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Abstract. Let A,B be polynomial rings over a field k, and I ⊆
A, J ⊆ B proper homogeneous ideals. We analyze the associated
primes of powers of I + J ⊆ A ⊗k B given the data on the sum-
mands. The associated primes of large enough powers of I + J
are determined. We then answer positively a question due to I.
Swanson and R. Walker about the persistence property of I +J in
many new cases.

1. Introduction

Inspired by work of Ratliff [19], Brodmann [2] proved that in any
Noetherian ring, the set of associated primes of powers of an ideal
is eventually constant for large enough powers. Subsequent work by
many researchers have shown that important invariants of powers of
ideals, for example, the depth and the Castelnuovo–Mumford regularity
also eventually stabilize in the same manner. For a recent survey on
associated primes of powers and related questions, we refer to Hoa’s
paper [12].

Our work is inspired by the aforementioned result of Brodmann, and
recent studies about powers of sums of ideals [8, 9, 18]. Let A,B be
standard graded polynomial rings over a field k, and I ⊆ A, J ⊆ B
proper homogeneous ideals. Denote R = A ⊗k B and I + J the ideal
IR+JR. Taking sums of ideals this way corresponds to the geometric
operation of taking fiber products of projective schemes over the field k.
In [8, 9, 18], certain homological invariants of powers of I + J , notably
the depth and regularity, are computed in terms of the corresponding
invariants of powers of I and J . In particular, we have exact formulas
for depthR/(I + J)n and regR/(I + J)n if either char k = 0, or I and
J are both monomial ideals. It is therefore natural to ask:

Question 1.1. Is there an exact formula for Ass(R/(I +J)n) in terms
of the associated primes of powers of I and J?
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The case n = 1 is simple and well-known: Using the fact that R/(I+
J) ∼= (A/I)⊗k (B/J), we deduce ([8, Theorem 2.5]):

AssR/(I + J) =
⋃

p∈AssA(A/I)

q∈AssB(B/J)

MinR(R/p + q).

Unexpectedly, in contrast to the case of homological invariants like
depth or regularity, we do not have a complete answer to Question
1.1 in characteristic zero yet. One of our main results is the following
partial answer to this question.

Theorem 1.2 (Theorem 4.1). Let I be a proper homogeneous ideal of
A such that Ass(A/In) = Ass(In−1/In) for all n ≥ 1. Let J be any
proper homogeneous ideal of B. Then for all n ≥ 1, there is an equality

AssR
R

(I + J)n
=

n⋃
i=1

⋃
p∈AssA(A/Ii)

q∈AssB(Jn−i/Jn−i+1)

MinR(R/p + q).

If furthermore Ass(B/Jn) = Ass(Jn−1/Jn) for all n ≥ 1, then for all
such n, there is an equality

AssR
R

(I + J)n
=

n⋃
i=1

⋃
p∈AssA(A/Ii)

q∈AssB(B/Jn−i+1)

MinR(R/p + q).

The proof proceeds by filtering R/(I + J)n using exact sequences
with terms of the form M ⊗k N , where M,N are nonzero finitely gen-
erated modules over A,B, respectively, and applying the formula for
AssR(M ⊗k N).

Concerning Theorem 1.2, the hypothesis Ass(A/In) = Ass(In−1/In)
for all n ≥ 1 holds in many cases, for example, if I is a monomial
ideal of A, or if char k = 0 and dim(A/I) ≤ 1 (see Theorem 3.2
for more details). We are not aware of any ideal in a polynomial
ring which does not satisfy this condition (over non-regular rings, it
is not hard to find such an ideal). In characteristic zero, we show
that the equality Ass(A/In) = Ass(In−1/In) holds for all I and all
n if dimA ≤ 3. If char k = 0 and A has Krull dimension four, using
the Buchsbaum–Eisenbud structure theory of perfect Gorenstein ideals
of height three and work by Kustin and Ulrich [15], we establish the
equality Ass(A/I2) = Ass(I/I2) for all I ⊆ A (Theorem 3.5).

Another motivation for this work is the so-called persistence prop-
erty for associated primes. The ideal I is said to have the persistence
property if Ass(A/In) ⊆ Ass(A/In+1) for all n ≥ 1. Ideals with this
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property abound, including for example complete intersections. The
persistence property has been considered by many people; see, e.g.,
[5, 11, 14, 22]. As an application of Theorem 1.2, we prove that if I is
a monomial ideal satisfying the persistence property, and J is any ideal,
then I+J also has the persistence property (Corollary 5.1). Moreover,
we generalize previous work due to I. Swanson and R. Walker [22] on
this question: If I is an ideal such that In+1 : I = In for all n ≥ 1, then
for any ideal J of B, I + J has the persistence property (see Corollary
5.1(ii)). In [22, Corollary 1.7], Swanson and Walker prove the same re-
sult under the stronger condition that I is normal. It remains an open
question whether for any ideal I of A with the persistence property
and any ideal J of B, the sum I + J has same property.

The paper is structured as follows. In Section 3, we provide large
classes of ideals I such that the equality Ass(A/In) = Ass(In−1/In)
holds true for all n ≥ 1. An unexpected outcome of this study is
a counterexample to [1, Question 3.6], on the vanishing of the map
TorAi (k, In)→ TorAi (k, In−1). Namely in characteristic 2, we construct
a quadratic ideal I in A such that the natural map TorA∗ (k, I2) →
TorA∗ (k, I) is not zero (even though A/I is a Gorenstein Artinian ring,
see Example 3.9). This example might be of independent interest, for
example, it gives a negative answer to a question in [1]. Using the
results in Section 3, we give a set-theoretic upper bound and a lower
bound for Ass(R/(I + J)n) (Theorem 4.1). Theorem 4.1 also gives an
exact formula for the asymptotic primes of I+J without any condition
on I and J . In the last section, we apply our results to the question
on the persistence property raised by Swanson and Walker.

2. Preliminaries

For standard notions and results in commutative algebra, we refer
to the books [3, 4].

Throughout the section, let A and B be two commutative Noetherian
algebras over a field k such that R = A ⊗k B is also Noetherian. Let
M and N be two nonzero finitely generated modules over A and B,
respectively. Denote by AssAM and MinAM the set of associated
primes and minimal primes of M as an A-module, respectively.

By a filtration of ideals (In)n≥0 in A, we mean the ideals In, n ≥ 0
satisfies the conditions I0 = A and In+1 ⊆ In for all n ≥ 0. Let (In)n≥1
and (Jn)n≥1 be filtrations of ideals in A and B, respectively. Consider
the filtration (Wn)n≥0 of A ⊗k B given by Wn =

∑n
i=0 IiJn−i. The

following result is useful for the discussion in Section 4.
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Proposition 2.1 ([8, Lemma 3.1, Proposition 3.3]). For arbitrary
ideals I ⊆ A and J ⊆ B, we have I ∩ J = IJ . Moreover with the
above notation for filtrations, for any integer n ≥ 0, there is an iso-
morphism

Wn/Wn+1
∼=

n⊕
i=0

(
Ii/Ii+1 ⊗k Jn−i/Jn−i+1

)
.

We recall the following description of the associated primes of tensor
products; see also [21, Corollary 3.7].

Theorem 2.2 ([8, Theorem 2.5]). Let M and N be nonzero finitely
generated modules over A and B, respectively. Then there is an equality

AssR(M ⊗k N) =
⋃

p∈AssA(M)
q∈AssB(N)

MinR(R/p + q).

The following simple lemma turns out to be useful in the sequel.

Lemma 2.3. Assume that char k = 0. Let A = k[x1, . . . , xr] be a stan-
dard graded polynomial ring over k, and m its graded maximal ideal. Let
I be proper homogeneous ideal of A. Denote by ∂(I) the ideal generated
by partial derivatives of elements in I. Then there is a containment
I : m ⊆ ∂(I).

In particular, In : m ⊆ In−1 for all n ≥ 1. If for some n ≥ 2,
m ∈ Ass(A/In) then m ∈ Ass(In−1/In).

Proof. Take f ∈ I : m. Then xif ∈ I for every i = 1, . . . , r. Taking
partial derivatives, we get f + xi(∂f/∂xi) ∈ ∂(I). Summing up and
using Euler’s formula, (r + deg f)f ∈ ∂(I). As char k = 0, this yields
f ∈ ∂(I), as claimed.

The second assertion holds since by the product rule, ∂(In) ⊆ In−1.
If m ∈ Ass(A/In) then there exists an element a ∈ (In : m) \ In.

Thus a ∈ In−1 \ In, so m ∈ Ass(In−1/In). �

The condition on the characteristic is indispensable: The inclusion
I2 : m ⊆ I may fail in positive characteristic; see Example 3.9.

The following lemma will be employed several times in the sequel.
Denote by grI(A) the associated graded ring of A with respect to the
I-adic filtration.

Lemma 2.4. Let A be a Noetherian ring, and I an ideal. Then the
following are equivalent:

(i) In+1 : I = In for all n ≥ 1,
(ii) (In+1 : I) ∩ In−1 = In for all n ≥ 1,
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(iii) depth grI(A) > 0,

(iv) In = Ĩn for all n ≥ 1, where Ĩ =
⋃
i≥1

(I i+1 : I i) denotes the

Ratliff-Rush closure of I.

If one of these equivalent conditions holds, then Ass(A/In) ⊆ Ass(A/In+1)
for all n ≥ 1, namely I has the persistence property.

Proof. Clearly (i) =⇒ (ii). We prove that (ii) =⇒ (i).
Assume that (In+1 : I) ∩ In−1 = In for all n ≥ 1. We prove by

induction on n ≥ 1 that In : I = In−1.
If n = 1, there is nothing to do. Assume that n ≥ 2. By the

induction hypothesis, In : I ⊆ In−1 : I = In−2. Hence In : I = (In :
I) ∩ In−2 = In−1, as desired.

That (i) ⇐⇒ (iii) ⇐⇒ (iv) follows from [10, (1.2)] and [20, Remark
1.6].

The last assertion follows from [11, Section 1], where the property
In+1 : I = In for all n ≥ 1, called the strong persistence property of I,
was discussed. �

3. Associated primes of quotients of consecutive powers

The following question is quite relevant to the task of finding the
associated primes of powers of sums.

Question 3.1. Let A be a standard graded polynomial ring over a
field k (of characteristic zero), and I a proper homogeneous ideal. Is it
true that

Ass(A/In) = Ass(In−1/In) for all n ≥ 1?

We are not aware of any ideal not satisfying the equality in Question
3.1 (even in positive characteristic). In the first main result of this
paper, we provide some evidence for a positive answer to Question 3.1.
Denote by Rees(I) the Rees algebra of I. The ideal I is said to be
unmixed if it has no embedded primes. It is called normal if all of its
powers are integrally closed ideals.

Theorem 3.2. Question 3.1 has a positive answer if any of the fol-
lowing conditions holds:

(1) I is a monomial ideal.
(2) depth grI(A) ≥ 1.
(3) depth Rees(I) ≥ 2.
(4) I is normal.
(5) In is unmixed for all n ≥ 1, e.g. I is generated by a regular

sequence.
(6) All the powers of I are primary, e.g. dim(A/I) = 0.
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(7) char k = 0 and dim(A/I) ≤ 1.
(8) char k = 0 and dimA ≤ 3.

Proof. (1): See [17, Lemma 4.4].
(2): By Lemma 2.4, since depth grI(A) ≥ 1, In : I = In−1 for all

n ≥ 1. Induce on n ≥ 1 that Ass(A/In) = Ass(In−1/In).
Let I = (f1, . . . , fm). For n ≥ 2, as In : I = In−1, the map

In−2 → In−1 ⊕ · · · ⊕ In−1︸ ︷︷ ︸
m times

, a 7→ (af1, . . . , afm),

induces an injection

In−2

In−1
↪→
(
In−1

In

)⊕m
.

Hence Ass(A/In−1) = Ass(In−2/In−1) ⊆ Ass(In−1/In). The exact
sequence

0→ In−1/In → A/In → A/In−1 → 0

then yields Ass(A/In) ⊆ Ass(In−1/In), which in turn implies the de-
sired equality.

Next we claim that (3) and (4) all imply (2).
(3) =⇒ (2): This follows from a result of Huckaba and Marley [13,

Corollary 3.12] which says that either grI(A) is Cohen-Macaulay (and
hence has depth A = dimA), or depth grI(A) = depth Rees(I)− 1.

(4) =⇒ (2): If I is normal, then In : I = In−1 for all n ≥ 1. Hence
we are done by Lemma 2.4.

(5): Take P ∈ Ass(A/In), we show that P ∈ Ass(In−1/In). Since
A/In is unmixed, P ∈ Min(A/In) = Min(In−1/In).

Observe that (6) =⇒ (5).
(7): Because of (6), we can assume that dim(A/I) = 1. Take P ∈

Ass(A/In), we need to show that P ∈ Ass(In−1/In).
If dim(A/P ) = 1, then as dim(A/I) = 1, P ∈ Min(A/In). Arguing

as for case (5), we get P ∈ Ass(In−1/In).
If dim(A/P ) = 0, then P = m, the graded maximal ideal of A. Since

m ∈ Ass(A/In), by Lemma 2.3, m ∈ Ass(In−1/In).
(8) It is harmless to assume that I 6= 0. If dim(A/I) ≤ 1 then we are

done by (7). Assume that dim(A/I) ≥ 2, then the hypothesis forces
dimA = 3 and ht I = 1. Thus we can write I = xL where x is a form
of degree at least 1, and L = R or htL ≥ 2. The result is clear when
L = R, so it remains to assume that L is proper of height ≥ 2. In
particular dim(A/L) ≤ 1, and by (7), for all n ≥ 1,

Ass(A/Ln) = Ass(Ln−1/Ln).
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Take p ∈ Ass(A/In). Since A/In and In−1/In have the same minimal
primes, we can assume ht p ≥ 2. From the exact sequence

0→ A/Ln
·xn−−→ A/In → A/(xn)→ 0

it follows that p ∈ Ass(A/Ln). Thus p ∈ Ass(Ln−1/Ln). There is an
exact sequence

0→ Ln−1/Ln
·xn−−→ In−1/In

so p ∈ Ass(In−1/In), as claimed. This concludes the proof. �

Example 3.3. Here is an example of a ring A and an ideal I not
satisfying any of the conditions (1)–(8) in Theorem 3.2. Let I =
(x4 + y3z, x3y, x2t2, y4, y2z2) ⊆ A = k[x, y, z, t]. Then depth grI(A) = 0
as x2y3z ∈ (I2 : I) \ I. So I satisfies neither (1) nor (2).

Note that
√
I = (x, y), so dim(A/I) = 2. Let m = (x, y, z, t). Since

x2y3zt ∈ (I : m) \ I, depth(A/I) = 0, hence A/I is not unmixed. Thus
I satisfies neither (5) nor (7). By the proof of Theorem 3.2, I satisfies
none of the conditions (3), (4), (6).

Unfortunately, experiments with Macaulay2 [6] suggest that I satis-
fies the conclusion of Question 3.1, namely for all n ≥ 1,

Ass(A/In) = Ass(In−1/In) = {(x, y), (x, y, z), (x, y, t), (x, y, z, t)}.

Remark 3.4. In view of Lemma 2.3 and Question 3.1, one might ask
whether if char k = 0, then Ass(A/I) = Ass(∂(I)/I) for any homoge-
neous ideal I in a polynomial ring A?

Unfortunately, this has a negative answer. Let A = Q[x, y, z], f =
x5 + x4y + y4z, L = (x, y) and I = fL. Then we can check with
Macaulay2 [6] that ∂(I) : f = L. In particular,

Ass(∂(I)/I) = (f) 6= Ass(A/I) = {(f), (x, y)}.
Indeed, if L = (x, y) ∈ Ass(∂(I)/I) then HomR(R/L, ∂(I)/I) = (∂(I)∩
(I : L))/I = (∂(I) ∩ (f))/I 6= 0, so that ∂(I) : f 6= L, a contradiction.

3.1. Partial answer to Question 3.1 in dimension four. We prove
that if char k = 0 and dimA = 4, the equality Ass(A/I2) = Ass(I/I2)
always holds, in support of a positive answer to Question 3.1. The proof
requires the structure theory of perfect Gorenstein ideals of height three
and their second powers.

Theorem 3.5. Assume char k = 0. Let (A,m) be a four dimensional
standard graded polynomial ring over k. Then for any proper homoge-
neous ideal I of A, there is an equality Ass(A/I2) = Ass(I/I2).

Proof. It is harmless to assume I is a proper ideal. If ht I ≥ 3 then
dim(A/I) ≤ 1, and we are done by Theorem 3.2(7).
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If ht I = 1, then I = fL, where f ∈ A is a form of positive degree
and htL ≥ 2. The exact sequence

0→ A

L

·f−→ A

I
→ A

(f)
→ 0,

yields Ass(A/I) = Ass(A/L)
⋃

Ass(A/(f)), as Min(I) ⊇ Ass(A/(f)).
An analogous formula holds for Ass(A/I2), as I2 = f 2L2. If we can

show that Ass(A/L2) ⊆ Ass(L/L2), then from the injection L/L2 ·f
2

−→
I/I2 we have

Ass(A/I2) = Ass(A/L2)
⋃

Ass(A/(f))

= Ass(L/L2)
⋃

Ass(A/(f)) ⊆ Ass(I/I2).

Hence it suffices to consider the case ht I = 2. Assume that there exists
p ∈ Ass(A/I2) \ Ass(I/I2). The exact sequence

0→ I/I2 → A/I2 → A/I → 0

implies p ∈ Ass(A/I).
By Lemma 2.3, p 6= m. Since Min(I) = Min(I/I2), p /∈ Min(I), we

get ht p = 3. Localizing yields pAp ∈ Ass(Ap/I
2
p ) \ Ass(Ip/I

2
p ). Then

there exists a ∈ (I2p : pAp) \ I2p . On the other hand, since Ap is a
regular local ring of dimension 3 containing one half, Lemma 3.6 below
implies I2p : pAp ⊆ Ip, so a ∈ Ip \ I2p . Hence pAp ∈ Ass(Ip/I

2
p ). This

contradiction finishes the proof. �

To finish the proof of Theorem 3.5, we have to show the following

Lemma 3.6. Let (R,m) be a three dimensional regular local ring such
that 1/2 ∈ R. Then for any ideal I of R, there is a containment
I2 : m ⊆ I.

We will deduce it from the following result.

Proposition 3.7. Let (R,m) be a regular local ring such that 1/2 ∈ R.
Let J be a perfect Gorenstein ideal of height 3. Then for all i ≥ 0, the
maps

TorRi (J2, k)→ TorRi (J, k)

is zero. In particular, there is a containment J2 : m ⊆ J .

Proof. We note that the second assertion follows from the first. Indeed,
the hypotheses implies that dim(R) = d ≥ 3. Using the Koszul complex
of R, we see that

TorRd−1(J, k) ∼= TorRd (R/J, k) ∼=
J : m

J
.
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Since the map TorRi (J2, k) → TorRi (J, k) is zero for i = d − 1, the
conclusion is J2 : m ⊆ J . Hence it remains to prove the first assertion.
We do this by exploiting the structure of the minimal free resolution
of J and J2, and constructing a map between these complexes.

Since J is Gorenstein of height three, it has a minimal free resolution

P : 0→ R
δ−→ F ∗

ρ−→ F → 0.

Here F = Re1⊕· · ·⊕Reg is a free R-module of rank g – an odd integer.
The map τ : F → J maps ei to fi, where J = (f1, . . . , fg). The free
R-module F ∗ has basis e∗1, . . . , e

∗
g. The map ρ : F ∗ → F is alternating

with matrix (ai,j)g×g, namely ai,i = 0 for 1 ≤ i ≤ g and ai,j = −aj,i for
1 ≤ i < j ≤ g, and

ρ(e∗i ) =

g∑
j=1

aj,iej for all i.

The map δ : R → F ∗ has the matrix (f1 . . . fg)
T , i.e. it is given by

δ(1) = f1e
∗
1 + · · ·+ fge

∗
g.

It is known that if J is Gorenstein of height three, then J ⊗R J ∼=
J2, and by constructions due to Kustin and Ulrich [15, Definition 5.9,
Theorems 6.2 and 6.17], J2 has a minimal free resolution Q as below.
Note that in the terminology of [15] and thanks to the discussion after
Theorem 6.22 in that work, J satisfies SPCg−2, hence Theorem 6.17,
parts (c)(i) and (d)(ii) in ibid. are applicable. The resolution Q given
in the following is taken from (2.7) and Definition 2.15 in Kustin and
Ulrich’s paper.

Q : 0→ ∧2F ∗ d2−→ (F ⊗ F ∗)/η d1−→ S2(F )
d0−→ J2 → 0.

Here S2(F ) =
⊕

1≤i≤j≤g R(ei ⊗ ej) is the second symmetric power of

F , η = R(e1 ⊗ e∗1 + · · · + eg ⊗ e∗g) ⊆ F ⊗ F ∗, and ∧2F ∗ is the second
exterior power of F ∗.

The maps d0 : S2(F ) → J2, d1 : (F ⊗ F ∗)/η → S2(F ), d2 : ∧2F ∗ →
(F ⊗ F ∗)/η are given by:

d0(ei ⊗ ej) = fifj for 1 ≤ i, j ≤ g,

d1(ei ⊗ e∗j + η) =

g∑
l=1

al,j(ei ⊗ el) for 1 ≤ i, j ≤ g,

d2(e
∗
i ∧ e∗j) =

g∑
l=1

al,i(el ⊗ e∗j)−
g∑
v=1

av,j(ev ⊗ e∗i ) + η for 1 ≤ i < j ≤ g.
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We construct a lifting α : Q → P of the natural inclusion map
J2 → J such that α(Q) ⊆ mP .

Q : 0 // ∧2F ∗

α2

��

d2 // (F ⊗ F ∗)/η d1 //

α1

��

S2(F )
d0 //

α0

��

J2 //
� _

ι

��

0

P : 0 // R
δ // F ∗

ρ // F
τ // J // 0.

In detail, this lifting is

• α0(ei ⊗ ej) =
fiej + fjei

2
for 1 ≤ i, j ≤ g,

• α1(ei ⊗ e∗j + η) =


fie
∗
j

2
, if (i, j) 6= (g, g),

−
∑g−1

v=1 fve
∗
v

2
, if (i, j) = (g, g),

• α2(e
∗
i ∧ e∗j) =

0, if 1 ≤ i < j ≤ g − 1,
−ag,i

2
, if 1 ≤ i ≤ g − 1, j = g.

Note that α1 is well-defined since

α1(e1 ⊗ e∗1 + · · ·+ eg ⊗ e∗g + η) =

∑g−1
v=1 fve

∗
v

2

−
∑g−1

v=1 fve
∗
v

2
= 0.

Observe that α(Q) ⊆ mP since fi, ai,j ∈ m for all i, j. It remains to
check that the map α : Q → P is a lifting for J2 ↪→ J . For this, we
have:

• τ(α0(ei ⊗ ej)) = τ

(
fiej + fjei

2

)
= fifj = ι(d0(ei ⊗ ej)).

Next we compute

α0(d1(ei ⊗ e∗j + η)) = α0

(
g∑
l=1

al,j(ei ⊗ el)

)
=

g∑
l=1

al,j
fiel + flei

2

=
fi (
∑g

l=1 al,jel)

2
(since

g∑
l=1

al,jfl = 0).

• If (i, j) 6= (g, g) then

ρ(α1(ei ⊗ e∗j + η)) = ρ(fie
∗
j/2) =

fi (
∑g

l=1 al,jel)

2
.
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• If (i, j) = (g, g) then

ρ(α1(eg ⊗ e∗g + η)) = ρ

(
−
∑g−1

v=1 fve
∗
v

2

)
=
−
∑g−1

v=1 fv(
∑g

l=1 al,vel)

2

=

g∑
l=1

(
g−1∑
v=1

av,lfv)el

2
(since av,l = −al,v)

=

−
g∑
l=1

(ag,lfg)el

2
(since

g∑
v=1

av,lfv = 0)

=
fg (
∑g

l=1 al,gel)

2
(since ag,l = −al,g)

• Hence in both cases, α0(d1(ei ⊗ e∗j + η)) = ρ(α1(ei ⊗ e∗j + η)).

Next, for 1 ≤ i < j ≤ g − 1, we compute

α1(d2(e
∗
i ∧ e∗j)) = α1

(
g∑
l=1

al,i(el ⊗ e∗j)−
g∑
v=1

av,j(ev ⊗ e∗i ) + η

)

=
(
∑g

l=1 al,ifl) e
∗
j

2
− (
∑g

v=1 av,jfv) e
∗
i

2
(since neither (l, j) nor (v, i) is (g, g))

= 0 (since

g∑
v=1

av,lfv = 0)

= δ(α2(e
∗
i ∧ e∗j)).

Finally, for 1 ≤ i ≤ g − 1, j = g, we have

α1(d2(e
∗
i ∧ e∗g)) = α1

(
g∑
l=1

al,i(el ⊗ e∗g)−
g∑
v=1

av,g(ev ⊗ e∗i ) + η

)

=

(∑g−1
l=1 al,ifl

)
e∗g

2
−
∑g−1

v=1 ag,ifve
∗
v

2
− (
∑g

v=1 av,gfv) e
∗
i

2
(the formula for α1(el ⊗ e∗g) depends on whether l = g or not)

=
−ag,ifge∗g

2
−
∑g−1

v=1 ag,ifve
∗
v

2
(since

g∑
v=1

av,lfv = 0)

=
−ag,i (

∑g
v=1 fve

∗
v)

2
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We also have

δ(α2(e
∗
i ∧ e∗g)) = δ(−ag,i/2) =

−ag,i (
∑g

v=1 fve
∗
v)

2
.

Hence α : Q→ P is a lifting of the inclusion map J2 → J .
Since α(Q) ⊆ mP , it follows that α⊗(R/m) = 0. Hence TorRi (J2, k)→

TorRi (J, k) is the zero map for all i. The proof is concluded. �

Proof of Lemma 3.6. It is harmless to assume that I ⊆ m. We can
write I as a finite intersection I1 ∩ · · · ∩ Id of irreducible ideals. If we
can show the lemma for each of the components Ij, then

I2 : m ⊆ (I21 : m) ∩ · · · ∩ (I2d : m) ⊆
d⋂
j=1

Ij = I.

Hence we can assume that I is an irreducible ideal. Being irreducible,
I is a primary ideal. If

√
I 6= m, then I2 : m ⊆ I : m = I. Therefore we

assume that I is an m-primary irreducible ideal. Let k = R/m. It is
a folklore and simple result that any m-primary irreducible ideal must
satisfy dimk(I : m)/I = 1. Note that R is a regular local ring, so being
a Cohen-Macaulay module of dimension zero, R/I is perfect. Hence I
is a perfect Gorenstein ideal of height three. It then remains to use the
second assertion of Proposition 3.7. �

In view of Lemma 3.6, it seems natural to ask the following

Question 3.8. Let (R,m) be a three dimensional regular local ring
containing 1/2. Let I be an ideal of R. Is it true that for all n ≥ 2,
In : m ⊆ In−1?

For regular local rings of dimension at most two, Ahangari Maleki
has proved that Question 3.8 has a positive answer regardless of the
characteristic [1, Proof of Theorem 3.7]. Nevertheless, if dimA is not
fixed, Question 3.8 has a negative answer in positive characteristic in
general. Here is a counterexample in dimension 9(!).

Example 3.9. Choose char k = 2, A = k[x1, x2, x3, . . . , z1, z2, z3] and

M =

x1 x2 x3
y1 y2 y3
z1 z2 z3

 .

Let I2(M) be the ideal generated by the 2-minors of M , and

I = I2(M) +
3∑
i=1

(xi, yi, zi)
2 + (x1, x2, x3)

2 + (y1, y2, y3)
2 + (z1, z2, z3)

2.
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Denote m = A+. The Betti table of A/I, computed by Macaulay2 [6],
is

0 1 2 3 4 5 6 7 8 9

total: 1 36 160 315 404 404 315 160 36 1

0: 1 . . . . . . . . .

1: . 36 160 315 288 116 . . . .

2: . . . . 116 288 315 160 36 .

3: . . . . . . . . . 1

Therefore I is an m-primary, binomial, quadratic, Gorenstein ideal.
Also, the relation x1y2z3 + x2y3z1 + x3y1z2 ∈ (I2 : m) \ I implies I2 :
m 6⊆ I. This means that the map TorA8 (k, I2) → TorA8 (k, I) is not
zero. In particular, this gives a negative answer to [1, Question 3.6] in
positive characteristic.

4. Powers of sums and associated primes

4.1. Bounds for associated primes. The second main result of this
paper is the following. Its part (3) generalizes [7, Lemma 3.4], which
deals only with squarefree monomial ideals.

Theorem 4.1. Let A,B be commutative Noetherian algebras over k
such that R = A⊗k B is Noetherian. Let I, J be proper ideals of A,B,
respectively.

(1) For all n ≥ 1, we have inclusions

n⋃
i=1

⋃
p∈AssA(Ii−1/Ii)

q∈AssB(Jn−i/Jn−i+1)

MinR(R/p + q) ⊆ AssR
R

(I + J)n
,

AssR
R

(I + J)n
⊆

n⋃
i=1

⋃
p∈AssA(A/Ii)

q∈AssB(Jn−i/Jn−i+1)

MinR(R/p + q).

(2) If moreover Ass(A/In) = Ass(In−1/In) for all n ≥ 1, then both
inclusions in (1) are equalities.

(3) In particular, if A and B are polynomial rings and I and J are
monomial ideals, then for all n ≥ 1, we have an equality

AssR
R

(I + J)n
=

n⋃
i=1

⋃
p∈AssA(A/Ii)

q∈AssB(B/Jn−i+1)

{p + q}.
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Proof. (1) Denote Q = I + J . By Proposition 2.1, we have

Qn−1/Qn =
n⊕
i=1

(I i−1/I i ⊗k Jn−i/Jn−i+1).

Hence
(1)

n⋃
i=1

AssR(I i−1/I i ⊗k Jn−i/Jn−i+1) = AssR(Qn−1/Qn) ⊆ AssR(R/Qn).

For each 1 ≤ i ≤ n, we have Jn−iQi ⊆ Jn−i(I i + J) = Jn−iI i + Jn−i+1.
We claim that (Jn−iI i +Jn−i+1)/Jn−iQi ∼= Jn−i+1/Jn−i+1Qi−1, so that
there is an exact sequence
(2)

0 −→ Jn−i+1

Jn−i+1Qi−1 −→
Jn−i

Jn−iQi
−→ Jn−i

Jn−i+1 + Jn−iI i
∼=
A

I i
⊗k

Jn−i

Jn−i+1
−→ 0.

For the claim, we have

(Jn−iI i + Jn−i+1)/Jn−iQi =
Jn−iI i + Jn−i+1

Jn−i(I i + JQi−1)
=

Jn−iI i + Jn−i+1

Jn−iI i + Jn−i+1Qi−1

=
(Jn−iI i + Jn−i+1)/Jn−iI i

(Jn−iI i + Jn−i+1Qi−1)/Jn−iI i

∼=
Jn−i+1/Jn−i+1I i

Jn−i+1Qi−1/Jn−i+1I i
∼=

Jn−i+1

Jn−i+1Qi−1 .

In the display, the first isomorphism follows from the fact that

Jn−i+1 ∩ Jn−iI i = Jn−i+1I i = Jn−iI i ∩ Jn−i+1Qi−1,

which holds since by Proposition 2.1,

Jn−i+1I i ⊆ Jn−iI i∩Jn−i+1Qi−1 ⊆ Jn−iI i∩Jn−i+1 ⊆ I i∩Jn−i+1 = Jn−i+1I i.

Now for i = n, the exact sequence (2) yields

AssR(R/Qn) ⊆ AssR(J/JQn−1) ∪ AssR(A/In ⊗k B/J).

Similarly for the cases 2 ≤ i ≤ n − 1 and i = 1. Putting everything
together,

(3) AssR(R/Qn) ⊆
n⋃
i=1

AssR(A/I i ⊗k Jn−i/Jn−i+1).

Combining (1), (3) and Theorem 2.2, we finish the proof of (1).
(2) If AssA(A/In) = AssA(In−1/In) for all n ≥ 1, then clearly the

upper bound and lower bound for Ass(R/(I+J)n) in part (1) coincide.
The conclusion follows.
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(3) In this situation, every associated prime of A/I i is generated
by variables. In particular, p + q is a prime ideal of R for any p ∈
Ass(A/I i), q ∈ AssB(B/J j) and i, j ≥ 1. The conclusion follows from
part (2). �

Remark 4.2. If Question 3.1 has a positive answer, then we can strengthen
the conclusion of Theorem 4.1: Let A,B be standard graded polyno-
mial rings over k. Let I, J be proper homogeneous ideals of A,B,
respectively. Then for all n ≥ 1, there is an equality

AssR
R

(I + J)n
=

n⋃
i=1

⋃
p∈AssA(A/Ii)

q∈AssB(B/Jn−i+1)

Min(R/(p + q)).

Example 4.3. In general, for singular base rings, each of the inclusions of
Theorem 4.1 can be strict. First, take A = k[a, b, c]/(a2, ab, ac), I = (b),
B = k, J = (0). Then R = A,Q = I = (b) and I2 = (b2). Let
m = (a, b, c). One can check that a ∈ (I2 : m) \ I2 and I/I2 ∼=
A/(a, b) ∼= k[c], whence depth(A/I2) = 0 < depth(I/I2). In particular,
m ∈ AssA(A/I2) \ AssA(I/I2). Thus the lower bound for AssR(R/Q2)
is strict in this case.

Second, takeA, I as above andB = k[x, y, z], J = (x4, x3y, xy3, y4, x2y2z).
In this caseQ = (b, x4, x3y, xy3, y4, x2y2z) ⊆ k[a, b, c, x, y, z]/(a2, ab, ac).
Then c + z is (R/Q2)-regular, so depthR/Q2 > 0 = depthA/I2 +
depthB/J . Hence (a, b, c, x, y, z) does not lie in AssR(R/Q2), but it
belongs to the upper bound for AssR(R/Q2) in Theorem 4.1(1).

4.2. Asymptotic primes. Recall that if I 6= A, grade(I, A) denotes
the maximal length of an A-regular sequence consisting of elements in
I; and if I = A, by convention, grade(I, A) = ∞ (see [3, Section 1.2]
for more details). Let astab∗(I) denote the minimal integer m ≥ 1
such that both AssA(A/I i) and AssA(I i−1/I i) are constant sets for
all i ≥ m. By a result due to McAdam and Eakin [16, Corollary
13], for all i ≥ astab∗(I), AssA(A/I i) \ AssA(I i−1/I i) consists only of
prime divisors of (0). Hence if grade(I, A) ≥ 1, i.e. I contains a non-
zerodivisor, then AssA(A/I i) = AssA(I i−1/I i) for all i ≥ astab∗(I).

Denote Ass∗A(I) =
⋃
i≥1 AssA(A/I i) =

⋃astab∗(I)
i=1 AssA(A/I i) and

Ass∞A (I) = AssA(A/I i) for any i ≥ astab∗(I).

The following folklore lemma will be useful.

Lemma 4.4. For any n ≥ 1, we have
n⋃
i=1

AssA(A/I i) =
n⋃
i=1

AssA(I i−1/I i).
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In particular, if grade(I, A) ≥ 1 then

Ass∗A(I) =

astab∗(I)⋃
i=1

AssA(I i−1/I i) =
⋃
i≥1

AssA(I i−1/I i).

Proof. For the first assertion: Clearly the left-hand side contains the
right-hand one. Conversely, we deduce from the inclusion AssA(A/I i) ⊆
AssA(I i−1/I i)∪AssA(A/I i−1) for 2 ≤ i ≤ n that the other containment
is valid as well.

The remaining assertion is clear. �

Now we describe the asymptotic associated primes of (I + J)n for
n � 0 and provide an upper bound for astab∗(I + J) under certain
conditions on I and J .

Theorem 4.5. Assume that grade(I, A) ≥ 1 and grade(J,B) ≥ 1,
e.g. A and B are domains and I, J are proper ideals. Then for all
n ≥ astab∗(I) + astab∗(J)− 1, we have

AssR
R

(I + J)n
= AssR

(I + J)n−1

(I + J)n

=
⋃

p∈Ass∗A(I)

q∈Ass∞B (J)

MinR(R/p + q)
⋃ ⋃

p∈Ass∞A (I)

q∈Ass∗B(J)

MinR(R/p + q).

In particular, astab∗(I + J) ≤ astab∗(I) + astab∗(J)− 1 and

Ass∞R (I + J) =
⋃

p∈Ass∗A(I)

q∈Ass∞B (J)

MinR(R/p + q)
⋃ ⋃

p∈Ass∞A (I)

q∈Ass∗B(J)

MinR(R/p + q).

Proof. Denote Q = I + J . It suffices to prove that for n ≥ astab∗(I) +
astab∗(J)−1, both the lower bound (which is nothing but AssR(Qn−1/Qn))
and upper bound for AssR(R/Qn) in Theorem 4.1 are equal to

⋃
p∈Ass∗A(I)

q∈Ass∞B (J)

MinR(R/p + q)
⋃ ⋃

p∈Ass∞A (I)

q∈Ass∗B(J)

MinR(R/p + q).
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First, for the lower bound, we need to show that for n ≥ astab∗(I) +
astab∗(J)− 1,

n⋃
i=1

⋃
p∈AssA(Ii−1/Ii)

q∈AssB(Jn−i/Jn−i+1)

MinR(R/p + q)(4)

=
⋃

p∈Ass∗A(I)

q∈Ass∞B (J)

MinR(R/p + q)
⋃ ⋃

p∈Ass∞A (I)

q∈Ass∗B(J)

MinR(R/p + q).

If i ≤ astab∗(I), n − i + 1 ≥ astab∗(J), hence AssB(Jn−i/Jn−i+1) =
Ass∞B (J). In particular,

astab∗(I)⋃
i=1

⋃
p∈AssA(Ii−1/Ii)

q∈AssB(Jn−i/Jn−i+1)

MinR(R/p + q)

=

astab∗(I)⋃
i=1

⋃
p∈AssA(Ii−1/Ii)

q∈Ass∞B (J)

MinR(R/p + q) =
⋃

p∈Ass∗A(I)

q∈Ass∞B (J)

MinR(R/p + q),

where the second equality follows from Lemma 4.4.
If i ≥ astab∗(I) then AssA(A/I i) = Ass∞A (I), 1 ≤ n + 1 − i ≤

n+ 1− astab∗(I). Hence
n⋃

i=astab∗(I)

⋃
p∈AssA(Ii−1/Ii)

q∈AssB(Jn−i/Jn−i+1)

MinR(R/p + q)

=

n+1−astab∗(I)⋃
i=1

⋃
p∈Ass∞A (I)

q∈AssB(Ji−1/Ji)

MinR(R/p + q) =
⋃

p∈Ass∞A (I)

q∈Ass∗B(J)

MinR(R/p + q).

The second equality follows from the inequality n + 1 − astab∗(I) ≥
astab∗(J) and Lemma 4.4. Putting everything together, we get (4).
The argument for the equality of the upper bound is entirely similar.
The proof is concluded. �

5. The persistence property of sums

Recall that an ideal I in a Noetherian ring A has the persistence
property if Ass(A/In) ⊆ Ass(A/In+1) for all n ≥ 1. There exist
ideals which fail the persistence property: A well-known example is
I = (a4, a3b, ab3, b4, a2b2c) ⊆ k[a, b, c], for which In = (a, b)4n and
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(a, b, c) ∈ Ass(A/I) \ Ass(A/In) for all n ≥ 2. (For the equality
In = (a, b)4n for all n ≥ 2, note that

U = (a4, a3b, ab3, b4) ⊆ I ⊆ (a, b)4.

Hence Un ⊆ In ⊆ (a, b)4n for all n, and it remains to check that Un =
(a, b)4n for all n ≥ 2. By direct inspection, this holds for n ∈ {2, 3}.
For n ≥ 4, since Un = U2Un−2, we are done by induction.) However, in
contrast to the case of monomial ideals, it is still challenging to find a
homogeneous prime ideal without the persistence property (if it exists).

Swanson and R. Walker raised the question [22, Question 1.6] whether
given two ideals I and J living in different polynomial rings, if both
of them have the persistence property, so does I + J . The third main
result answers in the positive [22, Question 1.6] in many new cases. In
fact, its case (ii) subsumes [22, Corollary 1.7].

Corollary 5.1. Let A and B be standard graded polynomial rings
over k, I and J are proper homogeneous ideals of A and B, respec-
tively. Assume that I has the persistence property, and Ass(A/In) =
Ass(In−1/In) for all n ≥ 1. Then I + J has the persistence property.
In particular, this is the case if any of the conditions hold:

(i) I is a monomial ideal satisfying the persistence property;
(ii) In+1 : I = In for all n ≥ 1.

(iii) In is unmixed for all n ≥ 1.
(iv) char k = 0, dim(A/I) ≤ 1 and I has the persistence property.

Proof. The hypothesis Ass(A/In) = Ass(In−1/In) for all n ≥ 1 and
Theorem 4.1(2), yields for all such n an equality

(5) AssR
R

(I + J)n
=

n⋃
i=1

⋃
p∈AssA(A/Ii)

q∈AssB(Jn−i/Jn−i+1)

MinR(R/p + q).

Take P ∈ AssR
R

(I + J)n
, then for some 1 ≤ i ≤ n, p ∈ AssA(A/I i) and

q ∈ AssB(Jn−i/Jn−i+1), we get P ∈ MinR(R/p + q).
Since I has the persistence property, it follows that Ass(A/I i) ⊆

Ass(A/I i+1), so p ∈ Ass(A/I i+1). Hence thanks to (5),

P ∈
⋃

p1∈AssA(A/Ii+1)

q1∈AssB(Jn−i/Jn−i+1)

MinR(R/p1 + q1) ⊆ AssR
R

(I + J)n+1
.

Therefore I + J has the persistence property.
The second assertion is a consequence of the first, Theorem 3.2 and

Lemma 2.4. �
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