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Abstract. Over a smooth and proper complex scheme, the differential Galois group
of an integrable connection may be obtained as the closure of the transcendental mon-
odromy representation. In this paper, we employ a completely algebraic variation of this
idea by restricting attention to connections on trivial vector bundles and replacing the
fundamental group by a certain Lie algebra constructed from the regular forms. In more
detail, we show that the differential Galois group is a certain “closure” of the afore-
mentioned Lie algebra. This is then applied to construct connections on curves with
prescribed differential Galois group.

1. Introduction

A fundamental result of modern differential Galois theory affirms that, for a proper

ambient variety, the differential Galois group might be obtained as the Zariski closure

of the monodromy group. Our objective here is to make a synthesis of results by other

mathematicians and use this to throw light on a similar finding in the realm of connections

on trivial vector bundles. In this case, the role of the fundamental group is played by a

certain Lie algebra (see Definition 2.4) and the role of the Zariski closure by the group-

envelope (see Definition 4.8).

Let us be more precise: consider a field K of characteristic zero, a smooth, geometrically

connected and proper K-scheme X, and a K-point of x0 ∈ X. In the special case

K = C, it is known, mainly due to GAGA, that the category of integrable connections

on X is equivalent to the category of complex representations of the transcendental object

π1(X(C), x0). In addition, for any such connection (E , ∇), the differential Galois group

at the point x0 (Definition 3.2) is the Zariski closure of the image Im(ME ), where ME :

π1(X(C), x0) −→ GL(E |x0) is the transcendental monodromy representation.

In this work, we wish to draw attention to the fact that the category of integrable

connections (E , ∇) on trivial vector bundles (that is, E ' O⊕rX ) is equivalent, not to a

category of representations of a group, but of a Lie algebra LX . Then, in the same spirit

as the previous paragraph, the differential Galois group of (E , ∇) at the point x0 will be

the “closure of the image of LX” in GL(E |x0) (see Definition 4.8). The advantage here is

that, contrary to what happens to the computation of the monodromy representation in

case K = C, the image of LX is immediately visible. See Theorem 5.1.

Date: June 15, 2021.
2010 Mathematics Subject Classification. 14C34, 16D90, 14K20, 53C07.
Key words and phrases. Lie algebra, Hopf algebra, neutral Tannakian categories, differential Galois

group.
1



2 I. BISWAS, P. H. HAI, AND J. P. DOS SANTOS

Once the above results have been put up, we apply our findings to construct connections

on curves with prescribed differential Galois groups. For this goal, we make use of the

fact that semi-simple Lie algebras can be generated by solely two elements, see Corollary

6.1. Using the push-forward operation on connections, we show that on the projective line

minus three points, it is possible to find regular-singular connections having differential

Galois groups with arbitrary connected components; see Corollary 6.2. In addition, these

connections allow a simple determination. The paper ends, see Section 7, by securing some

side results which are unfortunately not recorded in writing in the necessary generality.
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Some notation and conventions. In all that follows, K is a field of characteristic

zero. Vector spaces, associative algebras, Lie algebras, Hopf algebras, etc are always to

be considered over K.

(1) The category of finite dimensional vector spaces (over K) is denoted by vect.

(2) The category of Lie algebras is denoted by LA.

(3) All group schemes are to be affine; GS is the category of affine group schemes. Given

G ∈ GS, we let RepG stand for the category of finite dimensional representations

of G.

(4) If A stands for an associative algebra, we let A-mod be the category of left A-modules

which are of finite dimension over K. The same notation is invoked for Lie algebras.

(5) An ideal of an associative algebra is a two-sided ideal. The tensor algebra on a vector

space V is denoted by T(V ). The free algebra on a set {si}i∈I is denoted by K{si}.
(6) A curve C is a one dimensional, integral and smooth K-scheme.

(7) A vector bundle is none other than a locally free coherent sheaf of finite rank. A trivial

vector bundle on X is a direct sum of a finite number of copies of OX .

2. Construction of a Hopf algebra

Let Φ and Ψ be two finite dimensional vector spaces, and let

β : Φ⊗ Φ −→ Ψ

be a K-linear arrow with transpose β∗ : Ψ∗ −→ Φ∗ ⊗ Φ∗. Let

Iβ = Ideal in T(Φ∗) generated by Im β∗,

and define

Aβ = T(Φ∗)/Iβ. (1)
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It is useful at this point to note that Iβ is a homogeneous ideal so that Aβ has a natural

grading. In more explicit terms, fix a basis {ϕi}ri=1 of Φ and a basis {ψi}si=1 of Ψ. Write

{ϕ∗i }ri=1 and {ψ∗i }si=1 for the respective dual bases. If

β(ϕk ⊗ ϕ`) =
s∑
i=1

β
(k`)
i · ψi,

then

β∗(ψ∗i ) =
∑

1≤k,`≤r

β
(k`)
i · ϕ∗k ⊗ ϕ∗` .

Consequently, Aβ in (1) is the quotient of the free algebra K{t1, . . . , tr} by the ideal

generated by the s elements ∑
1≤k,`≤r

β
(k`)
i tkt`, i = 1, . . . , s.

In particular, given V ∈ vect and elements A1, . . . , Ar ∈ End(V ), the association

ti 7−→ Ai defines a representation of Aβ if and only if∑
1≤k,`≤r

β
(k`)
i · AkA` = 0, ∀ i = 1, . . . , s.

It is worth pointing out that if β is alternating, then∑
1≤k,`≤r

β
(k`)
i tkt` =

∑
1≤k<`≤r

β
(k`)
i [tk, t`]. (2)

This reformulation has useful consequences for the structure of Aβ.

From now on, β is always assumed to be alternating.

Let L(Φ∗) be the free Lie algebra on the vector space Φ∗ so that T(Φ∗) is the universal

enveloping algebra of L(Φ∗) [BLie, II.3.1, p. 32, Theorem 1]. Clearly∑
1≤k<`≤r

β
(k`)
i [tk, t`] ∈ L(Φ∗), ∀ i = 1, . . . , s.

Let

Kβ =
Lie ideal of L(Φ∗) generated by the s

elements {
∑

1≤k<`≤r β
(k`)
i [tk, t`]}si=1 in (2).

Proposition 2.1. The algebra Aβ in (1) is the universal enveloping algebra of L(Φ∗)/Kβ.

Proof. The left ideal T(Φ∗) ·Kβ is in fact a two sided ideal [BLie, I.2.3]; it is easily seen to

agree with Iβ in (1). Now we use [BLie, I.2.3, Proposition 3] to complete the proof. �

Definition 2.2. The Lie algebra L(Φ∗)/Kβ shall be denoted by Lβ.

A simple remark should be recorded here.

Lemma 2.3. The above Lie algebra Lβ is a quotient of the free Lie algebra L(Φ∗). In

particular, Lβ is generated by the image of Φ∗.
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Recall that for a Lie algebra L, the universal enveloping algebra UL has a natural

structure of Hopf algebra [Sw69, 3.2.2, p. 58] and hence from Proposition 2.1 it follows

that Aβ has the structure of a Hopf algebra. Analogously, T(Φ∗) is also a Hopf algebra

and the quotient map

T(Φ∗) −→ Aβ (3)

is an arrow of Hopf algebras.

In what follows, we give the category Aβ-mod the tensor product explained in [Mo93,

1.8.1, p. 14]. It turns out that the canonical equivalence

Lβ-mod
∼−→ Aβ-mod (4)

is actually a tensor equivalence.

The only case in which Aβ will interest us is that of:

Definition 2.4. Let X be a smooth, connected and projective K-scheme. Let

β : H0(X, Ω1
X)⊗H0(X, Ω1

X) −→ H0(X, Ω2
X)

be the wedge product of differential forms. We put

Aβ = AX and Lβ = LX .

3. Connections

We shall begin this section by establishing the notation and pointing out structural

references. We fix a smooth and connected K-scheme X. Soon, we shall assume X to be

projective.

Definition 3.1. We let MC be the category of K–linear connections on coherent OX–

modules and MIC the full subcategory of MC whose objects are integrable connections

[Ka70, 1.0]. We let MCtr be the full subcategory of MC having as objects pairs (E , ∇)

in which E is a trivial vector bundle. The category MICtr is defined analogously: it is

the full subcategory of MIC having as objects pairs (E , ∇) in which E is a trivial vector

bundle.

A fundamental result of the theory of connections is that for each (E , ∇), the coherent

sheaf E is actually locally free [Ka70, Proposition 8.8 ] and hence, given x0 ∈ X(K), the

functor “taking the fibre at x0” defines a tensor equivalence

• |x0 : MIC
∼−→ Rep Π(X, x0), (5)

where Π(X, x0) is a group scheme over K; see [DM82, Theorem 2.11]. This group scheme

is sometimes called the “differential fundamental group scheme of X at x0”. It is in rare

cases that Π(X, x0) will be an algebraic group, and hence it is important to turn it into

a splice of smaller pieces. This motivates the following definition, which at the end gives

a name to the main object of study of the present work.

Definition 3.2 (The differential Galois group). Let (E , ∇) ∈ MIC be given, and let

ρE : Π(X, x0) −→ GL(E |x0) be the representation associated to E via the equivalence



DIFFERENTIAL GALOIS GROUPS 5

in (5). The image of ρE in GL(E |x0) is the differential Galois group of (E , ∇) at the point

x0.

Remark 3.3. For (E , ∇) ∈ MIC, the category of representations of the differential

Galois group of (E , ∇) at x0 is naturally a full subcategory of MIC; it is not difficult to

see that it is

〈(E , ∇)〉⊗ =

{
M ′/M ′′ ∈MIC :

there exist ai, bi ∈ N such that
M ′′ ⊂M ′ ⊂

⊕
i E
⊗ai ⊗ Ě ⊗bi

}
.

From now on, X is in addition projective. Let us be more explicit about objects in

MCtr. Fix E ∈ vect and let

A ∈ HomK-alg(T(H0(X, Ω1
X)∗), End(E))

= Hom(H0(X, Ω1
X)∗, End(E))

= End(E)⊗H0(X, Ω1
X).

Hence, A gives rise to a End(E)–valued 1–form on X which, in turn, gives rise to a

connection

dA : OX ⊗ E −→ (OX ⊗ E) ⊗
OX

Ω1
X (6)

on the trivial vector bundle OX ⊗ E. Explicitly, if {θi}gi=1 is a basis of H0(X, Ω1
X) with

dual basis {ϕi}gi=1 of H0(X, Ω1
X)∗ and Ai := A(ϕi) ∈ End(E), we arrive at

dA(1⊗ e) =

g∑
i=1

(1⊗ Ai(e))⊗ θi

for all e ∈ E.

Definition 3.4. The above pair consisting of (OX⊗E, dA) shall be denoted by V (E, A).

Let now {σi}hi=1 be a basis of H0(X, Ω2
X) and write

θk ∧ θ` =
h∑
i=1

β
(k`)
i · σi ;

recall that {θi}gi=1 is a basis of H0(X, Ω1
X). Since X is proper, Hodge theory tells us that

all global 1-forms are closed [Del68, Theorem 5.5] and hence the curvature

RdA : OX ⊗ E −→ (OX ⊗ E)⊗OX Ω2
X

of the connection dA in (6) satisfies

RdA(1⊗ e) =
h∑
i=1

∑
1≤k,`≤g

(
1⊗ β(k`)

i AkA`(e)
)
⊗ σi.

Hence, RdA = 0 if and only if ∑
1≤k,`≤g

β
(k`)
i AkA` = 0
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for each i ∈ {1, . . . , h}. Also, since β in Definition 2.4 is alternating, we conclude that

RdA = 0 if and only if for each i ∈ {1, . . . , h},∑
1≤k,`≤g

β
(k`)
i AkA` =

∑
1≤k<`≤g

β
(k`)
i [Ak, A`] = 0.

These considerations form the main points of the proof of the following result, whose

through verification is left to the interested reader. (It is worth recalling that K =

H0(X, OX).)

Proposition 3.5. The functor

V : T(H0(Ω1
X)∗)-mod −→ MCtr

is an equivalence of K-linear categories. Under this equivalence, V (E, A) lies in MICtr

if and only if (E, A) is in fact a representation of AX (see Definition 2.4). �

Let us now discuss tensor products. Given representations

A : T(H0(Ω1
X)∗) −→ End(E) and B : T(H0(Ω1

X)∗) −→ End(F ),

we obtain a new representation of A�B : T(H0(Ω1
X)∗) −→ End(E ⊗ F ) by putting

A�B(ϕ) = A(ϕ)⊗ idF + idE ⊗B(ϕ), ∀ ϕ ∈ H0(Ω1
X)∗.

This is of course only the tensor structure on the category T(H0(Ω1
X)∗)-mod defined by

the Hopf algebra structure of T(H0(Ω1
X)∗) [Sw69, p. 58]. With this, it is not hard to see

that the canonical isomorphism of OX-modules

OX ⊗ (E ⊗ F )
∼−→ (OX ⊗ E)⊗OX (OX ⊗ F )

is horizontal with respect to the tensor product connection on the right [Ka70, Section

1.1] and the connection dA�B on the left (it is the connection induced by the connections

dA and dB). We then arrive at equivalences of tensor categories:

Theorem 3.6.

(i) The functor

V : T(H0(Ω1
X)∗)-mod −→ MCtr

is an equivalence of K-linear tensor categories.

(ii) The restriction

V : AX-mod −→ MICtr

is also an equivalence of K-linear tensor categories. In addition, the composition

(•|x0) ◦ V is naturally isomorphic to the forgetful functor, where •|x0 is constructed

in (5) (see Definition 2.4 for AX).

(iii) The composition of the equivalence in (4) with V : AX-mod −→ MICtr defines a

K-linear tensor equivalence

LX-mod
∼−→ MICtr

(see Definition 2.4 for LX).

�
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Making use again of the main theorem of (categorical) Tannakian theory, [DM82, p. 130,

Theorem 2.11], we obtain an equivalence of abelian tensor categories:

• |x0 : MICtr ∼−→ Rep Θ(X, x0), (7)

where Θ(X, x0) is a group scheme. In addition, the inclusion map

MICtr −→ MIC

defines a morphism

qX : Π(X, x0) −→ Θ(X, x0),

where Π(X, x0) and Θ(X, x0) are constructed in (5) and (7) respectively. Along the line

of Proposition 3.1 of [B+21], we have:

Proposition 3.7. The above morphism qX is in fact a quotient morphism.

Proof. Let E −→ Q be an epimorphism of MIC with E ∈ MICtr; write e for the rank

of E and q for that of Q.

Let G stand for the Grassmann variety of q–dimensional quotients of K⊕e, and let

O⊕eG −→ U stand for the universal epimorphism [Ni05, 5.1.6]. We then obtain a mor-

phism f : X −→ G such that f ∗U = Q. For each proper curve γ : C −→ X,

the vector bundle γ∗Q = (f ◦ γ)∗U has degree zero [BS06, Remark 3.3]; in particular,

(f ◦ γ)∗ det U has also degree zero. As det U is a very ample invertible sheaf on G, from

degree((f ◦γ)∗ det U ) = degree((f ◦γ)∗U ) = 0 we conclude that (f ◦γ)∗ det U is trivial,

and hence the schematic image of f ◦γ is a (closed) point [Liu02, p. 331, Exercise 8.1.7(a)].

Now, Ramanujam’s Lemma (see Remark 3.8 below) can be applied to show that any two

closed points x1 and x2 of X belong to the image of a morphism γ : C −→ X from a

proper curve.

Hence, the schematic image of X under f is a single point. Since H0(X, OX) = K, this

point must be a K-rational point and hence f factors through the structural morphism

X −→ SpecK. Consequently, f ∗U = Q is a trivial vector bundle. The standard

criterion for a morphism of group schemes to be a quotient morphism (see [DM82, p. 139,

Proposition 2.21(a)] for the criterion) can be applied to complete the proof. �

Remark 3.8 (Ramanujam’s Lemma). Let Z be a geometrically integral projective K-

scheme and z1, z2 are two closed points on it. We contend that there exists a proper curve

C together with a morphism γ : C −→ X such that z1 and z2 belong to the image of

γ. The proof is the same as in [Mu70, p. 56], but the Bertini theorem necessary for our

purpose comes from [Jou83, Cor. 6.11].

If dimZ = 1, it is sufficient to chose C to be the normalisation of Z. Let dimZ := d ≥
2 and suppose that the result holds for all geometrically integral and projective schemes

of dimension strictly smaller than d. We only need now to find a geometrically integral

closed subscheme Y ⊂ Z containing z1 and z1 and having dimension strictly smaller than

d. Let π : Z ′ −→ Z be the blow up of the closed subscheme {z1, z2}. Note that Z ′

is geometrically integral [Liu02, 8.1.12(c) and (d), p. 322]. In addition, the fibres of π

above z1 and z2 are Cartier subschemes of Z ′ and hence of dimension at least one [Liu02,
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2.5.26, p. 74]. Let Z ′ −→ PN be a closed immersion, and let H ⊂ PN be a hyperplane

of codimension one such that

• Z ′ ∩H is geometrically integral [Jou83, 6.11 (2)-(3)] of dimension dimZ − 1, and

• Z ′ ∩ π−1(zi) 6= ∅, loc. cit, (1)-(b).

Then, the schematic image of π : Z ′ ∩H −→ Z is the scheme Y that we are seeking.

Remark 3.9. In [Liu02, Ch. 8, p. 331, Exercise 1.5], the reader shall find a useful, but

slightly weaker version of Ramanujam’s Lemma.

Remark 3.10. The idea to consider certain connections as representations of a Lie algebra

can be found at least on [Del87, 12.2–5].

4. The Tannakian envelope of a Lie algebra

All that follows in this section is, in essence, due to Hochschild [Ho59]; since he expressed

himself without using group schemes and his ideas are spread out in several papers, we

shall briefly condense his theory in what follows. The reader should also consult [Na02],

where some results reviewed here also appear.

Our objective in this section is to give a construction of the affine envelope of a Lie

algebra. One can, of course, employ the categorical Tannakian theory [DM82, p. 130,

Theorem 2.11] to the category L-mod to obtain such a construction, but we prefer to

draw the reader’s attention to something which is less widespread than [DM82] and more

concrete.

Let L be a Lie algebra with universal enveloping algebra UL. Note that UL is not

only an algebra, but also a cocommutative Hopf algebra; see [Sw69, p. 58, Section 3.2.2]

and [Mo93, p. 72, Example 1.5.4]. Consequently, the Hopf dual (UL)◦ [Sw69, VI] is a

commutative Hopf algebra (see [Sw69, Section 6.2, pp. 122-3] or [Mo93, Theorem 9.1.3]).

This means that

G(L) := Spec (UL)◦

is a group scheme, which we call the affine envelope of L. Let us show that this construc-

tion gives a left adjoint to the functor

Lie : GS −→ LA.

We start by noting that G is indeed a functor; given an arrow G −→ H, the associated

arrow (UH)∗ −→ (UG)∗ gives rise to a morphism of coalgebras (UH)◦ −→ (UG)◦; see

[Sw69, p. 114, Remark 1]. The fact that the algebra structures are also preserved is indeed

a consequence of the fact that UG −→ UH is also an arrow of coalgebras.

Let G be a group scheme, and let ρ : L −→ LieG be a morphism of LA; we write

ρ for the arrow induced between universal algebras as well. Interpreting elements in

LieG as elements of EndK(O(G)), we obtain a morphism of K-algebras U(LieG) −→
EndK(O(G)). Since O(G) is a locally finite LieG–module, it is also a locally finite L–

module and a fortiori a locally finite UL–module. Let

ϕρ : O(G) −→ (UL)∗
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be defined by

ϕρ(a) : u 7−→ ε(ρ(u)(a)), (8)

where

ε : O(G) −→ K (9)

is the coidentity and u ∈ UL.

Lemma 4.1.

(1) For each a ∈ O(G), the element ϕρ(a) in (8) lies in the Hopf dual (UL)◦.

(2) The arrow ϕρ is a morphism of Hopf algebras.

Proof. (1) Let a belong to the finite dimensional UL–submodule V of O(G). Let I ⊂
UL be the kernel of the induced arrow of K-algebras UL −→ End(V ); it follows that

I ⊂ Kerϕρ(a) and ϕρ(a) ∈ (UL)◦.

(2) This verification is somewhat lengthy, but straightforward once the right path has

been found. We shall only indicate the most important ideas. Let us write ϕ instead of

ϕρ and consider elements of UL as G-invariant linear operators [Wa79, Section 12.1] on

O(G). In what follows, we shall use freely the symbol ∆ to denote comultiplication on

different coalgebras.

Compatibility with multiplication. We must show that

[ϕ(a)⊗ ϕ(b)] (∆(u)) = ϕ(ab)(u) (10)

for all a, b ∈ O(G) and u ∈ UL. Obviously, formula (10) holds for u ∈ K ⊂ UL. In

case u ∈ L, the validity of (10) is an easy consequence of the fact that u : O(G) −→
O(G) is a derivation and ∆u = u ⊗ 1 + 1 ⊗ u. We then prove that if (10) holds for u

then, for any given δ ∈ L, formula (10) holds for uδ. Since UL is generated by L, we are

done.

Compatibility with comultiplication. For ζ ∈ (UL)◦, we know that ∆(UL)◦(ζ) is defined

by

u⊗ v 7−→ ζ(uv)

for u, v ∈ UL. We need to prove that

ε(uv(a)) = ϕ⊗ ϕ ◦∆a

for every triple u, v ∈ UL and a ∈ O(G), where ε is the homomorphism in (9). This

follows from the invariance formulas ∆u = (id⊗ u)∆.

Compatible with unity and co-unity. This is much simpler and we omit its verification.

Compatibility with antipode. A bialgebra map between Hopf algebras is automatically

a Hopf algebra map [Sw69, Lemma 4.0.4]. �

Proposition 4.2. The above construction establishes a bijection

ϕ : HomLA(L, LieG) −→ HomHpf (O(G), (UL)◦)

= HomGS(G(L), G),

rendering G : LA −→ GS a left adjoint to Lie : GS −→ LA.
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Proof. We construct the inverse of ϕ and leave the reader with all verifications. Let

f : O(G) −→ (UL)◦ be a morphism of Hopf algebras. Let x ∈ L be given, and define

ψf (x) : O(G) −→ K, a 7−→ f(a)(x). (11)

It is a simple matter to show that ψf (x) is an ε-derivation, which is then interpreted as

an element of LieG in a standard fashion [Wa79, 12.2]. In addition, ψf : L −→ LieG

gives a morphism of Lie algebras (the reader might use the bracket as explained in [Wa79,

Section 12.1, p. 93]). Then f 7−→ ψf and ρ 7−→ ϕρ are mutually inverses; the verification

of this fact consists of a chain of simple manipulations and we contend ourselves in giving

some elements of the equations to be verified. That ψϕρ = ρ is in fact immediate. On

the other hand, the verification of

ϕψf (a)(u) = f(a)(u), ∀ a ∈ O(G), ∀ u ∈ UL

requires the ensuing observations. (We shall employ Sweedler’s notation for the Hopf

algebra O(G) [Sw69, Section 1.2, 10ff].)

(1) For δ ∈ L, the derivation O(G) −→ O(G) associated to ψf (δ) is determined by

a 7−→
∑

(a) a(1) · [f(a(2))(δ)].

(2) The axioms show that
∑

(a) ε(a(1))a(2) = a.

(3) Suppose that for u ∈ UL and δ ∈ UL we know that, for all a ∈ O(G),

ϕψf (a)(u) = f(a)(u) and ϕψf (a)(δ) = f(a)(δ).

Then ϕψf (a)(uδ) = f(a)(uδ) because of the equations

f(a)(xy) =
∑
(a)

f(a(1))(x) · f(a(2))(y), ∀ x, y ∈ UL,

which is a consequence of the fact that f is a map of Hopf algebras.

This completes the proof. �

In the proof of Proposition 4.2 we defined a bijection

ψ : Hom(G(L), G) −→ Hom(L,LieG)

by means of eq. (11). (We are here slightly changing the notation employed previously

by using arrows between schemes and not algebras on the domain; this shall cause no

confusion.) In case G = GL(V ) and in the light of the identification Lie GL(V ) = gl(V ),

ψ has a rather useful description. Let f : G(L) −→ GL(V ) be a representation and let

cf : V → V ⊗ (UL)◦ be the associated comodule morphism. It then follows that

(idV ⊗ evaluate at x) ◦ cf = ψf (x). (12)

Corollary 4.3. Let V be a finite dimensional vector space and f : G(L) −→ GL(V )

a representation. Write ψf : L −→ gl(V ) for the morphism of LA mentioned above.

Then, this gives rise to a K-linear equivalence of tensor categories

Rep G(L) −→ L-mod.
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Proof. To define a functor Rep G(L) −→ L-mod it is still necessary to define the maps

between sets of morphisms.

Let f : G(L) −→ GL(V ) and g : G(L) −→ GL(W ) be representations, and let T ∈
HomK(V, W ). We shall show that T ∈ HomG(L)(V, W ) if and only if T ∈ HomL(V, W ).

Consider T̂ =

(
I 0
T I

)
∈ GL(V ⊕W ) and denote by

CT : GL(V ⊕W ) −→ GL(V ⊕W )

the conjugation by T̂ . Then T is G–equivariant if and only if CT ◦
(
f 0
0 g

)
=

(
f 0
0 g

)
.

Similarly let us write cT : gl(V ⊕W ) −→ gl(V ⊕W ) to denote conjugation by T̂ . Then,

for given representations ρ : L −→ gl(V ) and σ : L −→ gl(W ), the arrow T is a

morphism of L-modules if and only if cT

(
ρ 0
0 σ

)
=

(
ρ 0
0 σ

)
. Employing equation (12),

we verify readily that

Hom(G(L),GL(V ⊕W ))
CT ◦(−) //

ψ
��

Hom(G(L),GL(V ⊕W ))

ψ
��

Hom(L, gl(V ⊕W ))
cT ◦(−)

// Hom(L, gl(V ⊕W )),

commutes. We then see that ψ becomes a functor, which is K-linear, exact and fully-

faithful.

Let us now deal with the tensor product. Given representations f : G(L) −→ GL(V )

and g : G(L) −→ GL(W ), let us write

f � g : G(L) −→ GL(V ⊗W )

for the tensor product representation. We then obtain on V ⊗W the a structure of a

L-module via ψf � g and it is to be shown that this is precisely the L-module structure

coming from the tensor product of L-modules. In other words, we need to show that

for any x ∈ L, the equation ψf (x) ⊗ idW + idV ⊗ ψg(x) = ψf � g(x) holds. We make

use of eq. (12) again. Let v ∈ V and w ∈ W be such that cf (v) =
∑

i vi ⊗ fi and

cg(w) =
∑

j wj ⊗ gj. Then cf � g(v ⊗ w) =
∑

i,j vi ⊗ wj ⊗ figj and hence

ψf � g(x)(v ⊗ w) =
∑
i,j

vi ⊗ wj · (fi(x)ε(gj) + ε(fi)gj(x)),

where ε : (UL)◦ −→ K is the co-unit defined by evaluating at 1 ∈ UL, and we have

used that ∆x = x ⊗ 1 + 1 ⊗ x. Now,
∑

i viε(fi) = v and
∑

j wjε(gj) = w. Hence,

ψf � g(x)(v ⊗ w) =
∑

i fi(x)vi ⊗ w +
∑

j v ⊗ gj(x)wj, as we wanted. �

Corollary 4.4. Let G be an algebraic group scheme, and let G(L) −→ G be a quotient

morphism. Then G is connected. Said differently, G(L) is pro-connected.

Proof. For the finite etale group scheme π0(G) [Wa79, Section 6.7], the set

HomLA(L, Lie (π0G))
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is a singleton and hence HomGS(G(L), π0(G)) is a singleton. It then follows that π0(G)

is trivial and G is connected [Wa79, Theorem of 6.6]. �

In what follows, we denote by

χ : L −→ Lie G(L) (13)

the morphism of Lie algebras corresponding to the identity of HomGS(G(L), G(L)) under

the bijection in Proposition 4.2. This is, of course, the unit of the adjunction [Mac70,

IV.1]. Let us profit to note that, as explained in [Mac70, IV.1, eq. (5)], for each f ∈
HomGS(G(L), G), the equation

ψf = (Lie f) ◦ χ. (14)

is valid.

One fundamental property of χ needs to be expressed in terms of “algebraic density”

[Ho74, p. 175].

Definition 4.5. Let G be a group scheme. A morphism ρ : L −→ LieG is algebraically

dense if the only closed subgroup scheme H ⊂ G such that ρ(L) ⊂ LieH is G itself.

Proposition 4.6. The morphism χ : L −→ Lie G(L) in (13) is algebraically dense.

Before proving Proposition 4.6, we shall require:

Lemma 4.7. Let G be a group scheme. Then there exists a projective system of algebraic

group schemes

{Gi, uij : Gj −→ Gi}
where each uij is faithfully flat and an isomorphism

G ' lim←−
i

Gi.

In addition, all arrows Lieuij : LieGj −→ LieGi are surjective.

Proof. This is a simple exercise once the correct arguments in the literature are brought

to light. To find the projective system with the desired properties, we employ [Wa79,

Corollary in 3.3, p. 24] and [Wa79, Theorem of 14.1, p. 109]. Then, [Mi17, Corollary

3.25, p. 72] and [Mi17, Proposition 1.63, p. 25] show that the arrows Lieuij are always

surjective. �

Proof of Proposition 4.6. Let u : H −→ G(L) be a closed immersion and let ρ : L −→
LieH be an arrow of Lie algebras such that

(Lieu) ◦ ρ = χ.

Let f : G(L) −→ H be an arrow from GS such that ρ = ψf . From eq. (14), we have

ρ = (Lie f) ◦ χ.

Hence, χ = (Lie(uf)) ◦ χ, which proves that u ◦ f = idG(L) (see eq. (14)). In particular,

Lieu is surjective.
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Let us now write

G(L) = lim←−
i

Gi

as in Lemma 4.7. Define Hi as being the image of H in Gi; a moment’s thought shows

that

H = lim←−
i

Hi,

and that the the transition arrows of the projective system {Hi} are also faithfully flat.

This being so, the arrows between Lie algebras in the projective system {Hi} are all surjec-

tive; see [Mi17, Corollary 3.25, p. 72] and [Mi17, Proposition 1.63, p. 25]. Consequently,

the obvious arrows Lie G(L) −→ LieGi and LieH −→ LieHi are always surjective.

Hence, the natural arrows LieHi −→ LieGi are always surjective.

Using [DG70, Proposition II.6.2.1, p. 259] and the fact that each Gi is connected, we

conclude that Hi = Gi, and H = G(L). This proves Proposition 4.6. �

Let G be an algebraic group scheme with Lie algebra g. Recall that a Lie subalgebra of g

is algebraic if it is the Lie subalgebra of a closed subgroup scheme of G [DG70, Definition

II.6.2.4]. As argued in [DG70, II.6.2, p. 262], given an arbitrary Lie subalgebra h ⊂ g,

there exists a smallest algebraic Lie subalgebra of g containing h: it is the (algebraic)

envelope of h inside g. Allied with [DG70, II.6.2.1a, p. 259], it then follows that there

exists a smallest closed and connected subgroup scheme of G whose Lie algebra contains

h. This group carries no name in [DG70], so we shall allow ourselves to put forward:

Definition 4.8. Let G be an algebraic group scheme and h ⊂ LieG a Lie subalgebra.

The group-envelope of h is the smallest closed subgroup scheme of G whose Lie algebra

contains h. We also define the group-envelope of a subspace V ⊂ LieG as being the

group-envelope of the Lie algebra generated by V in LieG.

Theorem 4.9 ([Ho59, Theorem 1, § 3]). Let f : G(L) −→ GL(E) be the representation

associated to the L–module ρ : L −→ gl(E), that is, ψf = ρ. Then the image I =

image(f) of G(L) in GL(E) is the group-envelope of ρ(L) ⊂ gl(E).

Proof. Consider a factorization ρ : L −→ LieH, where H ⊂ GL(E). Because ρ =

(Lie f) ◦ χ (see (14)), it then follows that χ(L) ⊂ (Lie f)−1(LieH). But (Lie f)−1(LieH)

is just Lie f−1(H). Indeed, in case G(L) is an algebraic group, this can be deduced

easily from [DG70, p. 259, Proposition II.2.6.1] and an argument using the graph of f ,

while the general case follows from this one and Lemma 4.7. Hence, f−1(H) = G(L)

because χ : L −→ Lie G(L) is algebraically dense. This implies that I ⊂ H. Because

ρ(L) = Lie(f) ◦ χ(L), we deduce that Lie I ⊃ ρ(L), so that I is the group-envelope. �

5. The differential Galois group

In this section, X is assumed to be a proper, connected and smooth K-scheme and x0
a K-point of X. We recall that Θ(X, x0) is the group scheme constructed in eq. (7).

Using the tensor equivalences

Rep(G(LX))
∼−→ LX-mod

∼−→ AX-mod
V−→MICtr •|x0−→ Rep Θ(X, x0)
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obtained by eq. (4), Theorem 3.6 and Corollary 4.3, we derive an isomorphism

γ : Θ(X, x0)
∼−→ G(LX)

such that the corresponding functor γ# : Rep G(LX) −→ Θ(X, x0) is naturally isomor-

phic to the above composition.

Let (E, A) ∈ AX-mod be given. With an abuse of notation, we shall let A denote

the linear arrow H0(Ω1
X)∗ −→ End(E), the morphism of associative algebras AX −→

End(E) or the morphism of Lie algebras LX −→ End(E).

Theorem 5.1. The differential Galois group of V (E, A) = (OX ⊗ E, dA) is the group-

envelope of A(H0(X, Ω1
X)∗).

Said otherwise, given a trivial vector bundle E or rank r with global basis {ei}ri=1, an

integrable connection

∇ : E −→ E ⊗ Ω1
X

and a basis {θj}gj=1 of H0(X, Ω1
X), define matrices Ak = (a

(k)
ij )1≤i,j≤r ∈ Mr(K) by

∇ej =

g∑
k=1

r∑
i=1

a
(k)
ij · ei ⊗ θk.

Then, the differential Galois group of E at the point x0 is isomorphic to the group-envelope

in GLr(K) of the Lie algebra generated by {Ak}gk=1.

Proof. We note that the Lie subalgebra of End(E) generated by A(H0(Ω1
X)∗) is the image

of A(LX); indeed, as a Lie algebra, LX is generated by H0(Ω1
X)∗ (see Lemma 2.3). Now we

apply Theorem 4.9 to conclude that the image of G(LX) in GL(E) is the group-envelope

of the Lie algebra generated by A(H0(Ω1
X)∗). Because of Proposition 3.7, the image of

Θ(X, x0) ' G(LX) is the image of Π(X, x0), which is the differential Galois group. �

Remark 5.2. In “birational” differential Galois theory, one can find a result reminiscent

of Theorem 5.1; see [PS03, p. 25, Remarks 1.33].

Remark 5.3. Theorem 5.1 is certainly false if X is not proper: take X = SpecK[x, x−1]

and define (OXe, ∇) by ∇e = ke⊗ dx

x
for any given k ∈ Z.

6. Applications

Fixing generators of the Lie algebra of an algebraic subgroup scheme of some general

linear group allows us to construct connections with a prescribed differential Galois group.

The following is deduced using Theorem 5.1.

Corollary 6.1. Let X be a proper curve (smooth and integral, by assumption) over K of

genus g ≥ 2 and carrying a point x0 ∈ X(K). Let G be a semi-simple linear algebraic

group. Then there exists a trivial vector bundle with a connection having differential

Galois group G.
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Proof. We know that g := Lie(G) is semi-simple [Mi17, p. 476]. According to Kuranishi’s

theorem (see [Ku49, Theorem 1] or [BLie, VIII.2, p. 221, Exercise 8]), there exists a two

dimensional vector space V ⊂ g generating g. Let G −→ GL(E) be a closed immersion

and regard V as a vector space of matrices in End(E). We then construct any arrow of

vector spaces A : H0(X, Ω1
X)∗ −→ End(E) such that Im(A) = V . Note that G is the

group-envelope of V . �

In what follows, we wish to study connections on

P = P1
K and P ∗ = P r {0, 1, ∞}.

To carry over this task, we give ourselves a point p ∈ P ∗(K) and put forward the following

construction. Let z be the inhomogeneous coordinate on P and, for each integer n ≥ 3,

define Xn as being the smooth, projective and connected curve whose field of rational

functions is given by

K(z, w), wn = [p(p− 1)]n−1 · z(z − 1).

Here, of course, we have abused notation and identified p and the value z(p). If

fn : Xn −→ P

is the induced morphism, then its restriction to

X∗n := f−1n (P ∗)

is etale and the fibre f−1n (p) possesses an obvious K-rational point, which shall be denoted

by x. In particular, H0(OXn) = K and, according to [Go03, Exercise 3.8],

genus(Xn) =

{
(n− 1)/2, if n is odd,
(n− 2)/2, if n is even.

It is not difficult to see that X∗n −→ P ∗ is a principal µn-bundle.

Let H be any connected linear algebraic group and define

s(H) =
minimal number of

generators of Lie(H).

Corollary 6.2. Let n ∈ N be such that genus(Xn) ≥ s(H). There exists a logarithmic

connection on P [Ka70, 4.0–4.3], call it (M , ∇), having poles on {0, 1, ∞}, such that

the connected component of the differential Galois group of M |P ∗ at the point p is H. In

addition, the group of connected components of the differential Galois group is µn.

Proof. Provided that n is such that

genus(Xn) ≥ s(H), (∗)

it is possible to find a connection (N , ∇0) of the form V (E, A) whose differential Galois

group at the point x is H. Let M = f∗N be endowed with its canonical logarithmic

connection, with poles on {0, 1, ∞}, induced by ∇0; see Remark 6.3. It is a known fact

that the restriction

〈N 〉⊗ −→ 〈N |X∗n〉⊗
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is an equivalence of categories; see for example [Kin15, p. 6464, Lemma 2.5], where the

proof, written for the case of positive characteristic and D-modules, can be used literally

in the present context. (The uninitiated reader might also profit from knowing that the

category of D-modules and integrable connections are one and the same [BO78, 2.15] in

characteristic zero.) We hence know that the differential Galois group of N |X∗n at the

point x is also H (see Remark 3.3). Consequently, letting G stand for the differential

Galois group of M |P ∗ , we obtain a closed immersion

ι : H −→ G

by means of the pull-back functor

〈M |P ∗〉⊗ −→ 〈N |X∗n〉⊗.

From Proposition 7.2, we conclude that Coker(ι) = µn. �

The following Remark was used in the proof of Corollary 6.2; it should be well-known,

but we were unable to find a suitable reference.

Remark 6.3. Let f : Y −→ X be a surjective morphism between smooth projective

curves. We recall some facts from [Ha77, IV.2]. The ramification divisor Df for f is the

divisor of the cokernel Ω1
Y/X of the natural morphism f ∗Ω1

X −→ Ω1
Y , so

Ω1
Y = (f ∗Ω1

X)⊗ OY (Df ). (15)

Set D̃ = (Df )red and D = f(D̃)red. We note that f ∗D ≥ Df (in fact, f ∗D− D̃ ≥ Df ),

so using (15) we have an injective homomorphism of coherent sheaves

Ω1
Y −→ (f ∗Ω1

X)⊗ OY (f ∗D) = f ∗(Ω1
X ⊗ OX(D)) . (16)

Let ∇ : E −→ E ⊗ Ω1
Y be a connection on a vector bundle E over Y . Using (16), this

gives

∇ : E −→ E ⊗ f ∗(Ω1
X ⊗ OX(D)) .

Taking direct image of it and using the projection formula, we get

f∗∇ : f∗E −→ f∗(E ⊗ f ∗(Ω1
X ⊗ OX(D))) = (f∗E)⊗ Ω1

X ⊗ OX(D),

which is a logarithmic connection on f∗E.

We now want to elaborate on a statement similar to that of Corollary 6.2 in which we

can actually assure that the differential Galois group is connected. The price to pay for

this seems to be a loss of control on the “constructibility” of our solution and on the types

of group attained; it is no longer possible to say exactly which connection produces the

desired differential Galois group.

Let us now suppose that H is reductive. Letting Z stand for its center and Out(H)

for the sheaf of external automorphisms [SGA3, Exposé XXIV], we assume that Z and

Out(H) are finite. (Conditions for the validity of this last assumption are spelled out by

Corollary 1.6 of [SGA3, XXIV].)
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Lemma 6.4. Let n ≥ 3 be prime to #Out(H) and #Z, and let G be a group scheme

over K fitting into a short exact sequence

1 −→ H −→ G −→ µn −→ 1. (e)

Then G ' H × µn and, in particular, H is a quotient of G.

Proof. By hypothesis, the morphism κe : µn −→ Out(H) associated to (e) (cf. Section

7.1) is trivial. The action of µn on Z is also trivial because of this. Let us now adopt

the notations of [DG70, III.6] to employ this reference. (We shall mainly require the set

Ex̃1, introduced on p. 435 of [DG70].) From [DG70, III.6.4.6, p. 448, Corollary], we learn

that Ex̃1(µn, Z) = 0. (In the context of finite groups, this is the “Schur-Zassenhaus”

theorem.) Then, Theorem 3.1 of [FLA19] may be applied (see also section 7.1) to conclude

that there exists one unique (equivalence class of) extension of µn by H whose outer action

µn −→ Out(H) is trivial. This implies that G ' H × µn. �

Corollary 6.5. Suppose that H is reductive and that both Z and Out(H) are finite group

schemes. Then, there exists a logarithmic connection on P , with poles on {0, 1,∞}, whose

restriction to P ∗ has differential Galois group H. �

Remark 6.6. We find useful to end this section by giving the interested reader some

information on the “inverse problem of differential Galois theory”, i.e., the problem of de-

scribing the linear algebraic groups which are differential Galois groups. A fore-running

result appears in [TT79]: each linear algebraic group over C is a differential Galois group

of a connection on some open subset of P1. The proof in op. cit. makes use of the funda-

mental group, the solution of Hilbert’s 21st problem, and a result saying that each linear

algebraic group is the closure of a finitely generated subgroup of its points. Another result

worth mentioning here is that of Mitschi and Singer in [MS96], where it is proved that,

provided K is algebraically closed, any connected linear algebraic group is the differential

Galois group of some linear differential system of the form

y′ =

(
A1

z − α1

+ · · ·+ Ad
z − αd

+ A∞

)
y,

where Aj are constant matrices. (Note that the system is regular-singular, except perhaps

at∞.) As this is a theme with many contributions and there is no chance of doing justice

to all its developments in this remark, we refer to [PS03, Chapter 11].

7. Appendix

We use this appendix to record some subsidiary results which are unfortunately only

explained in insufficient generality in the literature.

7.1. Extensions of group schemes. Let H be a group scheme over a field, with center

Z and sheaf of automorphisms Aut(H). Write c : H −→ Aut(H) for the conjugation

morphism. By definition, Ker(c) = Z, so that H/Z may be seen as a subsheaf of Aut(H);

it is usually called the sheaf of inner automorphisms of H and denoted by Inn(H). The
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quotient Aut(H)/Inn(H) is called the sheaf of outer automorphisms of H and is denoted

by Out(H). In summary, we arrive at the tautological short exact sequence

1 −→ H/Z
c−→ Aut(H) −→ Out(H) −→ 1. (τ)

These constructions agree with the ones in [SGA3, XXIV, 1.1].

We now consider an exact sequence of group schemes

1 −→ H
ι−→ E

p−→ G −→ 1. (e)

If c : E −→ Aut(H) is the morphism obtained by conjugation, passing to the induced

morphism of quotients, we derive a morphism of sheaves of groups

κe : G −→ Out(H),

called the canonical outer action.

Another relevant action coming from (e) is the following. Since Z is characteristic in

H, we deduce a morphism of sheaves of groups r : Aut(H) −→ Aut(Z), and Inn(Z) is

certainly in the kernel of r. This allows us to define a morphism of sheaves Out(H) −→
Aut(Z) and consequently an arrow of sheaves of groups

κZ : G −→ Aut(Z).

In [FLA19], the authors chose to work with a different interpretation of the canonical

outer action, which is to be related to the one introduced above in order that we be able

to apply the results of op.cit.

Noting that Z / E, the sequence (e) produces

1 −→ H/Z
ι−→ E/Z

p−→ G −→ 1. (e)

The natural morphism or sheaves of groups

c : E/Z −→ Aut(H)

gives rise, passing to the associated quotients, to κe. (We are using c to denote also the

arrow H/Z −→ Aut(H), but this should cause no confusion.)

Pulling back the sequence (τ) by κe, we arrive at an exact sequence of sheaves

1 // H/Z
(c, e)

// Aut(H) ×
Out(H),κe

G
pr // G // 1. (κ∗eτ)

Clearly, the diagram

1 // H/Z
ι // E/Z

(c, p)

��

p // G // 1

1 // H/Z
(c, e)

// Aut(H) ×
Out(H)

G pr
// G // 1

commutes, and hence (e) is equivalent, as an extension, to (κ∗eτ).

According to [FLA19, Def. 2.4], an extension

1 −→ H
ι′−→ E ′

p′−→ G −→ 1, (e′)
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which induces the extension

1 −→ H/Z
ι′−→ E ′/Z

p′−→ G −→ 1, (e′)

has “the same outer action as (e)” if there exists an isomorphism

ϕ : E/Z
∼−→ E ′/Z

such that (e) and (e′) are isomorphic via ϕ and

E/Z
c //

ϕ

��

Aut(H)

E ′/Z
c

66

commutes.

Lemma 7.1. The extension (e′) has the same outer action as (e), in the terminology of

[FLA19], if and only if κe = κe′.

Proof. (⇒) This is a simple consequence of the commutative diagram

H/Z
ι // E/Z

c //

ϕ

��

Aut(H)

H/Z
ι′

// E ′/Z.
c

66

(⇐) This is quite simple given the isomorphisms of extensions (e) ' (κ∗eτ) and (e′) '
(κ∗e′τ) explained above. �

7.2. Generalising a result of Katz. In [Ka87, Proposition 1.3.2], Katz shows how to

compare the differential Galois group of a connection and of its push-forward along a

Galois etale covering. In this section, we extend this result to the case of a torsor under

an etale group scheme.

Let X be a smooth and connected K-scheme and x0 a K-point of X. Given a finite

group scheme G, a G-torsor

f : Y −→ X

and a K-point y0 of Y above x0, we can say that:

Proposition 7.2. Let N be a vector bundle on Y with an integrable connection, and let

M be its push-forward connection on X. Then the connection f ∗(M ) is isomorphic to a

direct sum of the connection N . In addition, if GM (respectively, GN ) is the differential

Galois of M (respectively, N ) at the point x0 (respectively, y0), then the natural pull-back

functor

f ∗ : 〈M 〉⊗ −→ 〈N 〉⊗
induces a closed immersion ι : GM −→ GN with cokernel G.
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Proof. The first claim is very simple and we offer no proof. We thus concentrate on the

relation between the differential Galois groups. The essence of the argument we offer is

explained in [BHdS18, Proposition 2.2], but we reproduce the details for the convenience

of the reader. It is clear that ι is a closed immersion [DM82, p. 139, Proposition 2.21(a)].

Let T stand for the full subcategory of 〈M 〉⊗ having for objects those E ∈ 〈M 〉⊗ such

that f ∗E is a trivial connection. The main theorem of Tannakian duality [DM82, p. 130,

Theorem 2.11] assures the existence of a group scheme Q such that the functor x∗0 gives

us an equivalence

x∗0 : T −→ Rep(Q).

In addition, the inclusion T ⊂ 〈M 〉⊗ produces a quotient morphism GM −→ Q.

We set out to prove that (a), (b) and (c) of [EHS08, Theorem A.1(iii)], henceforth called

simply conditions (a), (b) and (c), are satisfied for the diagram GN −→ GM −→ Q.

Condition (a) is assured by the construction of Q from its category of representations.

Condition (c) is guaranteed by the fact that the counit f ∗f∗F −→ F is an epimorphism

for each F ∈ 〈N 〉⊗. We only need to show that (b) holds. The verification employs the

following.

Let n = #G. Since M⊕n ' f∗(N ⊕n) and N ⊕n ' f ∗M , the projection formula

gives

M⊕n ' f∗f
∗(M )

' M ⊗ f∗(OY ).

As OX is a quotient of M ∨ ⊗M , it then follows that the connection f∗(OY ) belongs to

〈M 〉⊗ and hence to T, since f ∗f∗(OY ) is certainly trivial. In addition, it is not difficult

to see that T ⊂ 〈f∗(OY )〉⊗ which assures the equality

T = 〈f∗(OY )〉⊗.

Let now E ∈ 〈M 〉⊗ be given. Denote by P the connection (f∗OY )∨ ∈ T and, for

each horizontal arrow ϕ : P −→ E , let Pϕ stand for its image. Taking the sum over all

such ϕ, we obtain a subobject E0 of E ; needless to say, E0 is actually a quotient of a finite

number of copies of P. Since f ∗P is a trivial connection, we see that f ∗E0 is also trivial.

Let s ∈ Γ(Y, f ∗E ) be horizontal and consider the evaluation map s∨ : f ∗(E ∨) −→ OY .

This gives rise to t : E ∨ −→ f∗(OY ) and hence to t∨ : P −→ E . Now, it is not difficult

to see that, for each open affine subset U where P|U and E |U are free OU -modules, the

restriction s|U belongs to the image of f ∗(t∨) : f ∗P −→ f ∗E . Hence s ∈ Γ(Y, f ∗E0)

and (b) is assured.

To end, it must be observed that Q ' G, and this follows from the fact that the

associated bundle construction Y ×G (−) gives us an equivalence between Rep(G) and

〈f∗(OY )〉⊗. �
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Oxford Graduate Texts in Mathematics, 6. Oxford Science Publications. Oxford University
Press, Oxford, 2002.

[Mac70] S. Mac Lane, Categories for the working mathematician, Graduate Texts in Mathematics 5,
Springer-Verlag, New York, 1970.

[Mi17] J. Milne, Algebraic Groups. The Theory of Group Schemes of Finite Type Over a Field. Cam-
bridge Studies in Advanced Mathematics, No. 170. Cambridge University Press, Cambridge,
2017.



22 I. BISWAS, P. H. HAI, AND J. P. DOS SANTOS

[MS96] C. Mitschi and M. F. Singer, Connected Linear Groups as Differential Galois Groups. Jour.
Algebra 184, 333–361 (1996).

[Mo93] S. Montgomery, Hopf algebras and their actions on rings. Regional Conference Series in Math-
ematics. 82. Providence, RI: American Mathematical Society (1993).

[Mu70] D. Mumford, Abelian varieties Tata Institute of Fundamental Research Studies in Mathematics,
No. 5, Bombay; Oxford University Press, London 1970.

[Na02] N. Nahlus, Lie algebras of pro-affine algebraic groups. Canad. J. Math. 53 (2002), 595–607.
[Ni05] N. Nitsure, Construction of Hilbert and Quot schemes, in Fundamental algebraic geometry.

Mathematical Surveys and Monographs, 123. American Mathematical Society, Providence, RI,
2005.

[PS03] M. van der Put and M. Singer, Galois theory of linear differential equations. Grundlehren der
mathematischen Wissenschaften 328. Springer 2003.

[Sw69] M. Sweedler, Hopf algebras. New York: W.A. Benjamin, Inc. (1969).
[TT79] C. Tretkoff and M. Tretkoff, Solution of the inverse problem of differential Galois theory in the

classical case. Amer. J. Math. 101 (1979), 1327–1332.
[Wa79] W. C. Waterhouse, Introduction to affine group schemes, Graduate Texts in Mathematics, 66.

Springer-Verlag, New York-Berlin, 1979.

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road,
Mumbai 400005, India

E-mail address: indranil@math.tifr.res.in

Institute of Mathematics, Vietnam Academy of Science and Technology, Hanoi, Viet-
nam

E-mail address: phung@math.ac.vn
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