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Abstract. We classify all Gorenstein claw-free graphs. Moreover we provide a new
way to construct a Gorenstein graph from another one.

Introduction

Let R = k[x1, . . . , xn] be a polynomial ring over a field k. Let G be a graph with
vertex set V = {1, . . . , n} and edge set E. We associate to the graph G a quadratic
squarefree monomial ideal in R

I(G) = (xixj | ij ∈ E),

which is called the edge ideal of G.
We say that G is Cohen-Macaulay (resp. Gorenstein) over k if so is R/I(G). The

classification of Cohen-Macaulay and Gorenstein graphs in terms of the underlying
graphs is still widely open. In this paper we focus on Gorenstein graphs. In general
we cannot read off the Gorenstein property of a graph just from its structure since
this property as usual depends on the characteristic of k (see [6, Proposition 3.1]),
so we are interested in some classes of graphs such as: bipartite graphs, chordal
graphs, triangle-free graphs, locally triangle-free graphs, planar graphs, and so on
(see [4, 5, 6, 7, 8, 13]).

In the paper we will add Gorenstein claw-free graphs into the list. A claw is the
complete bipartite graph K1,3, and a claw-free graph is a graph in which no induced
subgraph is a claw. Let Kn be the complete graph of order n, Cn the cycle of length
n and Cc

n be the complement of the cylce Cn (see Figure 1).
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Figure 1. K1, K2, Cn and Cc
n with n = 8.
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The main result of the paper is the following theorem.

Theorem 3.4 A claw-free graph G is Gorenstein if and only if every connected com-
ponent of G is one of K1, K2 and Cc

n with n > 5.

In the next result, we provide a way to construct a Gorenstein graph from another
one. Let α(G) denote the independence number of the graph G. Then,

Theorem 4.4 Let H be a Gorenstein graph and let x be a non isolated vertex of H.
Let a, b and c be the three new points. Join a to b and every neighbor of x; join b to
c; and join c to x. Let G be the graph obtained from this construction. Then, G is a
Gorenstein graph with α(G) = α(H) + 1.

The paper is organized as follows. In the section 1 we set up some basic notations,
terminology for graph and the simplicial complex. In the section 2, we compute the
Euler characteristics of the independence complexes of locally Gorenstein graphs. In
the section 3, we characterize Gorenstein claw-free graphs. In the last section we give
a construction of Gorenstein graphs from another Gorenstein graphs.

1. Preliminaries

Let ∆ be a simplicial complex on the vertex set V (∆) = {1, . . . , n}. We define the
Stanley-Reisner ideal of the simplicial complex ∆ to be the squarefree monomial ideal

I∆ = (xj1 · · · xji | j1 < · · · < ji and {j1, . . . , ji} /∈ ∆) in R = k[x1, . . . , xn]

and the Stanley-Reisner ring of ∆ to be the quotient ring k[∆] = R/I∆. Then, ∆ is
Cohen-Macaulay (resp. Gorenstein) if k[∆] is Cohen-Macaulay (resp. Gorenstein).

If F ∈ ∆, we define the dimension of F ∈ ∆ to be dimF = |F | − 1 and the
dimension of ∆ to be dim ∆ = max{dimF | F ∈ ∆}. The link of F inside ∆ is its
subcomplex:

lk∆ F = {H ∈ ∆ | H ∪ F ∈ ∆ and H ∩ F = ∅}.
For each i, let C̃i(∆; k) the vector space over k whose basis elements are the exterior

products eF = ej0 ∧ · · · ∧ eji that correspond to i-faces F = {j0, . . . , ji} ∈ ∆ with

j0 < · · · < ji. The reduced chain complex of ∆ over k is the complex C̃•(∆; k) whose

differentials ∂i : C̃i(∆; k) −→ C̃i−1(∆; k) is given by

∂i( ej0 ∧ · · · ∧ eji) =
i∑

s=0

(−1)sej0 ∧ · · · ∧ êjs ∧ · · · ∧ eji ,

and the i-th homology group of ∆ is H̃i(∆; k) = ker(∂i)/ im(∂i+1). For simplicity, if

ω ∈ C̃i(∆; k), we write ∂ω stands for ∂iω. With this notation we have

(1) ∂(ω ∧ ν) = ∂ω ∧ ν + (−1)i+1ω ∧ ∂ν for all ω ∈ C̃i(∆; k) and ν ∈ C̃j(∆; k).

The most widely used criterion for determining when a simplicial complex is Cohen-
Macaulay is due to Reisner (see [10, Corollary 4.2]), which says that links have only
top homology.
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Lemma 1.1. ∆ is Cohen-Macaulay over k if and only if for all F ∈ ∆ and all

i < dim(lk∆ F ), we have H̃i(lk∆ F ; k) = 0.

Let fi be the number of i-dimensional faces of ∆. The reduced Euler characteristic
χ̃(∆) of ∆ is defined by

χ̃(∆) :=
d∑

i=−1

(−1)ifi =
∑
F∈∆

(−1)|F |−1,

where d := dim(∆). This number can be represented via the reduced homology groups
by (see e.g. [10]):

χ̃(∆) =
d∑

i=−1

(−1)i dimk H̃i(∆; k).

The restriction of ∆ to a subset S of V (∆) is ∆|S := {F ∈ ∆ | F ⊆ S}. The star
of a vertex v in ∆ is st∆(v) := {F ∈ ∆ | F ∪ {v} ∈ ∆}. Let core(V (∆)) := {x ∈
V (∆) | st∆(x) 6= V (∆)}, then the core of ∆ is core(∆) := ∆|core(V (∆)). If ∆ = st∆(v)
for some vertex v, then ∆ is a cone over v. Thus ∆ = core(∆) means ∆ is not a cone.

Let ∆ be a pure simplicial complex, i.e. every facet of ∆ has the same cardinality.
We say that ∆ is an Euler complex if

χ̃(lk∆ F ) = (−1)dim lk∆ F for all F ∈ ∆;

and ∆ is a semi-Euler complex if lk∆(x) is an Euler complex for all vertex x.
We then have a criterion for determining when Cohen-Macaulay complexes are

Gorenstein due to Stanley (see [10, Theorem 5.1]).

Lemma 1.2. ∆ is Gorenstein if and only if and only if core(∆) is an Euler complex
which is Cohen-Macaulay.

Let S be a subset of the vertex set of ∆ and let ∆ \ S := {F ∈ ∆ |F ∩ S = ∅}, so
that ∆ \ S is a subcomplex of ∆. If S = {x}, then we write ∆ \ x stands for ∆ \ {x}.
Clearly, ∆ \ x = {F ∈ ∆ | x /∈ F}.

The following lemma is the key to investigate Cohen-Macaulay simplicial complexes
in the sequence of this paper (see [6, Lemma 1.4]).

Lemma 1.3. Let ∆ be a Gorenstein simplicial complex with ∆ = core(∆). If S is a

subset of V (∆) such that ∆|S is a cone, then H̃i(∆ \ S, k) = 0 for all i.

We next recall some notations, terminology from Graph theory (see [1]). Let G be
a graph. We use the symbols V (G) and E(G) to denote the vertex set and the edge
set of G respectively. Let S be a subset of V (G), we denote G[S] to be the induced
subgraph of G on S; and denote G \ S to be the induced subgraph of G on V (G) \ S.

Two vertices in G which are incident with a common edge are adjacent, and two
distinct adjacent vertices in G are neighbors. The set of neighbors of a vertex v in G
is denoted by NG(v). For a subset S of vertices of G, we denote the neighbors of S by

NG(S) := {x ∈ V (G) \ S | NG(x) ∩ S 6= ∅},
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the closed neighbors of S by NG[S] := S ∪ NG(S), and the localization of G with
respect to S by GS := G \ (S ∪NG(S)).

An independent set in G is a set of vertices no two of which are adjacent to each
other. The independence number of G, denoted by α(G), is the cardinality of the
largest independent set in G. The set of all independent sets of G is called the
independence complex of G and denoted by ∆(G). It is well-known that I∆(G) = I(G)
and dim(∆(G)) = α(G)− 1.

A graph G is called well-covered if very maximal independent set of G has the same
size, that is α(G). A well-covered graph G is said to be a member of the class W2 if
G \ v is well-covered with α(G \ v) = α(G) for every vertex v (see [9, 12]). At first
sight, if G is Gorenstein without isolated vertices, then G is in W2 (see [6, Lemma
2.4]). Note that G is well-covered if and only if ∆(G) is pure; and ∆(G) = core(∆(G))
if and only if G has no isolated vertices.

The well-covered graphs behave well when taking localization.

Lemma 1.4. [3, Lemma 1] If G be a well-covered graph and S is a an independent
set of G then GS is well-covered. Moreover, α(GS) = α(G)− |S|.

For any independent set S of G we have ∆(GS) = lk∆(G)(S). Therefore, GS is
Cohen-Macaulay (resp. Gorenstein) if so is G by Lemma 1.1 (resp. Lemma 1.2). We
say that G is locally Cohen-Macaulay (resp. Gorenstein) if G is well-covered and Gv

is Cohen-Macaulay (resp. Gorenstein) for every vertex v.

Lemma 1.5. [6, Lemma 2.3] Let G be a locally Gorenstein graph in W2 and let S
be a nonempty independent set of G. Then we have GS is Gorenstein and ∆(GS) is
Eulerian with dim(∆(GS)) = dim(∆(G))− |S|.

Remark 1.6. If ∆(G) is Eulerian, then G has no isolated vertices. Because if G has
some isolated vertices, then ∆(G) is cone, and then χ̃(∆(G)) = 0, a contradiction.

2. Euler characteristics of semi-Eulerian independence complexes

In this section we will compute χ̃(∆(G)) when ∆(G) is semi-Eulerian. This formula
plays a key tool for two remaining sections.

Lemma 2.1. Let ∆ be a simplicial complex. If ∆ is not a void complex, then∑
F∈∆

χ̃(lk∆(F )) = −1.

Proof. Let d := dim(∆). We prove the lemma by induction on d. If d = −1, then
∆ = {∅}, and the lemma holds for this case.

If d = 0, then ∆ consists of isolated vertices, say v1, . . . , vn, where n = |V (G)|. We
have ∑

F∈∆

χ̃(lk∆(F )) = χ̃(lk∆({∅})) +
n∑

i=1

χ̃(lk∆(vi)) = −1 + n− n = −1,
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and hence the lemma holds.
Assume that d > 1. Let F1, . . . , Ft be the facets of ∆. We may assume that

dim(Fi) = d for all i = 1, . . . , s; and dim(Fi) < d for all i = s + 1, . . . , t; with
1 6 s 6 t. We now proceed to prove by induction on s. If s = 1, let Λ = ∆ \ {F1}.
Because dim Λ = dim ∆− 1 = d− 1, by the induction hypothesis we have∑

F∈Λ

χ̃(lk∆(F )) = −1,

so that∑
F∈∆

χ̃(lk∆(F )) =
∑
F∈Λ

χ̃(lk∆(F )) +
∑
F⊆F1

(−1)|F1|−|F |−1 = −1 + (−1)|F1|
∑
F⊆F1

(−1)|F |−1

= −1 + (−1)|F1|χ̃(〈F1〉),
where 〈F1〉 is the simplex on the vertex set F1. Note that F1 6= ∅, so χ̃(〈F1〉) = 0, and
so
∑

F∈∆ χ̃(lk∆(F ) = −1.
Assume that s > 2. By the same argument as the previous case , let Λ := ∆\{Fs}.

Since dim Λ = dim ∆ and Λ has one facet less than ∆, by the induction hypothesis
on s we have

∑
F∈∆ χ̃(lkΛ(F )) = −1. Therefore,∑

F∈∆

χ̃(lk∆(F )) =
∑
F∈Λ

χ̃(lk∆(F )) + (−1)|Fs|χ̃(〈Fs〉) = −1.

�

Proposition 2.2. Let G be a graph such that ∆(G) is semi-Eulerian. Let v be a
vertex of G and d := dim(∆(G)). Then,

χ̃(∆(G)) = (−1)d(1 + χ̃(∆(G[NG(v)]))).

Proof. We prove by induction on d. If d = 0, then α(G) = 1. In this case, G is
a complete graph, so G = Kn where n = |V (G)|. Let v be a vertex of G. Then,
G[NG(v)] = Kn−1. Hence,

χ̃(∆(G)) = −1 + n and χ̃(G[NG(v)]) = −1 + (n− 1) = −2 + n,

and hence the proposition holds.
Assume that d > 1 so that α(G) > 2. By [3, Lemma 2(i)] and Remark 1.6 we deduce

that G is in W2, in particular G is well-covered. Let ∆ := ∆(G) and A := NG(v). Let

Γ := {F ∈ ∆ | F ∩ A 6= ∅},
so that ∆ can be partitioned into ∆ = st∆(v) ∪ Γ. Note that χ̃(st∆(v)) = 0 because
st∆(v) is a cone over v. Thus,

χ̃(∆) =
∑
F∈∆

(−1)|F |−1 =
∑

F∈st∆(v)

(−1)|F |−1 +
∑
F∈Γ

(−1)|F |−1

= χ̃(st∆(v)) +
∑
F∈Γ

(−1)|F |−1 =
∑
F∈Γ

(−1)|F |−1.
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Let Λ := ∆(G[NG(v)]) and let Ω := Λ \ {∅}. For each S ∈ Ω, we define

g(S) :=
∑

F∈Γ,S⊆F

(−1)|F |−1, and τ(S) :=
∑

F∈Γ,F∩A=S

(−1)|F |−1.

Then,

χ̃(∆) =
∑
U∈Ω

τ(S), and g(S) =
∑

F∈Ω,S⊆F

τ(F ).

For every S ∈ Ω, as S is a nonempty face of ∆ and ∆ is semi-Eulerian, we have
∆(GS) is Eulerian. Since G is well-covered, α(GS) = α(G)− |S| by Lemma 1.4, and
so dim(∆(GS)) = α(GS)− 1 = d− |S|. Hence, χ̃(∆(GS)) = (−1)d−|S|, and hence

g(S) =
∑

F∈Γ,S⊆F

(−1)|F |−1 =
∑

F∈∆,S⊆F

(−1)|F |−1 =
∑

F∈∆(GS)

(−1)|F |+|S|−1

= (−1)|S|
∑

F∈∆(GS)

(−1)|F |−1 = (−1)|S|χ̃(GS) = (−1)|S|(−1)d−|S| = (−1)d.

We now consider Ω as a poset with the partial order 6 being inclusion. Then, g(S)
can be written as

g(S) =
∑

F∈Ω,F>S

τ(F ).

Let µ be the Mobius function of the poset Ω. Then by Mobius inversion formula
(see [11, Proposition 3.7.2]) we have

τ(S) =
∑

F∈Ω,F>S

µ(S, F )g(F ) =
∑

F∈Ω,F>S

µ(S, F )(−1)d = (−1)d
∑

F∈Ω,F>S

µ(S, F ).

Observe that if S 6 F in Ω, then every T such that S ⊆ T ⊆ F we have T ∈ Ω and
S 6 T 6 F . Hence, µ(S, F ) = (−1)|F |−|S|, and hence

τ(S) = (−1)d
∑

F∈Ω,F>S

(−1)|F |−|S| = (−1)d
∑

F∈Ω,F>S

(−1)|F |−|S|

= (−1)d
∑

F∈Λ,S⊆F

(−1)|F |−|S| = −(−1)d
∑

F∈lkΛ(S)

(−1)|F |−1 = −(−1)dχ̃(lkΛ(S)).

Therefore,

χ̃(∆) =
∑
S∈Ω

τ(S) =
∑

S∈Λ,S 6=∅

τ(S) = −(−1)d
∑

S∈Λ,S 6=∅

χ̃(lkΛ(S))

= (−1)d(lkΛ(∅)−
∑
S∈Λ

χ̃(lkΛ(S))) = (−1)d(χ̃(Λ))−
∑
S∈Λ

χ̃(lkΛ(S))).

On the other hand, by Proposition 2.1 we have
∑

S∈Λ χ̃(lkΛ(S)) = −1, and thus

χ̃(∆) = (−1)d(1 + χ̃(∆(G[NG(v)]))),

as required. �

As a consequence we have.
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Corollary 2.3. Let G be a graph such that ∆(G) is semi-Eulerian. Then, the follow-
ing conditions are equivalent:

(1) ∆(G) is Eulerian;
(2) χ̃(∆(G[NG(v)])) = 0 for every vertex v of G;
(3) χ̃(∆(G[NG(v)])) = 0 for some vertex v of G.

Proof. Let ∆ = ∆(G) and d := dim(∆(G)). (1) =⇒ (2): Since ∆ is Eulerian,
χ̃(∆) = (−1)d. By Proposition 2.2 we have

χ̃(∆) = (−1)d = (−1)d(1 + χ̃(∆(G[NG(v)])),

so that χ̃(∆(G[NG(v)])) = 0.
(2) =⇒ (3): Obviously. (3) =⇒ (1): Since ∆ is semi-Eulerian, by Proposition 2.2

we have
χ̃(∆) = (−1)d(1 + χ̃(∆(G[NG(v)])) = (−1)d.

Together with the semi-Eulerian property of ∆, it follows that ∆ is Eulerian. �

3. Gorenstein Claw-free Graphs

This section devotes to classify Gorenstein claw-free graphs. In principle, we can
use the classification of claw-free graphs announced in [2], but this classification is
highly non-transparent and quite complicated, so we classify by using the result given
in the previous section and the localization property of Gorenstein graphs. We start
with graphs of small independence numbers.

Lemma 3.1. Let G be a Gorenstein connected graph without isolated vertices. Then,

(1) If α(G) = 1, then G is K2.
(2) If α(G) = 2, then G is Cc

n with n > 5.

Proof. If α(G) = 1, then G = Kn is the complete graph where n = |V (G)|. Since G
is a Gorenstein graph without isolated vertices, we have χ̃(∆(G)) = −1 + n = 1, and
so n = 2.

If α(G) = 2, for each v ∈ V (G), Gv is Gorenstein. Since α(Gv) = 1 by Lemma
1.4, Gv is just one edge by the previous case. It follows that degG(v) = n − 3 for
every v ∈ V (G). Hence, degGc(v) = 2 for every v ∈ V (Gc), so Gc is the cycle Cn

where n = |V (G)|, and so G = Cc
n. Since α(G) = 2 and G is connected, n > 5, as

required. �

Remark 3.2. A graph G is claw-free if and only if α(G[NG(v)]) 6 2 for all v ∈ V (G).

Lemma 3.3. Let G be a connected Gorenstein claw-free graph without isolated vertices
and ab an edge of G. If NG[a] ⊆ NG[b], then G is just the edge ab.

Proof. We prove by induction on α(G). If α(G) = 1, then G is just ab by Lemma 3.1.
In this case NG[a] = NG[b].

Assume that α(G) > 2 and we will derive a contradiction. Let A := NG(a) \ {b}
and B := NG(b) \ {a}. Then, A ⊆ B because of NG[a] ⊆ NG[b].
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We first claim that every vertex of Gab is adjacent with every vertex in B of G.
Indeed, assume on the contrary that there is v ∈ V (Gab) that is not adjacent with
every vertex in B. Let H be a connected component of Gv that have the edge ab.
Then, we have NH [a] ⊆ NH [b] and NH(b) 6= {a}. Since H is Gorenstein and α(H) 6
α(Gv) = α(G)−1, H is just the edge ab by the induction hypothesis. This is impossible
as NH(b) 6= {a}, and the claim follows.

Since G is claw-free and B ⊂ NG(b), α(G[B]) 6 α(G[NG(b)]) 6 2. Let S be a
maximal independent set of G[B]. Note that a and b both are adjacent with every
vertex in S. Together with the claim above, we imply that S is a maximal independent
set of G. Thus, α(G) = |S| 6 2. Together with the assumption α(G) > 2, we get
α(G) = 2. Therefore, G = Cc

n for n = |V (G)| > 5 by Lemma 3.1.
But in this case, we have NG[a] 6⊆ NG[b] by the structure of the graph Cc

n, a
contradiction. Thus, the proof of the lemma is complete. �

We are now in position to prove the main result of the paper.

Theorem 3.4. A claw-free graph G is Gorenstein if and only if every connected
component of G is one of K1, K2 and Cc

n with n > 5.

Proof. Since G is Gorenstein if and only if every its connected component is Goren-
stein, we may assume that G is connected.

If G is K1, then G is Gorenstein. Hence, we may assume that G has no isolated
vertices. If α(G) = 1, then G is K2 by Lemma 3.1.

Assume that α(G) > 2. Let v be a vertex of G with maximal degree and let
H := G[NG(v)]. Since G is claw-free, H has at most 2 connected components and
α(H) 6 2. We now consider two cases:

Case 1: H is connected. We first claim that H is well-covered with α(H) = 2.
Indeed, assume that the claim is not true so that either α(H) = 1 or α(H) = 2 and
H is not well-covered. In both cases, there is a vertex u of H such that u is adjacent
to every other vertices of H. It gives NG[v] ⊆ NG[u]. Then, G is just one edge by
Lemma 3.3, so α(G) = 1, a contradiction, and the claim follows.

By this claim we have ∆(H) is pure and dim(∆(H)) = 1. Thus, we may regard
∆(H) as a graph on the vertex set V (H), whose facets are couples {u, v} where u, v
are distinct vertices of H with uv /∈ E(G). In other words, ∆(H) = Hc. Note that
Hc has no isolated vertices since ∆(H) is pure and dim(∆(H)) = 1.

Let m be the number of edges of the graph Hc. We then have χ̃(∆(H)) = −1 +
|V (H)|−m. Together with Corollary 2.3, this equality gives −1+ |V (H)|−m = 0, or
equivalently m = |V (H)|−1. Since Hc has no isolated vertices, from m = |V (Hc)|−1,
we deduce that one of connected component of Hc, say T , is a tree.

Let u be a leaf of T and w the unique neighbor of u in T . Then, degH(u) =
|V (H)| − 1 = degG(v) − 1. Now let U be set set of vertices of Gv that are adjacent
with u and let W be the set of vertices of Gv that are adjacent with w. Then, both
U and W are non-empty by Lemma 3.3.
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Since degG(u) = degH(u) + |U | = degG(v) − 1 + |U | 6 degG(v) and U 6= ∅, so
|U | = 1. Hence, we may assume that U = {s}. Note that G is claw-free, therefore
G[W ] is complete. Since Gu[NGu ] is an induced subgraph of G[W ], it is also a complete
graph. This shows that w is a vertex of Gu which has Gu[NGu ] is a complete graph.
By Lemma 3.3, the connected component of Gu containing the vertex w is just an
edge, say wt.

Let G′ be the induced subgraph of G on the vertex set V (Gv)\{s, t}. We next claim
that G′ is the empty graph. Indeed, assume on the contrary that G′ is not empty. Let
b be a vertex of G′ (see Figure 2). Observe that Gu is a disjoint of G′ and the edge
wt, therefore both w and t are not adjacent with b. Clearly, u is not adjacent with b
neither.

v

u

s t

w

b G′

Figure 2. The configuration for the case 1.

We now show that b is not adjacent with s. Indeed, if s is adjacent with b. Then,
G{v,b} would have an isolated vertex t. This is impossible by the virtue of Lemma 1.5,
so b is not adjacent with s.

Therefore, b is not adjacent to any vertex of {u,w, s, t}. Since G is connected, b is
adjacent with some vertex in NG(v) \ {u, v}, say c.

On the other hand, when considering the graph Gt, we have NGt [v] ⊆ NGt [u] since
u is adjacent to every vertex of NG(v) \ {w} in G. By Lemma 3.3, Gt must be the
edge vu. Thus, t is adjacent to s and every vertex of NG(v) \ {w}. Especially, t is
adjacent with c.

Consequently, we get v, t, b ∈ NG(c). But {v, t, b} is an independent set of G, so
G[{v, b, t, c}] is a claw, a contradiction. It follows that G′ is empty.

Finally, since G′ is empty and t is adjacent with s and every vertex in NG(v) \ {u},
we have Gt is just the edge vu. In particular, α(Gt) = 1. Thus, α(G) = α(Gt)+1 = 2,
and thus G is Cc

n with n > 5 by Lemma 3.3.

Case 2: H is disconnected. Since G is claw-free, H has exactly two connected
components, say H1 and H2. Since α(H) 6 2, we have H1 and H2 are complete
graphs. Let p := |V (H1)| and q := |V (H2)|. Observe that dim ∆(H) = 1, and ∆(H)
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has p+ q vertices and pq faces of dimension 1. Hence,

χ̃(∆(H)) = −1 + (p+ q)− pq = −(p− 1)(q − 1).

By Corollary 2.3 we have χ̃(∆(H)) = 0. Therefore, either p = 1 or q = 1. We may
assume that p = 1.

If q = 1, then degG(v) = 2. Thus, every vertex of G has degree at most 2, and thus
G is either a path or a cycle. If G is a path then it must be K2, and the α(G) = 1.
But α(G) > 2, so G is a cycle, and so G is C5. In this case G = C5 = Cc

5.
Assume that q > 2. Since H1 = K1, it is just one vertex, say u. Let U be the set

of all vertices of Gv which are adjacent with v. By Lemma 3.3, U 6= ∅ (see Figure 3).
We first prove two following claims.

v

u

s

t

w

H2

U

b

Figure 3. The configuration for the case 2.

Claim 1: |U | > 2. Indeed, assume on the contrary that, |U | < 2, i.e. |U | = 1. In
this case U = {w} for some vertex w of Gv. For any vertex b of H2, since u is a leaf
of Gb, we have the edge uw is just one connected component of Gb. In particular, w
is not adjacent with any vertex of H2. By applying Lemma 3.3 for the graph Gw, we
have the connected component of Gg having a vertex v, must be an edge. It follows
that H2 is just one vertex, so q = 1, a contradiction. Thus, |U | > 2, as required

Claim 2: V (Gv) = U . Indeed, assume on the contrary that U 6= V (Gv). Let w
be a vertex in V (Gb) \ U . For any vertex b of H2, since Gb[NGb

(u)] is a complete
graph, by Lemma 3.3 we have Gb is just one edge. Together with Claim 1, it follows
that b is adjacent to some vertex in U , say b′. Let B be the set of vertices of Gv

which are adjacent with B. Then, degG(b) = q + |B| = degG(v)− 1 + |B|. Together
with degG(b) 6 degG(v), it yields |B| = 1. Therefore, b′ is the unique vertex in Gb

that adjacent with b in G. In particular, b is not adjacent with w. Hence, w is not
adjacent to any vertex of H, and hence it must be adjacent with some vertex in U ,
say s. By Lemma 3.3, the connected component of Gs containing v is just one edge,
say vt. In turn, it follows that Gt has a connected component containing the vertex u
must be the edge us. But this graph also has the edge sw, a contradiction. Therefore,
V (Gv) = U , as claimed.
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We now turn to prove the theorem in this case. Since G is claw-free, and {v}∪U is
the neighbors of u, we have G[U ] is a complete graph. By Claim 2, we have Gv = G[U ],
hence α(Gv) = α(G[U ]) = 1, and hence α(G) = α(Gv) + 1 = 2. By Lemma 3.1,
G = Cc

n for n = |V (G)| > 5, and the proof of the theorem is complete. �

Remark 3.5. By looking into the structure of the graph Cc
n, we find out that the

Gorenstein graph in the case 2 of the proof of Theorem 3.4 is exactly Cc
6 as in the

figure 4. It also has the name R3 (see Plummer [9]).

Figure 4. The graph Cc
6 (or R3).

4. A construction of Gorenstein graphs

In this section we give a way to construct a Gorenstein graph from another one.
First we investigate the vanishing of homology groups of simplicial complexes

Lemma 4.1. Let G be a locally Gorenstein graph in W2, X an independent set of
G and an integer i < dim(∆(G)). Then every ω ∈ Ci(∆(G); k) with ∂ω = 0 can be
written as ω = ∂η + ω′ where η ∈ Ci+1(∆(G); k) and ω′ ∈ Ci(∆(G) \X; k).

Proof. The lemma is trivial if X = ∅, so we assume that X 6= ∅. Let ∆ := ∆(G). We
represent ω as:

ω =
∑
S⊆X

eS ∧ ωS

where ωS ∈ Ci−|S|(∆(GS \X); k) for each S.
If there is ∅ 6= F ⊆ X such that ωF 6= 0, then we take such an F such that |F | is

maximal. By Equation (1) we get

∂ω =
∑
S⊆X

(
∂eS ∧ ωS + (−1)|S|eS ∧ ∂ωS

)
= 0.

Which implies ∂ωF = 0.
Next, we claim that

(2) H̃i−|F |(∆(GF \X); k) = 0.

Indeed, we have GF is Gorenstein because F 6= ∅. By Lemma 1.5 we imply that
GF has no isolated vertices, whence core(∆(GF )) = ∆(GF ). By Lemma 1.4 we have
α(GF ) = α(G) − |F |, so dim(∆(GF )) = dim(∆) − |F |. In particular, i − |F | <
dim(∆(GF )). If F = X, then GF \ X = GF is Cohen-Macaulay. By Lemma 1.1 we

have H̃i−|F |(∆(GF \X); k) = H̃i−|F |(∆(GF ); k) = 0.

11



If F is a proper subset of X, then GF \ X = GF \ (X \ F ). Since X \ F is an

independent set of GF , by Lemma 1.3 we have H̃i−|F |(∆(GF \X); k) = 0, as claimed.
We now prove the lemma. By Equation (2), we get ωF = ∂(ηF ) for some ηF ∈
Ci−|F |+1(∆(GF \X); k). Write F = {a1, . . . , as}, where a1 < · · · < as, then

∂eF =
s∑

i=1

(−1)i−1ea1 ∧ · · · ∧ êai ∧ · · · ∧ eas =
s∑

i=1

(−1)i−1eF\{ai}.

By Equation (1) we have

∂(eF ∧ ηF ) = ∂eF ∧ ηF + (−1)|F |eF ∧ ∂ηF = ∂eF ∧ ηF + (−1)|F |eF ∧ ωF ,

so

ω − ∂((−1)|F |eF ∧ ηF ) =
s∑

i=1

eF\{ai} ∧ ((−1)|F |+iηF ) +
∑

S⊆X,S 6=F

eS ∧ ωS.

Note that (−1)|F |eF ∧ηF ∈ Ci+1(∆; k). By repeating this process after finitely many
steps, we can find an element η ∈ Ci+1(∆; k) such that ω− ∂η ∈ Ci(∆(G) \X; k), and
hence ω = ∂η + ω′ for some ω′ ∈ Ci(∆(G) \X; k), as required. �

Lemma 4.2. Let G be a locally Gorenstein graph in W2. Let v be a vertex and let
H := G[NG(v)]. Assume that there is an independent set X of H such that for every
nonempty independent sets S of H \ X we have either HS has an isolated vertex or

HS is empty. Then H̃i(∆(G); k) = 0 for all i < dim(∆(G)).

Proof. Let ∆ := ∆(G) and d := dim(∆(G)). We first claim that

(3) H̃i−|S|(∆(GS) \ V (H); k) = 0 for any ∅ 6= S ∈ ∆(H) \X.

Indeed, observe that GS is Gorenstein because G is locally Gorenstein. By Lemma
1.5 we have α(GS) = d− |S|. If HS is empty. Since i− |S| < d− |S| = dim(∆(GS)),

by Lemma 1.1 we get H̃i−|S|(∆(GS) \ V (H); k) = H̃i−|S|(∆(GS); k) = 0.
If HS is not empty, then HS has an isolated vertex, and so ∆(GS)|V (HS) is a cone.

By Lemma 1.3, H̃i−|F |(∆(GS)\V (H); k) = H̃i−|F |(∆(GF \V (HS)); k) = 0, as claimed.

We now prove prove H̃i(∆; k) = 0. It suffices to show that if ω ∈ Ci(∆; k) with
∂ω = 0, then ω = ∂ζ for some ζ ∈ Ci+1(∆; k).

By Lemma 4.1, ω = ∂η+ ω′ where η ∈ Ci+1(∆; k) and ω′ ∈ Ci(∆(G) \X; k). Since
ω′ ∈ Ci(∆(G) \X; k), we can write ω′ as

ω′ =
∑

S∈∆(H)\X

eS ∧ ωS

where ωS ∈ Ci−|S|(∆(GS \ V (H)); k). By using the same argument as in the proof of
Lemma 4.1 where the equation (2) is replaced by the equation (3), we can find an
element η′ ∈ Ci+1(∆; k) such that

ω′ − ∂η′ ∈ Ci(∆(G) \ V (H); k).
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Note that ∆(G) \ V (H) = st∆(v) and H̃i(st∆(v); k) = 0. Since ∂(ω′ − ∂η′) =
∂ω′ − ∂2η′ = 0, there is ξ ∈ Ci+1(st∆(v); k) ⊆ Ci+1(∆; k) such that ω′ − ∂η′ = ∂ξ, and
hence ω′ = ∂(η′ + ξ).

Together with ω = ∂η + ω′, we obtain ω = ∂(η + η′ + ξ), as required. �

Proposition 4.3. Let G be a well-covered graph such that

(1) Gx is a Gorenstein graph without isolated vertices, for every vertex x.
(2) G[NG(v)] has an isolated vertex for some vertex v of G.

Then, G is Gorenstein.

Proof. For every vertex v, by [6, Lemma 2.4] we have Gv is in W2 because Gv is a
Gorenstein graph without isolated vertices. Together with the fact that G is well-
covered, we conclude that G is in W2.

If α(G) = 1, then G is the complete graph Kn where n = |V (G)|. Let v be a vertex
of G such that G[NG(v)] has an isolated vertex. Note that G[NG(v)] is Kn−1 so that
n = 1. Hence G is an edge, and hence it is Gorenstein.

Assume that α(G) > 1. For any vertex x of G we have Gx is a Gorenstein without
isolated vertices, so ∆(Gx) is Eulerian. It yields ∆(G) is semi-Eulerian.

Let v be a vertex of G such that G[NG(v)] has an isolated vertex, say u. Then,
χ̃(∆(G[NG(v)])) = 0 since ∆(G[NG(v)]) is a cone over u. By Corollary 2.3 we have
∆(G) is Eulerian.

Since G is locally Gorenstein, by Lemmas 1.1 and 1.2, G is Gorenstein if

H̃i(∆(G); k) = 0, for i < dim(∆(G)).

In order to prove this, we let H := G[NG(v)] and X = {u}. Then, for any indepen-

dent set S of H \X we have HS has an isolated vertex u, so H̃i(∆(G); k) = 0, for i <
dim(∆(G)) by Lemma 4.2, as required. �

We now are in position to prove the main result of this section.

Theorem 4.4. Let H be a Gorenstein graph and let x be a non isolated vertex of H.
Let a, b and c be the three new points. Join a to b and every neighbor of x; join b to
c; and join c to x. Let G be the graph obtained from this construction. Then, G is a
Gorenstein graph with α(G) = α(H) + 1.

Proof. We may assume that H has no isolated vertices so that H is in W2. We prove
the proposition by induction on α(H). If α(H) = 1, then H = K2. In this case, G is
just a pentagon, so the proposition holds.

Assume that α(H) > 2. We first prove that G is Gorenstein. Let v be an arbitrary
vertex of G. We now claim that Gv is Gorenstein with α(Gv) = α(H) and without
isolated vertices. Indeed, observe that if v /∈ {a, b, c, x} ∪NH(x) then v ∈ V (Hx). We
consider the four possible cases:

Case 1: v ∈ {b, c}. Gv
∼= H, and the claim holds.

Case 2: v ∈ {a, x}. Gv is isomorphic to the disjoint union of Hx and K2, and the
claim holds

13



Case 3: v ∈ NH(x). Gv is the disjoint union of Hv and the edge bc, and the claim
holds

Case 4: v ∈ V (Hx). In this case, x is a vertex of Hv. Since H is in W2, x is
not an isolated vertex in Hv. Observe that Gv is exactly the graph obtained by the
construction in the lemma when beginning with Hv. Since α(Hv) = α(H) − 1, by
the induction hypothesis we have Gv is Gorenstein with α(Gv) = α(Hv) + 1 = α(H).
Notice that Gv has no isolated vertices, and the claim follows.

Next we note that G[NG(b)] is just two isolated vertices a and c, so G is Gorenstein
by Proposition 4.3.

Finally, clearly α(G) = α(Gb) + 1 = α(H) + 1, and the proof is complete. �

Example 4.5. Start with the graph R3, using our construction we get the following
Gorenstein graph (see Figure 5).

x x

c

b

a

Figure 5. The Gorenstein graph obtained from R3.
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