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REGULARITY OF SYMBOLIC POWERS OF SQUARE-FREE

MONOMIAL IDEALS

TRUONG THI HIEN AND TRAN NAM TRUNG

Abstract. We study the regularity of symbolic powers of square-free monomial

ideals. We prove that if I = I∆ is the Stanley-Reisner ideal of a simplicial complex

∆, then reg(I(n)) 6 δ(n − 1) + b for all n > 1, where δ = lim
n→∞

reg(I(n))/n, and

b = max{reg(IΓ) | Γ is a subcomplex of ∆ with F(Γ) ⊆ F(∆)}. This bound is

sharp for any n.

Introduction

Throughout the paper, let K be a field and R = K[x1, . . . , xr] the polynomial ring

of r variables x1, . . . , xr with r > 1. Let I be a homogeneous ideal of R. Then the

n-th symbolic power of I is defined by

I(n) =
⋂

p∈Min(I)

InRp ∩ R,

where Min(I) is as usual the set of minimal associated prime ideals of I.

Cutkosky, Herzog, Trung [4], and independently Kodiyalam [15], proved that the

function reg(In) is a linear function in n for n ≫ 0. The similar result for symbolic

powers is not true even when I is a square-free monomial ideal (see e.g. [6, Theorem

5.15]) except for the case dim(R/I) 6 2 (see [13]).

If I is a square-free monomial ideal, Hoa and the second author (see [12, Theorem

4.9]) proved that the limit

(1) δ(I) = lim
n→∞

reg(I(n))

n
,

does exist. Moreover, reg(I(n)) < δ(I)n + dim(R/I) + 1 for all n > 1. Obviously,

this bound is not sharp for every integer n. In fact, the limit (1) exists for arbitrary

monomial ideals (see [6]). Recently, many results established the sharp bounds for

reg(I(n)) in the case I is the edge ideal of a simple graph (see e.g. [1, 8, 9, 14]).

In this paper we will focus on finding bounds of the regularity of symbolic powers of

square-free monomial ideals in terms of combinatorial data from associated simplicial

complexes and hypergraphs.
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For a square-free monomial ideal I, we denote δ(I) to be the limit defined by For-

mula (1). In order to compute this invariant, we can use the geometric interpretation

of δ(I) by means of symbolic polyhedra defined in [3, 6] (see Formula (4)).

For a simplicial complex ∆ on the set V = {1, . . . , r}, the Stanley-Reisner ideal of

∆ is defined by

I∆ =

(
∏

i∈τ

xi | τ ⊆ V and τ /∈ ∆

)
⊆ R.

Let F(∆) denote the set of facets of ∆.

The first main result of the paper is the following theorem.

Theorem 2.3. Let ∆ be a simplicial complex. Then,

reg(I
(n)
∆ ) 6 δ(I∆)(n− 1) + b, for all n > 1,

where b = max{reg(IΓ) | Γ is a subcomplex of ∆ with F(Γ) ⊆ F(∆)}.
This bound is sharp for every n (see Example 2.5).

Let H = (V,E) be a simple hypergraph with V = {1, . . . , r}. The edge ideal of H
is defined by

I(H) =

(
∏

i∈e

xi | e ∈ E

)
⊆ R.

Let H∗ be the simple hypergraph corresponding to the Alexander duality I(H)∗ of

I(H). Let ǫ(H∗) be the minimum number of cardinality of edgewise dominant sets of

H∗, this concept was introduced by Dao and Schweig [5].

Then second main result of the paper is the following theorem.

Theorem 2.7. Let H be a simple hypergraph. Then,

reg(I(H)(n)) 6 δ(I(H))(n− 1) + |V (H)| − ǫ(H∗), for all n > 1.

A hypergraph is a graph if every edge has exactly two vertices. For a graph G, a

linear lower bound for reg(I(G)(n)) is given in [9]:

reg(I(G)(n)) > 2n+ ν(G)− 1,

where ν(G) is the induced matching of G. Note that this lower bound is also valid

for ordinary powers (see [2, Theorem 4.5]).

On the upper bounds, Fakhari (see [8, Conjecture 1.3]) conjectured that

reg(I(G)(n)) 6 2n+ reg(I(G))− 2.

As a consequence of Theorem 2.3, we obtain a linear upper bound for reg(I(G)(n)),

however it is weaker than the bound in this conjecture.
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Corollary 2.8. Let G be a graph. Then, for any n > 1, we have

reg(I(G)(n)) 6 2n+ dim(R/I(G))− 1.

Let us explain the idea to prove Theorems 2.3 and 2.7 as follows. Let i > 0 such

that reg(R/I(n)) = ai(R/I(n)) + i.

The first key point is to prove that ai(R/I(n)) 6 δ(I)(n − 1). Assume that α =

(α1, . . . , αr) ∈ Z
r such that

H i
m
(R/I(n))α 6= 0, and ai(R/I(n)) = |α|,

where m = (x1, . . . , xr) and |α| = α1+· · ·+αr. We reduce to the case α ∈ N
r. In order

to bound |α|, we use Takayama’s formula (see Lemma 1.3) to compute H i
m
(R/I(n))α,

which allows us to search for α in a polytope in R
r, so that we can get the desired

bound of |α| via theory of convex polytopes (see Theorem 2.2).

The second key point is to bound the index i by using the regularity of a Stanley-

Reisner ideal in terms of the vanishing of reduced homology of simplicial complexes

which derived from Hochster’s formula about the Hilbert series of the local cohomology

module of Stanley-Reisner ideals (see Lemma 1.1).

Our paper is structured as follows. In the next section, we collect notations and

terminology used in the paper, and recall a few auxiliary results. In Section 2, we

prove Theorems 2.3 and 2.7.

1. Preliminaries

We shall follow standard notations and terminology from usual texts in the research

area (cf. [7, 11, 16]). For simplicity, we denote the set {1, . . . , r} by [r].

1.1. Regularity and projective dimension. Through out this paper, let K be a

field, and let R = K[x1, . . . , xr] be a standard graded polynomial ring of r variables

over K. The object of our work is the Castelnuovo-Mumford regularity of graded

modules and ideals over R. This invariant can be defined via either the minimal free

resolutions or the local cohomology modules.

Let M be a nonzero finitely generated graded R-module and let

0 →
⊕

j∈Z

R(−j)βp,j(M) → · · · →
⊕

j∈Z

R(−j)β0,j(M) → 0

be the minimal free resolution of M . The Castelnuovo–Mumford regularity (or regu-

larity for short) of M is defined by

reg(M) = max{j − i | βi,j(M) 6= 0},
3



and the projective dimension of M is the length of this resolution

pd(M) = p.

Let us denote by d(M) the maximal degree of a minimal homogeneous generator

of M . The definition of the regularity implies

d(M) 6 reg(M).

For any nonzero proper homogeneous ideal I of R, by looking at the minimal free

resolution, it is easy to see that reg(I) = reg(R/I) + 1, so we shall work with reg(I)

and reg(R/I) interchangeably.

The regularity of M can also be computed via the local cohomology modules of M .

For i = 0, . . . , dim(M), we define the ai-invariant of M as follows

ai(M) = max{t | H i
m(M)t 6= 0}

where H i
m
(M) is the i-th local cohomology module of M with the support m =

(x1, . . . , xr) (with the convention max ∅ = −∞). Then,

reg(M) = max{ai(M) + i | i = 0, . . . , dim(M)},
and

pd(M) = r −min{i | H i
m
(M) 6= 0}.

As usual we shall make the convention that reg(M) = −∞ if M = 0.

1.2. Simplicial complexes and Stanley-Reisner ideals. A simplicial complex ∆

over the vertex set V = {1, . . . , r} is a collection of subsets of V such that if F ∈ ∆

and G ⊆ F then G ∈ ∆. Elements of ∆ are called faces. Maximal faces (with

respect to inclusion) are called facets. For F ∈ ∆, the dimension of F is defined to

be dimF = |F | − 1. The empty set, ∅, is the unique face of dimension −1, as long as

∆ is not the void complex {} consisting of no subsets of V . The dimension of ∆ is

dim∆ = max{dimF | F ∈ ∆}. The link of F inside ∆ is its subcomplex:

lk∆(F ) = {H ∈ ∆ | H ∪ F ∈ ∆ and H ∩ F = ∅}.
If every facet of ∆ has the same cardinality, then ∆ is called a pure complex. If

there is a vertex, say j, such that {j} ∪ F ∈ ∆ for every F ∈ ∆, then ∆ is called a

cone over j. It is well-known that if ∆ is a cone, then it is an acyclic complex.

For a subset τ = {j1, . . . , ji} of V , denote xτ = xj1 · · ·xji . Let ∆ be a simplicial

complex on V . The Stanley-Reisner ideal of ∆ is defined to be the squarefree monomial

ideal

I∆ = (xτ | τ ⊆ V and τ /∈ ∆) in R = K[x1, . . . , xr]

and the Stanley-Reisner ring of ∆ to be the quotient ring k[∆] = R/I∆. This provides

a bridge between combinatorics and commutative algebra (see [16, 20]).
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Note that if I is a square-free monomial ideal, then it is a Stanley–Reisner ideal of

the simplicial complex ∆(I) = {τ ⊆ V | xτ 6∈ I}. When I is a monomial ideal (maybe

not square-free) we also use ∆(I) to denote the simplicial complex corresponding to

the square-free monomial ideal
√
I.

The regularity of a square-free monomial ideal can compute via the vanishing of

reduced homology of simplicial complexes. From Hochster’s formula on the Hilbert

series of the local cohomology module H i
m(I∆) (see [16, Corollary 13.16]), one has

Lemma 1.1. For a simplicial complex ∆, we have

reg(I∆) = max{d | H̃d−1(lk∆(σ);K) 6= 0, for some σ ∈ ∆}.

The Alexander dual of ∆, denoted by ∆∗, is the simplicial complex over V with

faces

∆∗ = {V \ τ | τ /∈ ∆}.
Notice that (∆∗)∗ = ∆. If I = I∆ then we shall denote the Stanley-Reisner ideal

of the Alexander dual ∆∗ by I∗. It is a well-known result of Terai [22] (or see [16,

Theorem 5.59]) that the regularity of a squarefree monomial ideal can be related to

the projective dimension of its Alexander dual.

Lemma 1.2. Let I ⊆ R be a square-free monomial ideal. Then,

reg(I) = pd(R/I∗).

Let F(∆) denote the set of all facets of ∆. We say that ∆ is generated by F(∆)

and write ∆ = 〈F(∆)〉. Note that I∆ has the minimal primary decomposition (see

[16, Theorem 1.7]):

I∆ =
⋂

F∈F(∆)

(xi | i /∈ F ),

and therefore the n-th symbolic power of I∆ is

I
(n)
∆ =

⋂

F∈F(∆)

(xi | i /∈ F )n.

We next describe a formula to compute the local cohomology modules of mono-

mial ideals. Let I be a non-zero monomial ideal. Since R/I is an N
r-graded al-

gebra, H i
m
(R/I) is an Z

r-graded module over R/I for every i. For each degree

α = (α1, . . . , αr) ∈ Z
r, in order to compute dimK H i

m(R/I)α we use a formula given

by Takayama [21, Theorem 2.2] which is a generalization of Hochster’s formula for

the case I is square-free [20, Theorem 4.1].

Set Gα = {i | αi < 0}. For a subset F ⊆ [r], we set RF = R[x−1
i | i ∈ F ∪ Gα].

Define the simplicial complex ∆α(I) by

(2) ∆α(I) = {F ⊆ [r] \Gα | xα /∈ IRF}.
5



Lemma 1.3. [21, Theorem 2.2] dimK H i
m
(R/I)α = dimK H̃i−|Gα|−1(∆α(I);K).

The following result of Minh and Trung is very useful to compute ∆α(I
(n)
∆ ), which

allows us to investigate reg(I
(n)
∆ ) by using the theory of convex polyhedra.

Lemma 1.4. [17, Lemma 1.3] Let ∆ be a simplicial complex and α ∈ N
r. Then,

F(∆α(I
(n)
∆ )) =

{
F ∈ F(∆) |

∑

i/∈F

αi 6 n− 1

}
.

This lemma can be generalized a bit as follows.

Lemma 1.5. [13, Lemma 1.3] Let ∆ be a simplicial complex and α ∈ Z
r. Then,

F(∆α(I
(n)
∆ )) =

{
F ∈ F(lk∆(Gα)) |

∑

i/∈F∪Gα

αi 6 n− 1

}
.

1.3. Hypergraphs. Let V be a finite set. A simple hypergraph H with vertex set

V consists of a set of subsets of V , called the edges of H, with the property that no

edge contains another. We use the symbols V (H) and E(H) to denote the vertex set

and the edge set of H, respectively.

In this paper we assume that all hypergraphs are simple unless otherwise specified.

In the hypergraph H, an edge is trivial if it contains only one element, a vertex is

isolated if it is not appearing in any edge, a vertex is a neighbor of another one if they

are in some edge.

A hypergraph H′ is a subhypergraph of H if V (H′) ⊆ V (H) and E(H′) ⊆ E(H).

For an edge e of H, we define H\ e to be the hypergraph obtained by deleting e from

the edge set of H. For a subset S ⊆ V (H), we define H \ S to be the hypergraph

obtained from H by deleting the vertices in S and all edges containing any of those

vertices.

A set S ⊆ E(H) is called an edgewise dominant set of H if every non-isolated vertex

of H not contained in some edge of S or contained in a trivial edge has a neighbor

contained in some edge of S. Define,

ǫ(H) = min{|S| | S is edgewise dominant}.
For a hypergraph H with V (H) ⊆ [r], we associate to the hypergraph H a square-

free monomial ideal

I(H) = (xe | e ∈ E(H)) ⊆ R,

which is called the edge ideal of H.

Notice that if I is a square-free monomial ideal, then I is an edge ideal of a hyper-

graph with the edge set uniquely determined by the generators of I.
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Let H∗ be the simple hypergraph corresponding to the Alexander duality I(H)∗ of

I(H). We will determine the edge set of H∗, it turns out that E(H∗) is the set of all

minimal vertex covers of H. A vertex cover in a hypergraph is a set of vertices, such

that every edge of the hypergraph contains at least one vertex of that set. It is an

extension of the notion of vertex cover in a graph. A vertex cover S is called minimal

if no proper subset of S is a vertex cover. From the minimal primary decomposition

(see [16, Definition 1.35 and Proposition 1.37]):

I(H∗) =
⋂

e∈E(H)

(xi | i ∈ e),

it follows that E(H∗) is just the set of minimal vertex covers of H. Thus,

I(H∗) = (xτ | τ is a minimal vertex cover of H),

so that it is also called the cover ideal of H and denoted by J(H).

In the sequel, we need the following result of Dao and Schweig [5, Theorem 3.2].

Lemma 1.6. Let H be a hypergraph. Then, pd(R/I(H)) 6 |V (H)| − ǫ(H).

1.4. Convex polyhedra. The theory of convex polyhedra plays a key role in our

study.

For a vector α = (α1, . . . , αr) ∈ R
r, we set |α| := α1+ · · ·+αr and for a nonempty

bounded closed subset S of Rr we set

δ(S) := max{|α| | α ∈ S}.
Let ∆ be a simplicial conplex over [r]. In general, reg(I

(n)
∆ ) is not a linear function

in n for n ≫ 0 (see e.g. [6, Theorem 5.15]), but a quasi-linear function as in the

following result.

Lemma 1.7. [12, Theorem 4.9] There exist positive integers N, n0 and rational num-

bers a, b0, . . . , bN−1 < dim(R/I∆) + 1 such that

reg(I
(n)
∆ ) = an + bk, for all n > n0 and n ≡ k mod N, where 0 6 k 6 N − 1.

Moreover, reg(I
(n)
∆ ) < an+ dim(R/I∆) + 1 for all n > 1.

By virtue of this result, we define

δ(I∆) = a = lim
n→∞

reg(I
(n)
∆ )

n
.

In order to compute δ(I∆), let SP(I∆) be the convex polyhedron in R
r defined by

the following system of linear inequalities:

(3)





∑
i/∈F

xi > 1 for F ∈ F(∆),

x1 > 0, . . . , xr > 0,

7



which is called the symbolic polyhedron of I∆.

Then, SP(I∆) is a convex polyhedron in R
r. By [6, Theorem 3.6] we have

(4) δ(I∆) = max{v | v is a vertex of SP(I∆)}.
Now assume that

H i
m(I

(n)
∆ )α 6= 0

for some 0 6 i 6 dim(R/I∆) and α = (α1, . . . , αr) ∈ N
r.

By Lemma 1.3 we have

(5) dimK H̃i−1(∆α(I
(n)
∆ );K) = dimK H i

m
(R/I

(n)
∆ )α 6= 0.

In particular, ∆α(I
(n)
∆ ) is not acyclic.

Suppose that F(∆) = {F1, . . . , Ft} for t > 1. By Lemma 1.4 we may assume that

F(∆α(I
(n)
∆ )) = {F1, . . . , Fs}, where 1 6 s 6 t.

For each integer m > 1, let Pm be the convex polyhedron of Rr defined by:

(6)





∑
i/∈Fj

xi 6 m− 1 for j = 1, . . . , s,

∑
i/∈Fj

xi > m for j = s+ 1, . . . , t,

x1 > 0, . . . , xr > 0.

Then, α ∈ Pn. Moreover, by Lemma 1.4 one has

(7) ∆β(I
(m)
∆ ) = 〈F1, . . . , Fs〉 = ∆α(I

(n)
∆ ) whenever β ∈ Pm ∩ N

r .

Note also that for such a vector β, by Formula (7) we have

dimK H̃i−1(∆β(I
(m)
∆ );K) = dimK H̃i−1(∆α(I

(n)
∆ );K) 6= 0.

Together with Lemma 1.3, this fact yields

(8) H i
m
(R/I

(m)
∆ )β 6= 0.

In order to investigate the convex polyhedron Pm we also consider the convex

polyhedron Cm in R
r defined by:

(9)






∑
i/∈Fj

xi 6 m for j = 1, . . . , s,

∑
i/∈Fj

xi > m for j = s+ 1, . . . , t,

x1 > 0, . . . , xr > 0.

Note that Cm = mC1 for all m > 1, where mC1 = {my | y ∈ C1}.
By the same way as in the proof of [10, Lemma 2.1] we obtain the following lemma.

Lemma 1.8. C1 is a polytope with dim C1 = r.
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The next lemma gives an upper bound for δ(C1).

Lemma 1.9. δ(C1) 6 δ(I∆).

Proof. Since C1 is a polytope with dim C1 = r by Lemma 1.8, δ(C1) = |γ| for some

vertex γ of C1. By [19, Formula (23) in Page 104] we imply that γ is the unique

solution of a system of linear equations of the form

(10)





∑
i/∈Fj

xi = 1 for j ∈ S1,

xj = 0 for j ∈ S2,

where S1 ⊆ [t] and S2 ⊆ [r] such that |S1| + |S2| = r. By using Cramer’s rule to get

γ, we conclude that γ is a rational vector. In particular, there is a positive integer,

say p, such that pγ ∈ N
r. Note that Cp = pC1, so pγ ∈ Cp ∩ N

r.

For every j > 1, let y = jpγ + α. Then, y ∈ N
r and |y| = δ(C1)jp + |α|. On the

other hand, by using the fact that jpγ ∈ Cjp, we can check that




∑
i/∈Fj

yi 6 jp+ n− 1 for j = 1, . . . , s,

∑
i/∈Fj

yi > jp+ n for j = s + 1, . . . , t,

and so y ∈ Pjp+n ∩ N
r.

Together with Equation (8), we deduce that H i
m(R/I

(jp+n)
∆ )y 6= 0, and therefore

reg(R/I
(jp+n)
∆ ) > |y|+ i = δ(C1)jp+ |α|+ i.

Combining with Lemma 1.7, this inequality yields

δ(C1)jp+ |α|+ i < δ(I∆)(jp+ n) + dim(R/I∆).

Since this inequality valid for any positive integer j, it forces δ(C1) 6 δ(I∆). �

2. Regularity of symbolic powers of ideals

In this section we will prove the upper bound for reg(I
(n)
∆ ). Firts we start with the

following fact.

Lemma 2.1. Let σ ⊆ [r] with σ 6= [r], S = K[xi | i /∈ σ] and J = IRσ ∩ S. Then,

reg(J (n)) 6 reg(I(n)) for all n > 1.

In particular, δ(J) 6 δ(I).

Proof. We may assume that S = K[x1, . . . , xs] for some 1 6 s 6 r. Let i be an index

and α a vector in Z
s such that

H i
n(S/J

(n))α 6= 0 and reg(S/J (n)) = |α|+ i,

9



where n = (x1, . . . , xs) is the homogeneous maximal ideal of S.

Let β = (α1, . . . , αs,−1, . . . ,−1) ∈ Z
r so that Gβ = Gα ∪ {s + 1, . . . , r}. By

Formula (2) we deduce that

(11) ∆α(J
(n)) = ∆β(I

(n)).

By Lemma 1.3,

dimK H i
n
(S/J (n))α = dimK H̃i−|Gα|−1(∆α(J

(n));K),

and thus H̃i−|Gα|−1(∆α(J
(n));K) 6= 0. Together with Equation (11), it yields

H̃i−|Gα|−1(∆β(I
(n));K) 6= 0.

By Lemma 1.3 again, it gives H
i+(r−s)
m (R/I(n))β 6= 0 since |Gβ| = |Gα| + (r − s).

Therefore,

reg(R/I(n)) > |β|+ i+ (r − s) = |α|+ i = reg(S/J (n)),

it follows that reg(J (n)) 6 reg(I(n)).

Finally, together this inequality with Lemma 1.7 we have

δ(J) = lim
n→∞

reg(J (n))

n
6 lim

n→∞

reg(I(n))

n
= δ(I),

and the lemma follows. �

Theorem 2.2. Let I be a square-free monomial ideal. Then, for all i > 0 we have

ai(R/I(n)) 6 δ(I)(n− 1).

Proof. If n = 1, the theorem follows from Hochster’s formula on the Hilbert series of

the local cohomology module H i
m
(R/I∆) (see [20, Theorem 4.1]).

We may assume that n > 2. If ai(R/I(n)) = −∞, the theorem is obvious, so that

we also assume that ai(R/I(n)) 6= −∞.

Suppose α ∈ Z
r such that

H i
m
(R/I(n))α 6= 0 and ai(R/I(n)) = |α|.

By Lemma 1.3 we have

(12) dimK H̃i−|Gα|−1(∆α(I
(n));K) = dimK H i

m
(R/I(n))α 6= 0.

In particular, ∆α(I
(n)) is not acyclic.

If Gα = [r], then ai(R/I(n)) = |α| 6 0, and hence the theorem holds in this case.

We therefore assume that Gα = {m + 1, . . . , r} for 1 6 m 6 r. Let S =

K[x1, . . . , xm] and J = IRGα
∩ S.

Let α′ = (α1, . . . , αm) ∈ N
m. By using Formula (2), we have

(13) ∆α′(J (n)) = ∆α(I
(n)).

10



Together with (12), it gives H̃i−|Gα|−1(∆α′(J (n));K) 6= 0. By Lemma 1.3 we get

H i−|Gα|
n

(S/J (n))α′ 6= 0,

where n = (x1, . . . , xm) is the homogeneous maximal ideal of S.

Let ∆ be the simplicial complex over [m] corresponding to the square-free monomial

ideal J . Assume that F(∆) = {F1, . . . , Ft}.
By Lemma 1.4 we may assume that F(∆α′(J (n))) = {F1, . . . , Fs} for 1 6 s 6 t.

Let

β = (β1, . . . , βm) =
1

n− 1
α′ ∈ R

m .

By Lemma 1.4 again, we deduce that





∑
i 6∈Fj

βi =
1

n− 1

∑
i 6∈Fj

αi 6 1 for j = 1, . . . , s,

∑
i 6∈Fj

βi =
1

n− 1

∑
i 6∈Fj

αi >
n

n− 1
> 1 for j = s+ 1, . . . , t.

It follows that β ∈ C1, where C1 is a polyhedron in R
m defined by





∑
i 6∈Fj

xi 6 1 for j = 1, . . . , s,

∑
i 6∈Fj

xi > 1 for j = s+ 1, . . . , t,

x1 > 0, . . . , xm > 0.

By Lemma 1.8, C1 is a polytope in R
m.

Hence |β| 6 δ(C1), and hence |α′| = (n − 1)|β| 6 δ(C1)(n − 1). Observe that

αj < 0 for all j ∈ Gα = {m+ 1, . . . , r}, so

(14) ai(R/I(n)) = |α| = |α′|+ (αm+1 + · · ·+ αr) 6 |α′| 6 δ(C1)(n− 1).

On the other hand, by Lemmas 1.9 and 2.1 we deduce that

δ(C1) 6 δ(J) 6 δ(I).

Together with Formula (14), it yields ai(R/I(n)) 6 δ(I)(n−1), and the proof of the

theorem is complete. �

We are now in position to prove the main result of the paper.

Theorem 2.3. Let ∆ be a simplicial complex. Then,

reg(I
(n)
∆ ) 6 δ(I∆)(n− 1) + b, for all n > 1,

where b = max{reg(IΓ) | Γ is a subcomplex of ∆ with F(Γ) ⊆ F(∆)}.
11



Proof. For simplicity, we put I = I∆. Let i ∈ {0, . . . , dim(R/I)} and α ∈ Z
r such

that

H i
m
(R/I(n))α 6= 0, and reg(R/I(n)) = ai(R/I(n)) + i = |α|+ i.

By Lemma 1.3, we have

(15) dimK H̃i−|Gα|−1(∆α(I
(n));K) = dimK H i

m(R/I(n))α 6= 0.

In particular, ∆α(I
(n)) is not acyclic.

If Gα = [r], then ∆α(I
(n)) is either {∅} or a void complex. Because it is not

acyclic, ∆α(I
(n)) = {∅}. By Formula (15) we deduce that i = |Gα| = r, and hence

dimR/I = r. It means that I = 0, so I(n) = 0 as well. Therefore, reg(I(n)) = −∞,

and the theorem holds in this case.

We may assume that Gα = {m + 1, . . . , r} for some 1 6 m 6 r. Let S =

K[x1, . . . , xm] and J = IRGα
∩ S.

Let α′ = (α1, . . . , αm) ∈ N
m. By using Formula (2), we have

(16) ∆α′(J (n)) = ∆α(I
(n)).

Together with (15), it gives H̃i−|Gα|−1(∆α′(J (n));K) 6= 0. By Lemma 1.3 we get

H i−|Gα|
n (S/J (n))α′ 6= 0,

where n = (x1, . . . , xm) is the homogeneous maximal ideal of S. In particular,

|α′| 6 ai−|Gα|(S/J
(n)).

Together with Lemma 2.1 and Theorem 2.2, it yields

|α′| 6 δ(J)(n− 1) 6 δ(I)(n− 1).

Therefore,

reg(I(n)) = |α|+ i = |α′|+
r∑

j=m+1

αj + i 6 |α′|+ i− |Gα| 6 δ(I)(n− 1) + i− |Gα|.

It remains to prove that i− |Gα| 6 b. By Lemma 1.5, we have

∆α′(J (n)) = ∆α(I
(n)) =



F ∈ F(lk∆(Gα)) |

∑

j /∈F∪Gα

αj 6 n− 1



 .

It follows that there is a simplicial complex Γ with F(Γ) ⊆ F(∆) such that

∆α′(J (n)) = lkΓ(Gα).

Since H̃i−|Gα|−1(lkΓ(Gα);K) 6= 0, by Lemma 1.1 we have i − |Gα| 6 reg(IΓ) 6 b,

and then proof of the theorem is complete. �

As a direct consequence of Theorem 2.3, we have a simple bound:
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Corollary 2.4. Let I be a square-free monomial ideal. Then,

reg(I(n)) 6 δ(I)(n− 1) + dim(R/I) + 1, for all n > 1.

Proof. Let ∆ be the simplicial complex corresponding to the square-free ideal I. For

every subcomplex Γ of ∆ we have dimΓ 6 dim∆. It follows from Lemma 1.1 that

reg(IΓ) 6 dim(R/IΓ) + 1 6 dim(R/I∆) + 1.

Therefore, b = max{reg(IΓ) | F(Γ) ⊆ F(∆)} 6 dim(R/I∆) + 1. Now the corollary

follows from Theorem 2.3. �

The following example shows that the bound in Corollary 2.4 is sharp and so is in

Theorem 2.3. Recall that a simplicial complex ∆ is called a matroid complex if for

every subset σ of V (∆), the simplicial complex ∆[σ] is pure (see e.g. [20, Chapter 3]).

Here, ∆[σ] is the restriction of ∆ to σ and defined by ∆[σ] = {τ | τ ∈ ∆ and τ ⊆ σ}.

Example 2.5. Let ∆ be a matroid complex. Assume that ∆ is not a cone. Let

I = I∆ and d = dim(R/I). By [18, Theorem 4.5], for all n > 1 we deduce that:

(1) δ(I) = d(I).

(2) ad(R/I(n)) = δ(I)(n− 1).

(3) reg(I(n)) = δ(I)(n− 1) + d+ 1.

Theorem 2.3 states for a square-free monomial ideal arising from a hypergraph as

follows.

Theorem 2.6. Let H be a hypergraph. Then, for all n > 1, we have

reg(I(H)(n)) 6 δ(I(H))(n− 1) + b,

where b = max{pd(R/I(H′)) | H′ is a subhypergraph of H∗ with E(H′) ⊆ E(H∗)}.

Proof. Let ∆ be the corresponding simplicial complex of the square-free monomial

ideal I(H). Assume that F(∆) = {F1, . . . , Fp}. Since

I(H) =

p⋂

j=1

(xi | i /∈ Fj),

so that E(H∗) = {C1, . . . , Cp}, where Cj = [r] \ Fj for all j = 1, . . . , p.

Let Γ be a subcomplex of ∆ with F(Γ) ⊆ F(∆). We may assume that F(Γ) =

{F1, . . . , Fk} for 1 6 k 6 p. Then, we have I∗Γ = I(H′) where H′ is the subhypergraph

of H∗ with E(H′) = {C1, . . . , Ck}.
By Lemma 1.2 we have reg(IΓ) = pd(R/I∗Γ) = pd(R/I(H′)), and therefore the

theorem follows from Theorem 2.3. �
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The next theorem is the second main result of the paper. It bounds the regularity

of symbolic powers of a square-free monomial ideal via the combinatorial properties

of the associated hypergraph.

Theorem 2.7. Let H be a simple hypergraph. Then,

reg(I(H)(n)) 6 δ(I(H))(n− 1) + |V (H)| − ǫ(H∗), for all n > 1.

Proof. By Theorem 2.6, it suffices to show that

pd(R/I(G)) 6 |V (H)| − ǫ(H∗)

for every hypergraph G with E(G) ⊆ E(H∗). By Lemma 1.6, it suffices to prove that

|V (G)| − ǫ(G) 6 |V (H∗)| − ǫ(H∗).

In order to prove this inequality, without loss of generality we may assume that H∗

has no both trivial edges and isolated vertices.

Let S be an edgewise-dominant set of G such that |S| = ǫ(G). For each vertex

v ∈ V (H∗) \V (G), we take an edge of H∗ containing v, and denote this edge by F (v).

Then,

S ′ = S ∪ {F (v) | v ∈ V (H∗) \ V (G)}
is an edgewise-dominant set of H∗. It follows that

ǫ(H∗) 6 |S ′| 6 |S|+ |V (H∗) \ V (G)| = |S|+ |V (H∗)| − |V (G)|,

and therefore |V (G)| − ǫ(G) 6 |V (H∗)| − ǫ(H∗), as required. �

The following result gives an upper bound for the regularity of symbolic powers of

an edge ideal a graph.

Corollary 2.8. Let G be a graph. Then,

reg(I(G)(n)) 6 2n+ dim(R/I(G))− 1, for all n > 1.

Proof. By [6, Example 4.4], we have δ(I(G)) = 2, so the corollary follows from Corol-

lary 2.4. �

Continuing with graphs, we will write down the bounds in Theorem 2.3 and 2.7 for

a cover ideal of a graph.

Example 2.9. Let G be a graph. First we note that the formula for computing

δ(J(G)) is quite complicated, due to [6, Theorem 4.6], δ(J(G)) is given by

r

2
+ max

{ |N(S)| − |S|
2

| S ∈ ∆(I(G)) and G \N [S] has no bipartite component

}
,
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where N [S] = S ∪ {v ∈ V (G) | v is a neighbor of some vertex in S}. The number

δ(J(G)) may be not an integer and even bigger than reg(J(G)) (see [6, Lemma 5.14

and Theorem 5.15]).

Now since J(G)∗ = I(G), from Theorem 2.3, we obtain

reg(J(G)(n)) 6 δ(J(G))(n− 1) + b, for all n > 1,

where b = max{pd(R/I(H)) | H is a subgraph of G}.
The weaker bound obtained from Theorem 2.7 is

reg(J(G)(n)) 6 δ(J(G))(n− 1) + |V (G)| − ǫ(G), for all n > 1.

We conclude the paper with a remark on lower bounds.

Remark 2.10. Let I be a square-free monomial ideal. By [6, Lemma 4.2(ii)] we

deduce that d(I)n 6 d(I(n)), and therefore

reg(I(n)) > d(I)n, for all n > 1.

In general, d(I) < δ(I) (see e.g. [6, Lemma 5.14]), so that the bound is not optimal.

On the other hand, by Lemma 1.7, there is a number b such that

reg(I(n)) > δ(I)n+ b, for all n > 1.

The natural question is to find a good bound for b.
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[3] S. Cooper, R.J.D. Embree, H.T. Hà and A.H. Hoefel, Symbolic powers of monomial ideals,

Proc.Edinb.Math. Soc. (2) 60 (2017), no. 1, 39-55.

[4] D. Cutkosky, J. Herzog and N.V. Trung, Asymptotic behaviour of Castelnuovo-Mumford

regularity, Compositito Math. 118 (1999), 243-261.

[5] H. Dao and J. Schweig, Bounding the projective dimension of a squarefree monomial ideal

via domination in clutters, Proc. Amer. Math. Soc. 143 (2015), no. 2, 555-565.

[6] L.X. Dung, T.T. Hien, N.D. Hop and T.N. Trung, Regularity and Koszul property of symbolic

powers of monomial ideals, Math. Z. 298 (2021), no. 3-4, 1487-1522.

[7] D. Eisenbud, Commutative Algebra: with a View Toward Algebraic Geometry, Springer,

New York (1995).

[8] S.A.S. Fakhari, On the regularity of small symbolic powers of edge ideals of graphs,

arXiv:1908.10845.

15

http://arxiv.org/abs/1908.03115
http://arxiv.org/abs/1908.10845
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