

In situations (c)–(f), the unique global solution of the problem (FP3) is the one in
which the last switching time of the optimal control function ū(·) is t̄.

Proof. Suppose that ρ < 2a−1, x0 > −1, ρ < a−1(1 + x0), and (3.47) holds. Let
ρ1, ρ2 be as in (3.28). Then, we have max{ρ, 2ρ− ρ1} = ρ and

ρ < ρ1 = ρ+ ρ2 < a−1(3− x0).

Since x0 > −1, the above Case 2 and Case 4 are excluded. Hence, the desired
assertions (a)–(g) follow from combining the results formulated in Case 1 and
Case 3 with an observation on the position of the number T − t0 on the half-line
[0,+∞), which is marked by the values ρ, ρ1, and a−1(3− x0).

The assertion on the uniqueness of the global solution of (FP3) in situations
(c)–(g) is proved similarly as in the second part of the proof of Theorem 3.10.

�

Finally, consider the situation where ρ < 2a−1, x0 > −1, ρ < a−1(1 + x0), and
ρ+ a−1(1−x0) < a−1(1 +x0). As x0 ≤ 1, we have ρ ≤ ρ+ a−1(1−x0). Combining
the latter with the inequality ρ+ a−1(1−x0) < a−1(1 +x0) yields ρ < a−1(1 +x0).
So, the last inequality can be omitted in the formulation of the following theorem.

Theorem 3.13. If ρ < 2a−1, x0 > −1, and ρ+a−1(1−x0) < a−1(1+x0), then any
local solution of problem (FP3) must have the form (x̄, ū), where ū(t) = −a−1 ˙̄x(t)
for a.e. t ∈ [t0, T ] and x̄(t) is described as follows:

(a) If T − t0 ≤ ρ, then x̄(t) is given by (3.39).
(b) If ρ < T − t0 < ρ+ a−1(1− x0), then x̄(t) is given by (3.41).
(c) If T − t0 = ρ+ a−1(1− x0), then x̄(t) is given by (3.42).
(d) If ρ+ a−1(1− x0) < T − t0 < a−1(1 + x0), then x̄(t) is given by (3.43).
(e) If T − t0 = a−1(1 + x0), then x̄(t) is given by either (3.43) or (3.39).
(f) If a−1(1 + x0) < T − t0 < a−1(3 − x0), then x̄(t) is given by either (3.43)

or (3.40).
(h) If T − t0 = a−1(3− x0), then x̄(t) is given by either (3.43) or (3.44).
(g) If T − t0 > a−1(3− x0), then x̄(t) is given by (3.43) or (3.45).

In situations (a)–(d), (x̄, ū) is a unique local solution of (FP3), which is also a
unique global solution of the problem. In situations (e)–(g), the unique global so-
lution of (FP3) is the one in which the last switching time of the optimal control
function ū(·) is t̄.

Proof. Suppose that ρ < 2a−1, x0 > −1, and ρ+ a−1(1− x0) < a−1(1 + x0). With
ρ1, ρ2 being defined (3.28), one has max{ρ, 2ρ− ρ1} = ρ and

ρ ≤ ρ+ ρ2 < ρ1 ≤ a−1(3− x0).

Since x0 > −1, to obtain the desired assertions (a)–(g) we just need to combine
the results formulated in Case 1 and Case 3 with an observation on the position
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of the number T − t0 on the half-line [0,+∞), which is marked by the values ρ,
ρ+ ρ2, ρ1, and a−1(3− x0).

The uniqueness of the global solution of (FP3) in situations (a)–(d) is obvious.
The claim on the uniqueness of the global solution of (FP3) in situations (e)–(g)
is proved similarly as in the final part of the proof of Theorem 3.10.

�

4. On the Degeneracy Phenomenon of the Maximum Principle

Regarding maximum principles for optimal control problems with state con-
straints, there is a so-called degeneracy phenomenon, which has been widely dis-
cussed in the literature (see, e.g., the books [24, 38], the papers [39, 40, 41, 42, 43],
and the references therein). Regarding a W 1,1 local minimizer (x̄, ū) of the Mayer
problemM, as mentioned in [24, Remark (b), pp. 330–331], the maximum principle
formulated in Theorem 2.5 is of interest only when the state constraint is nonde-
generate, in the sense that 0 /∈ ∂>x h(t, x̄(t)) for every t satisfying h(t, x̄(t)) = 0.
Because when the state constraint is degenerate, i.e.,

0 ∈ ∂>x h(t′, x̄(t′)) and h(t′, x̄(t′)) = 0

for some time t′, the necessary conditions (i)–(iv) automatically hold with the
choice of multipliers µ = δ{t′} (the unit measure concentrated on {t′}), p(t) ≡ 0,
ν : [t0, T ] → Rn is a Borel measurable function with the property that ν(t′) = 0,
and γ = 0. In other words, the maximum principle does not convey any useful infor-
mation about the minimizer. In such situations, special treatments including extra
conditions to eliminate degeneracy as in [24, Theorem 10.6.1 and Corollary 10.6.2]
are needed. Luckily, though the state constraint is active, our problem (FP3a) is
nondegenerate. This is because formula (3.7) shows that, for any feasible process
(x̄, ū) of (FP3a), one has 0 /∈ ∂>x h(t, x̄(t)) for every t satisfying h(t, x̄(t)) = 0. One
referee of this paper has observed that the degeneracy can also be avoided by ap-
plying the maximum principle in the book of Ioffe and Tihomirov [3] directly to
the original optimal control problem of the Lagrange type (FP3).

5. Conclusions

We have analyzed a maximum principle for finite horizon optimal control prob-
lems with state constraints via one parametric example, which resembles the op-
timal economic growth problems in macroeconomics. This example is an optimal
control problem with bilateral state constraints of the Lagrange type and has five
parameters. We have proved that the optimal control problem can have at most
two local optimal processes. Moreover, we have obtained explicit descriptions of
the unique global optimal process with respect to all possible configurations of the
five parameters.

The obtained results allow us to have a deep understanding of the maximum
principle in question.
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It seems to us that optimal economic growth models can be studied by advanced
tools from functional analysis and optimal control theory via the approach adopted
in this paper.
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