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REGULARITY OF SYMBOLIC POWERS OF SQUARE-FREE
MONOMIAL IDEALS

TRUONG THI HIEN AND TRAN NAM TRUNG

ABSTRACT. We study the regularity of symbolic powers of square-free monomial
ideals. We prove that if I = I is the Stanley-Reisner ideal of a simplicial complex
A, then reg(I™) < §(n — 1) + b for all n > 1, where 6§ = ILm reg(1(™)/n, and
b = max{reg(Ir) | T is a subcomplex of A with F(I') C }'ElA)O}O. This bound is
sharp for any n.

INTRODUCTION

Throughout the paper, let K be a field and R = K|z, ..., x,] the polynomial ring
of r variables x1,...,z, with r > 1. Let I be a homogeneous ideal of R. Then the
n-th symbolic power of I is defined by

™= () I"'R,NR,
pEMin(T)
where Min(7) is as usual the set of minimal associated prime ideals of I.

Cutkosky, Herzog, Trung [4], and independently Kodiyalam [I5], proved that the
function reg(I™) is a linear function in n for n > 0. The similar result for symbolic
powers is not true even when I is a square-free monomial ideal (see e.g. [6, Theorem
5.15]) except for the case dim(R/I) < 2 (see [13]).

If I is a square-free monomial ideal, Hoa and the second author (see [12, Theorem
4.9]) proved that the limit

(1) §5(I) = lim M,

n— 00 n

does exist. Moreover, reg(I™) < §(I)n + dim(R/I) + 1 for all n > 1. Obviously,
this bound is not sharp for every integer n. In fact, the limit (1) exists for arbitrary
monomial ideals (see [6]). Recently, many results established the sharp bounds for
reg(I™) in the case I is the edge ideal of a simple graph (see e.g. [II, 8, 9, [14]).

In this paper we will focus on finding bounds of the regularity of symbolic powers of
square-free monomial ideals in terms of combinatorial data from associated simplicial
complexes and hypergraphs.
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For a square-free monomial ideal I, we denote §(I) to be the limit defined by For-
mula (). In order to compute this invariant, we can use the geometric interpretation
of §(I) by means of symbolic polyhedra defined in [3] 6] (see Formula (@])).

For a simplicial complex A on the set V' = {1,...,r}, the Stanley-Reisner ideal of
A is defined by

IA:<Hxi|T§VandT¢A>§R.

Let F(A) denote the set of fa(z:’;s of A.
The first main result of the paper is the following theorem.
Theorem 23l Let A be a simplicial complex. Then,
reg(I(A")) <O6(Ia)(n—1)+0b, foralln>1
where b = max{reg(Ir) | I' is a subcomplex of A with F(I') C F(A)}.

This bound is sharp for every n (see Example 2.1)).

Let H = (V, E) be a simple hypergraph with V' = {1,...,r}. The edge ideal of H

is defined by
I(H) = (H:c | eEE) CR.

i€e
Let ‘H* be the simple hypergraph corresponding to the Alexander duality I(H)* of
I(H). Let e(H*) be the minimum number of cardinality of edgewise dominant sets of
H*, this concept was introduced by Dao and Schweig [5].

Then second main result of the paper is the following theorem.
Theorem 2.7l Let H be a simple hypergraph. Then,
reg(I(H)™) < S(I(H))(n — 1) + |V(H)| — e(H"), foralln > 1.

A hypergraph is a graph if every edge has exactly two vertices. For a graph G, a
linear lower bound for reg(I(G)™) is given in [9]:
reg(I(G)™) > 2n + v(G) — 1,
where v(G) is the induced matching of G. Note that this lower bound is also valid

for ordinary powers (see [2, Theorem 4.5]).
On the upper bounds, Fakhari (see [8, Conjecture 1.3]) conjectured that

reg(I(G)™) < 2n + reg(1(G)) — 2.

As a consequence of Theorem 2.3, we obtain a linear upper bound for reg(1(G)™),
however it is weaker than the bound in this conjecture.
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Corollary 2.8. Let G be a graph. Then, for any n > 1, we have
reg(I(G)™) < 2n + dim(R/I(G)) — 1.

Let us explain the idea to prove Theorems 23] and 2.7 as follows. Let ¢ > 0 such
that reg(R/I™) = a;(R/I™) +i

The first key point is to prove that a;(R/I™) < 6(I)(n — 1). Assume that o =
(aq,...,a;) € Z" such that

Hi (R/I™), #0, and a;(R/I™) = |,

where m = (z1,...,,) and || = a;+- - -+a,. We reduce to the case « € N". In order
to bound ||, we use Takayama’s formula (see Lemma [[3)) to compute HE (R/I™),,
which allows us to search for a in a polytope in R", so that we can get the desired
bound of || via theory of convex polytopes (see Theorem [2.2).

The second key point is to bound the index ¢ by using the regularity of a Stanley-
Reisner ideal in terms of the vanishing of reduced homology of simplicial complexes
which derived from Hochster’s formula about the Hilbert series of the local cohomology
module of Stanley-Reisner ideals (see Lemma [LT]).

Our paper is structured as follows. In the next section, we collect notations and
terminology used in the paper, and recall a few auxiliary results. In Section 2, we
prove Theorems [2.3] and 2.7]

1. PRELIMINARIES

We shall follow standard notations and terminology from usual texts in the research
area (cf. [7, 1T, 16]). For simplicity, we denote the set {1,...,r} by [r].

1.1. Regularity and projective dimension. Through out this paper, let K be a
field, and let R = K{z1,...,z,] be a standard graded polynomial ring of r variables
over K. The object of our work is the Castelnuovo-Mumford regularity of graded
modules and ideals over R. This invariant can be defined via either the minimal free
resolutions or the local cohomology modules.

Let M be a nonzero finitely generated graded R-module and let

0= P R(—j)™ — - = P R(—j)* ™ — 0
JEZL JEZ

be the minimal free resolution of M. The Castelnuovo—Mumford regularity (or regu-
larity for short) of M is defined by

reg(M) = max{j —i | 5;;(M) # 0},
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and the projective dimension of M is the length of this resolution
pd(M) = p.

Let us denote by d(M) the maximal degree of a minimal homogeneous generator
of M. The definition of the regularity implies

d(M) < reg(M).

For any nonzero proper homogeneous ideal I of R, by looking at the minimal free
resolution, it is easy to see that reg(/) = reg(R/I) + 1, so we shall work with reg(/)
and reg(R/I) interchangeably.

The regularity of M can also be computed via the local cohomology modules of M.
For i =0,...,dim(M), we define the a;-invariant of M as follows

a;(M) = max{t | Hy(M); # 0}

where H! (M) is the i-th local cohomology module of M with the support m =
(21,...,2,) (with the convention max () = —oco). Then,

reg(M) = max{a;(M)+i|i=0,...,dim(M)},

and
pd(M) = r — min{i | H.(M) # 0}.
As usual we shall make the convention that reg(M) = —oo if M = 0.

1.2. Simplicial complexes and Stanley-Reisner ideals. A simplicial complex A
over the vertex set V = {1,...,7} is a collection of subsets of V such that if ' € A
and G C F then G € A. Elements of A are called faces. Maximal faces (with
respect to inclusion) are called facets. For F' € A, the dimension of F' is defined to
be dim F' = |F| — 1. The empty set, @), is the unique face of dimension —1, as long as
A is not the void complex {} consisting of no subsets of V. The dimension of A is
dim A = max{dim F' | F' € A}. The link of F' inside A is its subcomplex:

ka(F)={HEA|HUF €A and HNF = (}.

If every facet of A has the same cardinality, then A is called a pure complex. If
there is a vertex, say j, such that {j} U F € A for every F' € A, then A is called a
cone over j. It is well-known that if A is a cone, then it is an acyclic complex.

For a subset 7 = {ji1,...,J:;} of V, denote x™ =z, ---z;,. Let A be a simplicial
complex on V. The Stanley-Reisner ideal of A is defined to be the squarefree monomial
ideal

In=x|7CVand T ¢ A) in R=Klxy,...,z,]
and the Stanley-Reisner ring of A to be the quotient ring k[A] = R/Ix. This provides
a bridge between combinatorics and commutative algebra (see [16], 20]).
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Note that if [ is a square-free monomial ideal, then it is a Stanley—Reisner ideal of
the simplicial complex A(J) = {7 CV | x™ ¢ I'}. When [ is a monomial ideal (maybe
not square-free) we also use A(/) to denote the simplicial complex corresponding to
the square-free monomial ideal v/T.

The regularity of a square-free monomial ideal can compute via the vanishing of
reduced homology of simplicial complexes. From Hochster’s formula on the Hilbert
series of the local cohomology module H(IA) (see [16, Corollary 13.16]), one has

Lemma 1.1. For a simplicial complex A, we have
reg(In) = max{d | Hy_1(ka(c); K) # 0, for some o € A}.

The Alexander dual of A, denoted by A*, is the simplicial complex over V' with
faces
A" ={V\71| 7¢ A}
Notice that (A*)* = A. If I = In then we shall denote the Stanley-Reisner ideal
of the Alexander dual A* by I*. It is a well-known result of Terai [22] (or see [10,
Theorem 5.59]) that the regularity of a squarefree monomial ideal can be related to
the projective dimension of its Alexander dual.

Lemma 1.2. Let I C R be a square-free monomial ideal. Then,
reg(!) = pd(R/I").

Let F(A) denote the set of all facets of A. We say that A is generated by F(A)
and write A = (F(A)). Note that In has the minimal primary decomposition (see
[16, Theorem 1.7]):

In= () (wli¢F),
FeF(A)
and therefore the n-th symbolic power of I is

0= @ligF
FEeF(A)

We next describe a formula to compute the local cohomology modules of mono-
mial ideals. Let I be a non-zero monomial ideal. Since R/I is an N'-graded al-
gebra, H:(R/I) is an Z"-graded module over R/I for every i. For each degree
a=(ay,...,a,) € Z", in order to compute dimy H:(R/I)a we use a formula given
by Takayama [2I, Theorem 2.2] which is a generalization of Hochster’s formula for
the case I is square-free [20, Theorem 4.1].

Set G = {i | a; < 0}. For a subset F' C [r], we set Rp = R[z;' | i € F UG,
Define the simplicial complex A, (1) by

(2) Aall) ={F C [r]\ Ga | 2 ¢ IRp}.
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Lemma 1.3. 21, Theorem 2.2] dim HE (R/I)q = dimg ﬁi_‘ga‘_l(Aa([); K).

The following result of Minh and Trung is very useful to compute Aa(I(A")), which
allows us to investigate reg(I(An)) by using the theory of convex polyhedra.

Lemma 1.4. [17, Lemma 1.3] Let A be a simplicial complez and o« € N". Then,

]-"(A,,(I(A"))):{Fe]-“ DR n—l}

1¢F

This lemma can be generalized a bit as follows.

Lemma 1.5. [13, Lemma 1.3] Let A be a simplicial complex and o € Z". Then,

F(Ag(IMM) = {Fe]-"lkA Y i< n—l}

1€ FUGq

1.3. Hypergraphs. Let V be a finite set. A simple hypergraph H with vertex set
V' consists of a set of subsets of V', called the edges of H, with the property that no
edge contains another. We use the symbols V(#H) and E(H) to denote the vertex set
and the edge set of H, respectively.

In this paper we assume that all hypergraphs are simple unless otherwise specified.

In the hypergraph #H, an edge is trivial if it contains only one element, a vertex is
isolated if it is not appearing in any edge, a vertex is a neighbor of another one if they
are in some edge.

A hypergraph H' is a subhypergraph of H if V(H') C V(H) and E(H') C E(H).
For an edge e of ‘H, we define H \ e to be the hypergraph obtained by deleting e from
the edge set of . For a subset S C V(#H), we define H \ S to be the hypergraph
obtained from H by deleting the vertices in S and all edges containing any of those
vertices.

A set S C E(H) is called an edgewise dominant set of H if every non-isolated vertex
of H not contained in some edge of S or contained in a trivial edge has a neighbor
contained in some edge of S. Define,

e(H) = min{|S| | S is edgewise dominant }.

For a hypergraph H with V(H) C [r]|, we associate to the hypergraph H a square-
free monomial ideal

I(H) = (x| e € E(H)) C R,

which is called the edge ideal of H.
Notice that if I is a square-free monomial ideal, then I is an edge ideal of a hyper-
graph with the edge set uniquely determined by the generators of I.
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Let ‘H* be the simple hypergraph corresponding to the Alexander duality I(H)* of
I(H). We will determine the edge set of H*, it turns out that E(H*) is the set of all
minimal vertex covers of H. A wvertex cover in a hypergraph is a set of vertices, such
that every edge of the hypergraph contains at least one vertex of that set. It is an
extension of the notion of vertex cover in a graph. A vertex cover S is called minimal
if no proper subset of S is a vertex cover. From the minimal primary decomposition
(see |16, Definition 1.35 and Proposition 1.37]):

IH)= () (mli€e),
c€E(H)
it follows that E(?*) is just the set of minimal vertex covers of H. Thus,
I(H*) = (x" | 7 is a minimal vertex cover of H),
so that it is also called the cover ideal of H and denoted by J(H).
In the sequel, we need the following result of Dao and Schweig [5, Theorem 3.2].
Lemma 1.6. Let H be a hypergraph. Then, pd(R/I(H)) < |V (H)| — e(H).

1.4. Convex polyhedra. The theory of convex polyhedra plays a key role in our
study.

For a vector a = (ay, ..., ) € R", we set |a| := a1 + - - - + o and for a nonempty
bounded closed subset S of R" we set

0(S) := max{|a| | a € S}.
Let A be a simplicial conplex over [r]. In general, reg(I(A")) is not a linear function

in n for n > 0 (see e.g. [0, Theorem 5.15]), but a quasi-linear function as in the
following result.

Lemma 1.7. [12] Theorem 4.9] There exist positive integers N,ny and rational num-
bers a, by, ...,by_1 < dim(R/In) + 1 such that

reg([(A")) =an + by, foralln >ng andn =k mod N, where 0 < k< N — 1.
Moreover, reg(I{") < an + dim(R/I5) + 1 for all n > 1.

By virtue of this result, we define

](”)
d(Ip) = a = lim M.

n—00 n

In order to compute 6(Ia), let SP(Ia) be the convex polyhedron in R" defined by
the following system of linear inequalities:

=1 for F' € F(A),
o &
T 20,...,%‘7« 20,
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which is called the symbolic polyhedron of Ix.
Then, SP(Ia) is a convex polyhedron in R". By [6l Theorem 3.6] we have

(4) d(Ia) = max{v | v is a vertex of SP(Ia)}.

Now assume that
Hy (I8 )a # 0
for some 0 < i < dim(R/Ix) and o = (aq, ..., ) € N,
By Lemma [I.3] we have

(5) dimg Hi_y (Aa(IV): K) = dimg H. (R/I{) # 0.

In particular, Aa(lg)) is not acyclic.
Suppose that F(A) = {F},..., F;} for t > 1. By Lemma [[.4] we may assume that

F(AUIM) ={F,,...,F,}, where 1 <s<t.
For each integer m > 1, let P,, be the convex polyhedron of R" defined by:

Yo, <m—1 forj=1,...,s,
i¢F

(6) oxi=zm forj=s4+1,...,1,
i¢F;

r120,...,2, 2 0.
Then, a € P,,. Moreover, by Lemma [[.4] one has
(7) Ag(IV) = (Fy, ... F,) = Aq(I{") whenever 8 € P, NN' .
Note also that for such a vector 3, by Formula (l) we have
dimg Hi1(Ag(I{): K) = dimg H;_1(Aa(IT); K) 0.
Together with Lemma [[.3] this fact yields
(8) Ho(R/15")5 # 0.

In order to investigate the convex polyhedron P,, we also consider the convex
polyhedron C,, in R" defined by:

Yox;<m for j=1,...,s,
i F;

9) Sxi=m for j=s4+1,...,t,
igF;

z120,...,2, =2 0.

Note that C,, = mC; for all m > 1, where mC; = {my |y € C1}.
By the same way as in the proof of [10, Lemma 2.1] we obtain the following lemma.

Lemma 1.8. C; is a polytope with dim C; = 7.
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The next lemma gives an upper bound for §(C;).
Lemma 1.9. 6(C}) < 0(1a).

Proof. Since C; is a polytope with dimC; = r by Lemma [[.8 6(C;) = || for some
vertex v of C;. By [19, Formula (23) in Page 104] we imply that = is the unique
solution of a system of linear equations of the form

> ax;=1 forje S,
(10) i,

where Sy C [t] and Sy C [r] such that |Si| + |S2| = r. By using Cramer’s rule to get
~, we conclude that ~ is a rational vector. In particular, there is a positive integer,
say p, such that py € N". Note that C, = pC;, so py € C, " N".

For every j > 1, let y = jpy + . Then, y € N" and |y| = §(C1)jp + |a|. On the
other hand, by using the fact that jpvy € Cj,, we can check that

Syi<jp+n—1 forj=1,....s,
idF;

Yyizjp+n forj=s+1,...,t,
i¢F;

and so y € Pjpen NN,
Together with Equation (), we deduce that H: (R/I7"™), # 0, and therefore

veg(R/IS"™) 2 Iyl +i = 0(Co)ip + e +i.
Combining with Lemma [[.7] this inequality yields
0(Ca)jp + e +i < 0(Ia)(jp + 1) + dim(R/I4).
Since this inequality valid for any positive integer j, it forces 6(Cy) < 6(1a). O
2. REGULARITY OF SYMBOLIC POWERS OF IDEALS

In this section we will prove the upper bound for reg(I(A")). Firts we start with the
following fact.

Lemma 2.1. Let 0 C [r] with o # [r], S = Klx; | i ¢ 0] and J =R, N S. Then,
reg(J™) < reg(I™) for all n > 1.
In particular, 6(J) < d(I).

Proof. We may assume that S = K[xq,..., x| for some 1 < s < r. Let ¢ be an index
and a a vector in Z° such that
H(S/J™)y # 0 and reg(S/J™) = |a| + 1,
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where n = (x1,...,xs) is the homogeneous maximal ideal of S.

Let B8 = (a1,...,05,—1,...,—1) € Z" so that Gg = Go U {s+1,...,r}. By
Formula (2)) we deduce that
(11) Ao (J™) = Ag(T™).

By Lemma [L.3]

dim Hi(S/J™)o = dimg Hi_jg-1(Aa(J™); K),
and thus fIi_|Ga‘_1(Aa(J(")); K) # 0. Together with Equation (IIl), it yields
H; (G 1(Dp(1™); K) 0.
By Lemma [[3 again, it gives Hy U~ *(R/I™)g +# 0 since |Gg| = |Gal + (r — s).

Therefore,
reg(R/I™) > |B| +i+ (r — 5) = |a| +i = reg(5/J™),
it follows that reg(J™) < reg(I™).
Finally, together this inequality with Lemma [[.7 we have

(n) (n)
§(J) = lim reg(J™) < lim reg(I'™) _ 5(I),

n—00 n n—oo n

and the lemma follows. O

Theorem 2.2. Let I be a square-free monomial ideal. Then, for all i > 0 we have
a;(R/I™) < 6(I)(n —1).

Proof. If n =1, the theorem follows from Hochster’s formula on the Hilbert series of
the local cohomology module HE (R/IA) (see [20, Theorem 4.1]).

We may assume that n > 2. If a;(R/I™) = —oo, the theorem is obvious, so that
we also assume that a;(R/I™) # —occ.

Suppose a € Z" such that

H!(R/I™), # 0 and a;(R/I™) = |a].
By Lemma [L.3] we have
(12) dimg H; g1 (Aa(I™); K) = dimg HL(R/T™), # 0.

In particular, A, (™) is not acyclic.
If G = [r], then a;(R/I™) = |a| < 0, and hence the theorem holds in this case.
We therefore assume that G, = {m + 1,...,7} for 1 < m < r. Let S =
Klzy,...,zy) and J =IRg, N S.
Let o' = (ay, ..., ) € N™. By using Formula (2), we have

(13) A (M) = Ag(IM).
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Together with (), it gives H;_jg.j-1(Aar(J™); K) # 0. By Lemma 3 we get
HZ (8T ) 0,

where n = (x1,...,x,,) is the homogeneous maximal ideal of S.

Let A be the simplicial complex over [m] corresponding to the square-free monomial
ideal J. Assume that F(A) = {F,..., F;}.

By Lemma [[4 we may assume that F(Aqy (J™)) = {F,...,F,} for 1 < s < t.
Let .

/ m
6-(&1,...,ﬁm)—ma eR™.
By Lemma [I.4] again, we deduce that

1
Y Bi= Yo <1 for j=1,...,s,
igF; n—1 g,
1 n
fi=——> ;= >1 forj=s+1,...,t
igf;j n_ligl;j n—1

It follows that 8 € C;, where C] is a polyhedron in R™ defined by

o<1 forj=1,...,s,
iZF;

o> 1 forj=s+1,...,1,
iZF;

x120,...,xm20.

By Lemma [[.8 C is a polytope in R™.
Hence |3 < 0(C4), and hence |&'| = (n — 1)|8] < (C1)(n — 1). Observe that
a;<0forall j € Go={m+1,...,1}, s0

(14) a;(R/I™) = |a| = || + (g1 + - -+ ) < || <5(Cy)(n—1).
On the other hand, by Lemmas and 2.1l we deduce that
5(Ch1) < o(J) <6(1).

Together with Formula (I4), it yields a;(R/I™) < §(I)(n—1), and the proof of the
theorem is complete. O

We are now in position to prove the main result of the paper.
Theorem 2.3. Let A be a simplicial complex. Then,
reg([ﬁ”) <O6(Ia)(n—1)+b, foralln>1,
where b = max{reg(Ir) | [ is a subcomplex of A with F(I') C F(A)}.
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Proof. For simplicity, we put I = Ixn. Let i € {0,...,dim(R/I)} and a € Z" such
that
H: (R/I™)y #0, and reg(R/I™) = a;(R/I™) 4+ i = |a| +i.
By Lemma [I.3] we have
(15) dimg Hi_ G -1(Aa(I™); K) = dimg Hy(R/I™)q # 0.

In particular, A, (1™) is not acyclic.

If Go = [r ] then A, (I™) is either {(}} or a void complex. Because it is not
acyclic, Ay, (I™) = {0}. By Formula (EIEI) we deduce that i = |G4| = r, and hence
dim R/I = r. It means that I = 0, so I™ = 0 as well. Therefore, reg(I( )) = —o0,
and the theorem holds in this case.

We may assume that G, = {m + 1,...,r} for some 1 < m < r. Let S =
Klzy,...,2y) and J = IRg, N S.

Let &' = (aq,...,qn,) € N™. By using Formula (2)), we have

(16) Ao (J™) = Ay (IM).

Together with (IH), it gives H; g 1(Aar(J™); K) # 0. By Lemma [[3 we get
Hy1921(S/T™)ar # 0,

where n = (x1,...,2,,) is the homogeneous maximal ideal of S. In particular,
la| < ai_‘Ga|(S/J(")).

Together with Lemma [2.1] and Theorem 2.2], it yields

o] <0(J)(n—1) <5(I)(n —1).
Therefore,

reg(I™) = |a| +i=|a/|+ Y aj+i<|/|+i—|Gal <5I)(n—1)+i—|Gal.
j=m+1

It remains to prove that i — |Go| < b. By Lemma [[L5] we have
A/ (JM) = A (I™) = { F € Flka(G Z a;<n-—1

It follows that there is a simplicial complex I' with F(I') C F(A) such that
A (J™) = lkp(Gy).
Since ﬁi_‘Ga|_1(lk1"(Ga>; K) # 0, by Lemma [Tl we have i — |G| < reg(lr) <

b,
and then proof of the theorem is complete. O

As a direct consequence of Theorem 2.3 we have a simple bound:
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Corollary 2.4. Let I be a square-free monomial ideal. Then,
reg(I™) < 6(I)(n — 1) + dim(R/I) + 1, for all n > 1.

Proof. Let A be the simplicial complex corresponding to the square-free ideal I. For
every subcomplex I' of A we have dim " < dim A. It follows from Lemma [Tl that

reg(Ir) < dim(R/Ir) +1 < dim(R/Ia) + 1.

Therefore, b = max{reg(lr) | F(I') € F(A)} < dim(R/Ia) + 1. Now the corollary
follows from Theorem 2.3 O

The following example shows that the bound in Corollary 2.4] is sharp and so is in
Theorem 2.3l Recall that a simplicial complex A is called a matroid complex if for
every subset o of V(A), the simplicial complex Afo] is pure (see e.g. [20, Chapter 3]).
Here, Afo] is the restriction of A to o and defined by Afg] = {7 |7 € A and 7 C o}.

Example 2.5. Let A be a matroid complex. Assume that A is not a cone. Let
I =1Ix and d = dim(R/I). By [I8, Theorem 4.5], for all n > 1 we deduce that:

(1) o(1) = d(f)-

()ad(R/f ) =d(I)(n—1).
(3) reg(I™) = §(I)(n — 1) +d+ 1.

Theorem states for a square-free monomial ideal arising from a hypergraph as
follows.

Theorem 2.6. Let H be a hypergraph. Then, for all n > 1, we have
reg(I(H)™) < S(I(H))(n —1) +0,
where b = max{pd(R/I(H')) | H' is a subhypergraph of H* with E(H') C E(H*)}.

Proof. Let A be the corresponding simplicial complex of the square-free monomial
ideal I(#). Assume that F(A) = {F},..., F,}. Since

ﬂ$Z|Z¢F

=

so that E(H*) = {C1,...,C,}, where C; = [r] \ Fj forall j =1,...,p.

Let I' be a subcomplex of A with F(I') C F(A). We may assume that F(I') =
{Fy,...,Fy} for 1 <k <p. Then, we have I} = I(#H') where H’ is the subhypergraph
of H* Wlth E(H ) ={C,...,C}.

By Lemma [[.2] we have reg(Ir) = pd(R/I}) = pd(R/I(H')), and therefore the
theorem follows from Theorem [2.3 O
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The next theorem is the second main result of the paper. It bounds the regularity
of symbolic powers of a square-free monomial ideal via the combinatorial properties
of the associated hypergraph.

Theorem 2.7. Let H be a simple hypergraph. Then,
reg(I(H)™) < S(I(H))(n— 1)+ |V(H)| — e(H*), for alln > 1.
Proof. By Theorem 2.6] it suffices to show that
pd(R/1(G)) < |V(H)| — e(H")
for every hypergraph G with £(G) C E(H*). By Lemma [[.6] it suffices to prove that
V(G| — () < [V(HY)| = e(HT).

In order to prove this inequality, without loss of generality we may assume that H*
has no both trivial edges and isolated vertices.

Let S be an edgewise-dominant set of G such that |S| = ¢(G). For each vertex
v e V(H)\V(G), we take an edge of H* containing v, and denote this edge by F'(v).
Then,

S'=SU{F(@)|veVH)\V(G}
is an edgewise-dominant set of H*. It follows that
(M) <|ST< IS+ [VH)\V(G)] =S|+ [V(H")| = [V(9)],
and therefore |V (G)| — €(G) < |V(H*)| — e(H*), as required. O

The following result gives an upper bound for the regularity of symbolic powers of
an edge ideal a graph.

Corollary 2.8. Let G be a graph. Then,
reg(1(G)™) < 2n + dim(R/I1(G)) — 1, for all n > 1.

Proof. By [6, Example 4.4], we have §(1(G)) = 2, so the corollary follows from Corol-
lary 2.4] O

Continuing with graphs, we will write down the bounds in Theorem 2.3 and 2.7 for
a cover ideal of a graph.

Example 2.9. Let G be a graph. First we note that the formula for computing
d(J(G)) is quite complicated, due to [0, Theorem 4.6], 6(J(G)) is given by

r

3 + max {w | S € A(I(G)) and G\ N[S] has no bipartite component} :
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where N[S] = SU {v € V(G) | v is a neighbor of some vertex in S}. The number
d(J(G)) may be not an integer and even bigger than reg(J(G)) (see [6, Lemma 5.14
and Theorem 5.15]).

Now since J(G)* = I(G), from Theorem 2.3] we obtain

reg(J(G)™) < §(J(G))(n—1)+b, forall n > 1,

where b = max{pd(R/I(H)) | H is a subgraph of G}.
The weaker bound obtained from Theorem 2.7 is

reg(J(G)™) < §(J(G))(n — 1) + [V(G)| — (@), for all n > 1.
We conclude the paper with a remark on lower bounds.

Remark 2.10. Let I be a square-free monomial ideal. By [0, Lemma 4.2(ii)] we
deduce that d(I)n < d(I™), and therefore

reg(I™) > d(I)n, for alln > 1.

In general, d(I) < 6(I) (see e.g. [6, Lemma 5.14]), so that the bound is not optimal.
On the other hand, by Lemma [[.7] there is a number b such that

reg(I™) > §(I)n +b, for all n > 1.
The natural question is to find a good bound for b.
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