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Abstract. In this paper, we study the Cauchy-Dirichlet problem for Parabolic complex
Monge-Ampère equations on strongly pseudoconvex domains using the viscosity method.
We prove a comparison principle for Parabolic complex Monge-Ampère equations and
use it to study the existence and uniqueness of viscosity solution in certain cases where
the sets {z ∈ Ω : f(t, z) = 0} may be pairwise disjoint.
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1. Introduction

In Algebraic Geometry, the Minimal Model Program is known as a process of simplifying
algebraic varieties through algebraic surgeries in birational geometry. In [11, 10], Song and
Tian gave a conjectural picture to approach the Minimal Model Program via the Kähler-
Ricci flow. This approach requires a theory of weak solutions for certain degenerate
parabolic complex Monge-Ampère equations.

A viscosity approach for parabolic Monge-Ampère (PMA) equations has been devel-
oped by Eyssidieux-Guedj-Zeriahi both on domains [4] and on compact Kähler manifolds
[5, 6] (see also [2] and [12] for some generalizations). In another direction, a theory of
pluripotential solutions for PMA equations has been developed in [7, 8]. Under suitable
conditions, the notions of these weak solutions are equivalent [9]. Besides having applica-
tions for the Minimal Model Program, the theories of weak solutions for PMA equations
are interesting topics in themself. The aim of this paper is to study the theory of viscosity
solutions for PMA equations in domains of Cn.
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Let Ω ⊂ Cn be a strongly pseudoconvex domain and let T ∈ (0,∞). We consider the
following Cauchy-Dirichlet problem:

(1)


(ddcu)n = e∂tu+F (t,z,u)µ(t, z) in ΩT ,

u = ϕ in [0, T )× ∂Ω,

u(0, z) = u0(z) in Ω̄,

where

• ΩT = (0, T )× Ω.
• F (t, z, r) is continuous in [0, T ]× Ω̄× R and non-decreasing in r.
• µ(t, z) = f(t, z)dV , where dV is the standard volume form in Cn and f ≥ 0 is a

bounded continuous function in [0, T ]× Ω.
• ϕ(t, z) is a continuous function in [0, T ]× ∂Ω.
• u0(z) is continuous in Ω̄ and plurisubharmonic in Ω such that u0(z) = ϕ(0, z) in
∂Ω.

In [4], Eyssidieux-Guedj-Zeriahi proved that if (u0, µ(0, z)) is admissible (see Definition
2.10) and F, f, ϕ do not depend on t then (1) has a unique viscosity solution. In [2],
this result has been extended to the case where F, f, ϕ depend on t and f satisfies some
additional conditions under which {z ∈ Ω : f(t, z) = 0} ⊂ {z ∈ Ω : f(s, z) = 0} for
0 < s < t < T (see [2, Theorem 4.13]). In the general case, with f is merely a non-
negative, bounded, continuous function, the question about the existence and uniqueness
of viscosity solution to (1) is still open.

In this paper, we prove a comparison principle for (1) and use it to study the existence
and uniqueness of viscosity solution to (1) in certain cases where the sets {z ∈ Ω :
f(t, z) = 0} may be pairwise disjoint. Specifically, we assume that Φ : (−1, 1)× Ω→ Cn

is a continuous mapping satisfying the following conditions:

• the mapping z 7→ Φ(s, z) is holomorphic in Ω for every s ∈ (−1, 1);
• for each U b Ω, there exists CU > 0 such that

(2) |Φ(s, z)− z| ≤ CU |s|,
for every (s, z) ∈ (−1, 1) × U . In particular, Φ(0, z) = z and for every U b Ω,
there exists δU such that Φ(s, z) ∈ Ω for all (s, z) ∈ (−δU , δU)× U .

Our main result is as follows:

Theorem 1.1. Suppose that for every 0 < R < S < T , K b Ω and ε > 0, there exists
0 < δ < δK such that

(3) (1 + ε)f(t, z) ≥ f(t+ s,Φ(s, z)),

for every z ∈ K, R < t < S and |s| < δ. Assume that u and v, respectively, is a
bounded viscosity subsolution and a bounded viscosity supersolution to (1). Then, for
every 0 < R < S < T , K b Ω and ε > 0, there exists 0 < δ < δK such that

u(t+ s1,Φ(s1, z)) < v(t+ s2,Φ(s2, z)) + ε,

for all z ∈ K, R < t < S and max{|s1|, |s2|} < δ.

It is easy to see that if f does not depend on t then f satisfies (3) with Φ(s, z) = z. Some
other simple examples are (f,Φ) = (g(tz0 + z),−sz0 + z) and (f,Φ) = (g(eitz), e−isz),
where g is a non-negative continuous function in Cn and z0 ∈ Cn. If f1, f2 satisfy (3) for
the same Φ then tf1 + (T − t)f2 satisfies (3).

By using Theorem 1.1, we obtain the following result:
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Corollary 1.2. Assume that (u0, µ(0, z)) is admissible (see Definition 2.10). Suppose
that Φ and f satisfy the conditions in Theorem 1.1. Then (1) has a unique viscosity
solution.

2. Preliminaries

In this section, we recall some basic concepts and well-known results about viscosity
sub/super-solutions. The reader can find more details in [1], [3] and [2].

Definition 2.1. (Test functions) Let w : ΩT −→ R be any function defined in ΩT and
(t0, z0) ∈ ΩT a given point. An upper test function (resp. a lower test function) for w
at the point (t0, z0) is a C(1,2)-smooth function q (i.e., q is C1 in t and C2 in z) in a
neighbourhood of the point (t0, z0) such that w(t0, z0) = q(t0, z0) and w ≤ q (resp. w ≥ q)
in a neighbourhood of (t0, z0).

Definition 2.2. 1. A function u ∈ USC(ΩT ) is said to be a (viscosity) subsolution to
the parabolic complex Monge-Ampère equation

(4) (ddcu)n = e∂tu+F (t,z,u)µ(t, z),

in ΩT if for any point (t0, z0) ∈ ΩT and any upper test function q for u at (t0, z0), we have

(ddcqt0(z0))n ≥ e∂tq(t0,z0)+F (t0,z0,q(t0,z0))µ(t0, z0).

In this case, we also say that u satisfies the differential inequality

(ddcu)n ≥ e∂tu(t,z)+F (t,z,u(t,z))µ(t, z),

in the viscosity sense in ΩT .
A function u ∈ USC([0, T )×Ω) is called a subsolution to the Cauchy-Dirichlet problem

(1) if u is a subsolution to (4) satisfying u ≤ ϕ in [0, T )× ∂Ω and u(0, z) ≤ u0(z) for all
z ∈ Ω.

2. A function v ∈ ΩT is said to be a (viscosity) supersolution to the parabolic complex
Monge-Ampère equation (4) in ΩT if for any point (t0, z0) ∈ ΩT and any lower test
function q for v at (t0, z0) such that ddcqt0(z0) ≥ 0, we have

(ddcqt0)
n(z0) ≤ e∂tq(t0,z0)+F (t0,z0,q(t0,z0))µ(t0, z0).

In this case we also say that v satisfies the differential inequality

(ddcv)n ≤ e∂tv(t,z)+F (t,z,v(t,z))µ(t, z),

in the viscosity sense in ΩT .
A function v ∈ LSC([0, T )× Ω) is called a supersolution to (1) if v is a supersolution

to (4) satisfying v ≥ ϕ in [0, T )× ∂Ω and v(0, z) ≥ u0(z) for all z ∈ Ω.

3. A function u is said to be a (viscosity) solution to (4) (respectively, (1)) if it is a
subsolution and a supersolution to (4) (respectively, (1)).

Remark 2.3. a) By the same argument as in the proof of [3, Proposition 1.3], if u is a
subsolution to (4) and q is an upper test function for u at (t0, z0) ∈ ΩT then ddcqt0(z0) ≥ 0;
b) If u is a subsolution to (4) then u(t, z) is plurisubharmonic in z for every t ∈ (0, T )
(see [4, Corollary 3.7]).
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For each function u : ΩT −→ R and for every (t0, z0) ∈ ΩT , we define by P2,+u(t0, z0)
the set of (τ, p,Q) ∈ R× R2n × S2n satisfying

(5) u(t, z) ≤ u(t0, z0)+τ(t−t0)+o(|t−t0|)+〈p, z−z0〉+
1

2
〈Q(z−z0), z−z0〉+o(|z−z0|2),

and denote by P̄2,+u(t0, z0) the set of (τ, p,Q) ∈ R × R2n × S2n satisfying: ∃(tm, zm) →
(t0, z0) and (τm, pm, Qm) ∈ P2,+u(t0, z0) such that (τm, pm, Qm)→ (τ, p,Q) and u(tm, zm)→
u(t0, z0)}.

We define in the same way the sets P2,−u(t0, z0) and P̄2,−u(t0, z0) by

P2,−u(t0, z0) = −P2,+(−u)(t0, z0),

and
P̄2,−u(t0, z0) = −P̄2,+(−u)(t0, z0).

Since F and f are continuous, by [3, Proposition 2.6], we have:

Proposition 2.4.
1. An upper semi-continuous function u : ΩT −→ R is a subsolution to the parabolic

equation

(6) (ddcu)n = e∂tu+F (t,z,u)µ(t, z),

if and only if for all (t0, z0) ∈ ΩT and (τ, p,Q) ∈ P̄2,+u(t0, z0), we have ddcQ ≥ 0 and

(7) (ddcQ)n ≥ eτ+F (t0,z0,u(t0,z0))µ(t0, z0).

Here ddcQ := (ddc〈Qz, z〉), z ∈ Cn = R2n.
2. A lower semi-continuous function v : ΩT −→ R is a supersolution to the parabolic
equation (6) if and only if for all (t0, z0) ∈ ΩT and (τ, p,Q) ∈ P̄2,−u(t0, z0) such that
ddcQ ≥ 0, we have

(8) (ddcQ)n ≤ eτ+F (t0,z0,v(t0,z0))µ(t0, z0).

The following theorem is the parabolic Jensen-Ishiis maximum principle which plays
an important role in the theory of viscosity solution:

Theorem 2.5. [1, Theorem 8.3] Let u ∈ USC(ΩT ) and v ∈ LSC(ΩT ). Let φ be a function
defined in (0, T ) × Ω2 such that (t, ξ, η) 7−→ φ(t, ξ, η) is continuously differentiable in t
and twice continuously differentiable in (ξ, η).

Assume that the function (t, ξ, η) 7−→ u(t, ξ)− v(t, η)− φ(t, ξ, η) has a local maximum

at some point (t̂, ξ̂, η̂) ∈ (0, T )× Ω2.
Assume furthermore that both w = u and w = −v satisfy:

(2.5)


∀(s, z) ∈ Ω ∃r > 0 such that ∀M > 0 ∃C satisfying

|(t, ξ)− (s, z)| ≤ r,
(τ, p,Q) ∈ P2,+w(t, ξ)
|w(t, ξ)|+ |p|+ |Q| ≤M

 =⇒ τ ≤ C.

Then for any κ > 0, there exists (τ1, p1, Q
+) ∈ P̄2,+u(t̂, ξ̂), (τ2, p2, Q

−) ∈ P̄2,−v(t̂, η̂)
such that

τ1 = τ2 +Dtφ(t̂, ξ̂, η̂), p1 = Dξφ(t̂, ξ̂, η̂), p2 = −Dηφ(t̂, ξ̂, η̂)

and

−
(

1

κ
+ ‖A‖

)
I ≤

(
Q+ 0
0 −Q−

)
≤ A+ κA2,
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where A := D2
ξ,ηφ(t̂, ξ̂, η̂) ∈ S4n.

The following lemma is deduced by combining Proposition 2.4 and Theorem 2.5:

Lemma 2.6. Let (uτ ) be a locally uniformly bounded family of real valued functions defined
in ΩT .

1. Assume that for every τ , uτ is a viscosity subsolution to the equation

(9) (ddcw)n = e∂tw+F (t,z,w)µ(t, z),

in ΩT . Then u = (supτ uτ )
∗ is a subsolution to (9) in ΩT .

2. Assume that for every τ , uτ is a viscosity supersolution to (9). Then u = (infτ uτ )∗
is a supersolution to (9) in ΩT .

3. If τ ∈ N then 1. and 2. hold for u = (lim sup
τ→∞

uτ )
∗ and u = (lim inf

τ→∞
uτ )∗.

In the theory of viscosity solution, the comparison principle and Perron method are two
key tools for studying the existence and uniqueness of solution. The following comparison
principle has been established in [4]:

Theorem 2.7. [4, pages 949-953] Let u (resp. v) be a bounded subsolution (resp. super-
solution) to the parabolic complex MongeAmpère equation (4) in ΩT . Assume that one of
the following conditions is satisfied

a) µ(t, z) > 0 for every (t, z) ∈ (0, T )× Ω.
b) µ is independent of t.
c) Either u or v is locally Lipschitz in t uniformly in z.

Then

sup
ΩT

(u− v) ≤ sup
∂P (ΩT )

(u− v)+,

where u (resp. v) has been extended as an upper (resp. a lower) semicontinuous function
to ΩT .

In order to recall the Perron method, we need the concepts of ε-sub/super-barrier.

Definition 2.8. a) A function u ∈ USC([0, T )× Ω̄) is called ε-subbarrier for (1) if u is
subsolution to (4) in the viscosity sense such that u0 − ε ≤ u∗ ≤ u ≤ u0 in {0} × Ω̄ and
ϕ− ε ≤ u∗ ≤ u ≤ ϕ in [0, T )× ∂Ω.
b) A function u ∈ LSC([0, T )× Ω̄) is called ε-superbarrier for (1) if u is supersolution to
(4) in the viscosity sense such that u0+ε ≥ u∗ ≥ u ≥ u0 in {0}×Ω̄ and ϕ+ε ≥ u∗ ≥ u ≥ ϕ
in [0, T )× ∂Ω.

Proposition 2.9. [2, Proposition 4.1] For all ε > 0, there exists a continuous ε-subbarrier
for (1) which is Lipschitz in t.

Definition 2.10. We say that (u0, µ(0, .)) is admissible if for all ε > 0, there exist
uε ∈ C(Ω̄) and Cε > 0 such that u0 ≤ uε ≤ u0 + ε and (ddcuε)

n ≤ eCεµ(0, z) in the
viscosity sense.

Proposition 2.11. [2, Theorem 1.3] If (u0, µ(0, .)) is admissible then the function uε in
the definition 2.10 can be taken to be psh in Ω.

Proposition 2.12. [2, Proposition 4.3] If (u0(z), µ(0, z)) is admissible then for all ε > 0,
there exists a continuous ε-superbarrier for (1) which is Lipschitz in t.
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Lemma 2.13. (Perron method)[2, Lemma 2.12] Assume that for every ε > 0, the prob-
lem (1) admits a continuous ε-superbarrier which is Lipschitz in t and a continuous ε-
subbarrier. Denote by S the family of all continuous subsolutions to (1). Then φS =
sup{v : v ∈ S} is a discontinuous viscosity solution to (1), i.e., (φS)∗ is a subsolution and
(φS)∗ is a supersolution.

3. Some useful lemmas

Throughout this section, we always suppose that Φ and f satisfy the conditions as in
Theorem 1.1. Given a bounded function u : ΩT → R and a constant A > 2oscΩT (u). For
every relatively compact open subet U of Ω and for each constant 0 < δ � 1 satisfying
Φ([−δ, δ]× U) ⊂ Ω), we define

uk(t, z) = sup{u(t+ s,Φ(s, z))− k|s| : |s| ≤ A

k
},

and

uk(t, z) = inf{u(t+ s,Φ(s, z))− k|s| : |s| ≤ A

k
},

for every k > max{A
δ
,
2A

T
} and (t, z) ∈ (A/k, T − A/k)× U .

We have the following modified version of [4, Lemma 3.5]:

Lemma 3.1. Assume that u is a bounded upper semicontinuous function in ΩT . Then

(i) uk is upper semicontinuous in (A/k, T − A/k)× U ;
(ii) for all (t, z) ∈ (A/k, T − A/k)× U ,

u(t, z) ≤ uk(t, z) ≤ sup|s|≤A/k u(t+ s,Φ(s, z));

(iii) if (t, z) and (t+ s,Φ(s, z)) belong in (A/k, T − A/k)× U then

|uk(t, z)− uk(t+ s,Φ(s, z))| ≤ k|s|;
(iv) if (ddcu)n ≥ e∂tu+F (t,z,u)µ(t, z) in the viscosity sense in ΩT then, for every 0 < ε <

1, there exists kε > 0 such that, for every k > kε,

(10) (ddcuk)n ≥ (1− ε)e∂tuk+Fk(t,z,uk)fk(t, z)dV,

in the viscosity sense in (δ, T−δ)×U , where Fk(t, z, r) = inf |s|≤A/k F (t+s,Φ(s, z), r)
and fk(t, z) = inf |s|≤A/k f(t+ s,Φ(s, z)).

Proof. (i) Let (t0, z0) ∈ (A/k, T − A/k)× U . We will show that

uk(t0, z0) ≥ lim sup
(t,z)→(t0,z0)

uk(t, z).

Assume that (tm, zm) ∈ (A/k, T − A/k)× U satisfies (tm, zm)→ (t0, z0) as m→∞ and

lim sup
(t,z)→(t0,z0)

uk(t, z) = lim
m→∞

uk(tm, zm).

Since u is usc and Φ is continuous, by the definition of uk, we have

uk(tm, zm) = u(sm + tm,Φ(sm, zm))− k|sm|,

for some |sm| ≤ A/k. Let {sml} be a subsequence of {sm} which converges to a point
s0 ∈ [−A/k,A/k]. Then
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lim sup
(t,z)→(t0,z0)

uk(t, z) = lim
ml→∞

uk(tml , zml)

= lim
ml→∞

(u(sml + tml ,Φ(sml , zml))− k|sml |)
= lim

ml→∞
u(sml + tml ,Φ(sml , zml))− k|s0|

≤ u(s0 + t0,Φ(s0, z0))− k|s0|
≤ uk(t0, z0).

Hence, uk is usc in (A/k, T − A/k)× U .
(ii) Obvious.
(iii) Let |s0| ≤ A/k such that uk(t, z) = u(t+ s0,Φ(s0, z))− k|s0|. If |s− s0| > A/k then

uk(t, z) = u(t+ s0,Φ(s0, z))− k|s0| ≤ u(t+ s,Φ(s, z)) + 2oscΩTu− k|s0|
≤ uk(t+ s,Φ(s, z)) + A− k|s0|
≤ uk(t+ s,Φ(s, z)) + k|s− s0| − k|s0|
≤ uk(t+ s,Φ(s, z)) + k|s|.

If |s− s0| ≤ A/k then

uk(t, z) = u(t+ s0,Φ(s0, z))− k|s0| ≤ uk(t+ s,Φ(s, z)) + k|s− s0| − k|s0|
≤ uk(t+ s,Φ(s, z)) + k|s|.

Hence

uk(t, z)− uk(t+ s,Φ(s, z)) ≤ k|s|.

By the same argument, we also have

uk(t+ s,Φ(s, z))− uk(t, z) ≤ k|s|.

Therefore

|uk(t, z)− uk(t+ s,Φ(s, z))| ≤ k|s|.

(iv) Let r0 > 0 such that V := U + r0B2n b Ω. Since Φ(t, z) is holomorphic in z and
converges locally uniformly to Id as t→ 0, we have ∂Φα

∂zβ
(t, z) converges uniformly in V to

δαβ as t → 0 for every 1 ≤ α, β ≤ n. Hence, for every 0 < ε < 1, there exists 0 < r1 < δ
such that Φ([−r1, r1]× V ) b Ω and

(11) det

(
∂Φj

∂zk
(t, z)

)
> 1− ε,

for every (t, z) ∈ [−r1, r1] × V . Denote kε = max{A/r1, 2A/T}. We will show that (10)
holds in the viscosity sense in (δ, T − δ)× U for every k > kε.

Let (t0, z0) ∈ (δ, T − δ) × U , s0 ∈ (−A/k,A/k) and let q be an upper test function of
us0(t, z) := u(t+s0,Φ(s0, z))−k|s0| at (t0, z0). Then q̂(t, z) := q(t−s0,Φ

−1(s0, z))+k|s0| is
an upper test function of u at (t̂, ẑ) = (t0+s0,Φ(s0, z0)). Since (ddcu)n ≥ e∂tu+F (t,z,u)µ(t, z)
in the viscosity sense, we have

(12) (ddcq̂(t̂, ξ))n|ξ=ẑ ≥ e∂tq̂(t̂,ẑ)+F (t̂,ẑ,q̂(t̂,ẑ))µ(t̂, ẑ).

Note that ∂tq̂(t̂, ẑ) = ∂tq(t0, z0) and

(ddcq(t0, ξ))
n|ξ=z0 =

∣∣∣∣det

(
∂Φj

∂zk
(t, z)

)∣∣∣∣2 (ddcq̂(t̂, ξ))n|ξ=ẑ.

Therefore, by (11) and (12), we have
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(ddcq(t0, ξ))
n|ξ=z0 ≥ (1− ε)e∂tq(t0,z0)+F (t̂,ẑ,q̂(t̂,ẑ))µ(t̂, ẑ)

≥ (1− ε)e∂tq(t0,z0)+F (t̂,ẑ,q(t0,z0))µ(t̂, ẑ)
≥ (1− ε)e∂tq(t0,z0)+Fk(t0,z0,q(t0,z0))fk(t0, z0)dV.

Since (t0, z0) and q are arbitrary, we get us0 is a subsolution to the equation

(13) (ddcw)n = (1− ε)e∂tw+Fk(t,z,w)fk(t, z)dV,

in (δ, T − δ)× U . Then, it follows from Lemma 2.6 that the function

uk = sup
|s0|≤A/k

us0 = ( sup
|s0|≤A/k

us0)
∗

is a subsolution to (13) in (δ, T − δ)× U .
The proof is completed. �

By the same argument, we have

Lemma 3.2. Assume that u is a bounded lower semicontinuous function in ΩT . Then

(i) uk is lower semicontinuous in (A/k, T − A/k)× U ;
(ii) for all (t, z) ∈ (A/k, T − A/k)× U ,

u(t, z) ≥ uk(t, z) ≥ inf |s|≤A/k u(t+ s,Φ(s, z));

(iii) if (t, z) and (t+ s,Φ(s, z)) belong in (A/k, T − A/k)× U then

|uk(t, z)− uk(t+ s,Φ(s, z))| ≤ k|s|;
(iv) if (ddcu)n ≤ e∂tu+F (t,z,u)µ(t, z) in the viscosity sense in ΩT then, for every 0 < ε <

1, there exists kε > 0 such that, for every k > kε,

(ddcuk)
n ≤ (1 + ε)e∂tuk+Fk(t,z,uk)fk(t, z)dV,

in the viscosity sense in (δ, T − δ) × U , where F k(t, z, r) = sup|s|≤A/k F (t +

s,Φ(s, z), r) and fk(t, z) = sup|s|≤A/k f(t+ s,Φ(s, z)).

In [4], by applying the maximal principle, Eyssidieux-Guedj-Zeriahi has proved the
comparison principle for the case where either the given subsolution or the given su-
persolution is Lipschitz in t. Using the same method as in [4], we obtain the following
lemma:

Lemma 3.3. Let u ∈ USC∩L∞([0, T )×Ω) and v ∈ LSC∩L∞([0, T )×Ω) be, respectively,
a subsolution and a supersolution to the equation

(14) (ddcw)n = e∂tw+F (t,z,w)µ(t, z),

in ΩT . Assume that, for w = u, v, the following condition holds: for every U b Ω and
0 < δ < T/2, there exists k(U, δ) > 0 such that if (t, z) ∈ (δ, T − δ)× U then

(15) |w(t, z)− w(t+ s,Φ(s, z))| ≤ k(U, δ)|s|,

for 0 < |s| � 1. Then

sup
ΩT

(u− v) ≤ sup
∂PΩT

(u− v)+.

Proof. Let δ > 0 be an arbitrary positive constant and denote

h(t, z) = u(t, z)− v(t, z)− δ

T − t
+ δ(|z|2 − C),
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where C = sup
z∈Ω
|z|2. We will show that

(16) max
ΩT

h ≤ max
∂PΩT

h+.

Assume that (16) is false. Then, there exists (t0, z0) ∈ ΩT such that

M := h(t0, z0) = max
[0,T )×Ω

h > max
∂PΩT

h+.

For every N > 0, we denote

hN(t, ξ, η) = u(t, ξ) + δ(|z|2 − C)− v(t, η)− δ

T − t
− N |ξ − η|2

2
,

and let (tN , ξN , ηN) ∈ [0, T )× Ω
2

such that

hN(tN , ξN , ηN) = max
[0,T )×Ω

2
hN =: MN .

By [1, Proposition 3.7], we have limN→∞N |ξN − ηN |2 = 0 and we can assume that
ξN , ηN → z0, tN → t0 as N → ∞. In particular, there exists N0 > 0 such that
(tN , ξN , ηN) ∈ (0, T )× Ω2 for all N ≥ N0.

By Lemma 3.4, the functions w1 = u + δ(|z|2 − C) and w2 = −v satisfy the condition
(2.5) in Theorem 2.5. Then, it follows from Theorem 2.5 that, for every N > N0, there

exist (τN1, pN1, Q
+
N) ∈ P

2,+
w1(tN , ξN) and (τN2, pN2, Q

−
N) ∈ P

2,−
v(tN , ηN) such that

(17) τN1 = τN2 +
δ

(T − tN)2
, pN1 = pN2 = 0,

and Q−N ≥ Q+
N (i.e., 〈Q+

Nζ, ζ〉 ≥ 〈Q
−
Nζ, ζ〉 for every ζ ∈ R2n). In particular, we have

(18) ddcQ−N ≥ ddcQ+
N ≥ δω > 0,

where ω = ddc|z|2. The second inequality holds due to Proposition 2.4. Moreover, it
follows from Proposition 2.4 that

(19) eτN1+F (tN ,ξN ,u(tN ,ξN ))µ(tN , ξN) ≤ (ddcQ+
N − δω)n < (ddcQ+

N)n.

and

(20) eτN2+F (tN ,ηN ,u(tN ,ηN ))µ(tN , ηN) ≥ (ddcQ−N)n.

Combining (18), (19) and (20), we get

eτN2+F (tN ,ηN ,u(tN ,ηN ))µ(tN , ηN) > eτN1+F (tN ,ξN ,u(tN ,ξN ))µ(tN , ξN).

Therefore, by (17), we have

eF (tN ,ηN ,u(tN ,ηN ))µ(tN , ηN) > e
δ

(T−tN )2
+F (tN ,ξN ,u(tN ,ξN ))

µ(tN , ξN).

Letting N →∞, we get

eF (t0,z0,u(t0,z0))µ(t0, z0) > e
δ

(T−tN )2
+F (t0,z0,u(t0,z0))

µ(t0, z0).

This is a contradiction. Then (16) holds. Letting δ ↘ 0, we obtain

sup
ΩT

(u− v) ≤ sup
∂PΩT

(u− v)+.

The proof is completed. �
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Lemma 3.4. Let w be a bounded usc function in ΩT satisfying the following condition: for
every U b Ω and 0 < δ < T/2, there exists k(U, δ) > 0 such that if (t, z) ∈ (δ, T − δ)×U
then

(21) |w(t, z)− w(t+ s,Φ(s, z))| ≤ k(U, δ)|s|,
for 0 < |s| � 1. Then w satisfies the condition (2.5) in Theorem 2.5.

Proof. Assume that q is an upper test function for w at (t0, z0) ∈ (δ, T − δ)×U . By (21),
for 0 < |s| � 1, we have

q(s+ t0,Φ(s, z0))− q(t0, z0) ≥ −k(U, δ)|s|.

Then, for 0 < |s| � 1,

q(s+ t0,Φ(s, z0))− q(t0,Φ(s, z0))

|s|
≥ −k(U, δ)− |q(t0,Φ(s, z0))− q(t0, z0)|

|s|
≥ −k(U, δ)− sup

|ξ|≤CU |s|
‖Dq(t0,Φ(ξ, z0))‖|Φ(s, z0)− z0|

|s|
≥ −k(U, δ)− CU . sup

|ξ|≤CU |s|
‖Dq(t0,Φ(ξ, z0))‖,

where CU > 0 is a constant satisfying (2). Letting s→ 0+ and s→ 0−, we get

(22) |∂tq(t0, z0)| ≤ k(U, δ) + CU .‖Dq(t0,Φ(t0, z0))‖.
Note that (τ, p,Q) ∈ P2,+w(t0, z0) iff there exists an upper test function q for w at (t0, z0)
such that (τ, p,Q) = (∂tq(t0, z0), Dq(t0, z0), D2q(t0, z0)). Then, by (22), it is easy to see
that w satisfies the condition (2.5) in Theorem 2.5. �

4. Proof of Theorem 1.1 and Corollary 1.2

For the reader’s convenience, we recall the Theorem 1.1:

Theorem 4.1. Let Φ : (−1, 1)×Ω→ Cn be a continuous mapping satisfying the following
conditions:

• the mapping z 7→ Φ(s, z) is holomorphic in Ω for every s ∈ (−1, 1);
• Φ(0, z) = z for every z ∈ Ω;
• for each U b Ω, there exists CU > 0 such that

(23) |Φ(s, z)− z| ≤ CU |s|,
for every (s, z) ∈ (−1, 1)× U .

Suppose that for every 0 < R < S < T , K b Ω and ε > 0, there exists 0 < δ � 1 such
that

(24) (1 + ε)f(t, z) ≥ f(t+ s,Φ(s, z)),

for every z ∈ K, R < t < S and |s| < δ. Assume that u and v, respectively, is a bounded
viscosity subsolution and a bounded viscosity supersolution to the Cauchy-Dirichlet prob-
lem (1). Then, for every 0 < R < S < T , K b Ω and ε > 0, there exists 0 < δ � 1 such
that

(25) u(t+ s1,Φ(s1, z)) < v(t+ s2,Φ(s2, z)) + ε,

for all z ∈ K, R < t < S and max{|s1|, |s2|} < δ.
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Proof. Let 0 < R < S < T and denote S1 = (S + T )/2. First, we show that for every
ε > 0 there exists δ1 = δ1(ε) ∈ (0,min{1, R}) such that K b Ωδ1 and

(26) u(t, η) < v(s, ξ) + ε,

for every (t, η), (s, ξ) ∈ ΩS1 \ ([δ1, S1]× Ωδ1) with |t− s| + |η − ξ| < δ1. Here Ωδ1 = {z ∈
Ω : d(z, ∂Ω) > δ1}.

We consider the mapping

G : ΩS1 × ΩS1 −→ R
(t, η, s, ξ) 7→ u(t, η)− v(s, ξ).

Since G is upper semicontinuous, the set

U = {(t, η, s, ξ) ∈ ΩS1

2
: G(t, η, s, ξ) < ε},

is relatively open in ΩS1

2
. Denote

A = {(t, η, t, η) : (t, η) ∈ ([0, S1]× ∂Ω) ∪ ({0} × Ω)}.

We haveA is compact andG ≤ 0 onA. Hence there exists 0 < δ1 < min{1, R, dist(K, ∂Ω)}
such that

(27) ΩS1

2 ∩ (3δ1B4n+2 + A) ⊂ U,

where B4n+2 is the unit ball in the Euclidean space R4n+2. Then, we have

(28) {(t, η, t, η) : (t, η) ∈ ΩS1 \ ([δ1, S1]× Ωδ1)} ⊂ 2δ1B4n+2 + A.

Note that if |t − s| + |η − ξ| < δ1 then (t, η, s, ξ) − (t, η, t, η) ∈ δ1B4n+2. Therefore, it
follows from (28) that

(29) {(t, η, s, ξ) ∈ (ΩS1 \ ([δ1, S1]× Ωδ1))
2 : |t− s|+ |η − ξ| < δ1} ⊂ 3δ1B4n+2 + A.

Combining (27) and (29), we obtain (26). By the condition 0 < δ1 < min{1, R, dist(K, ∂Ω)},
we also have K b Ωδ1 .

By the assumption (24), there exists δ2 = δ2(ε) ∈ (0, min{δ1,T−S}
4

) such that

(30) 8(CΩδ1/2
+ 1)δ2 < δ1,

and

(31) (1 + ε)f(t, z) ≥ f(t+ s,Φ(s, z)),

for every z ∈ Ωδ1/2, δ1/2 < t < S1 and |s| < 2δ2. Here CΩδ1/2
> 0 is defined by (23). Since

F is continuous, we can choose δ2 small enough such that

(32) |F (t, z, r)− F (t+ s,Φ(s, z), r)| < ε,

for every z ∈ Ωδ1/2, δ1/2 < t < S1, |s| < 2δ2 and |r| < M , whereM = max{supΩT
|u|, supΩT

|v|}.

For every k >
2M

δ2

and (t, z) ∈ [δ1/2, S1]× Ωδ1/2, we consider

uk(t, z) = sup{u(t+ s,Φ(s, z))− k|s| : |s| ≤ 2M

k
},

and

vk(t, z) = inf{v(t+ s,Φ(s, z))− k|s| : |s| ≤ 2M

k
}.
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It follows from (26) and (30) that

(33) uk(t+ τ1,Φ(τ1, z)) ≤ vk(t+ τ2,Φ(τ2, z)) + ε,

for every (t, z) ∈ ∂P ((3δ1/4, S) × Ω3δ1/4) and max{|τ1|, |τ2|} < δ2. Denote ukτ1(t, z) =
uk(t + τ1,Φ(τ1, z)) and vk,τ2(t, z) = vk(t + τ2,Φ(τ2, z)). By Lemma 3.1 and Lemma 3.2,

there exists kε >
2M

δ2

such that

(34) (ddcukτ1)
n ≥ (1− ε)e∂tukτ1+Fk(t+τ1,Φ(τ1,z),ukτ1 )fk(t+ τ1,Φ(τ1, z))dV,

and

(35) (ddcvk,τ2)
n ≤ (1 + ε)e∂tvk,τ2+Fk(t+τ2,Φ(τ2,z),vk,τ2 )fk(t+ τ2,Φ(τ2, z))dV,

in the viscosity sense in (3δ1/4, S) × Ω3δ1/4 for every k > kε and max{|τ1|, |τ2|} < δ2.
Here, Fk(t, z, r) = inf |s|≤2M/k F (t + s,Φ(s, z), r), fk(t, z) = inf |s|≤2M/k f(t + s,Φ(s, z)),
F k(t, z, r) = sup|s|≤2M/k F (t+ s,Φ(s, z), r) and fk(t, z) = sup|s|≤2M/k f(t+ s,Φ(s, z)).

Moreover, it follows from (31) and (32) that

(36) (1 + ε)fk(t+ τ1,Φ(τ1, z)) ≥ f(t, z) ≥ fk(t+ τ2,Φ(τ2, z))

1 + ε
,

and

(37) Fk(t+ τ1,Φ(τ1, z), r) + ε ≥ F (t, z, r) ≥ F k(t+ τ2,Φ(τ2, z), r)− ε,

for every (t, z) ∈ (3δ1/4, S)× Ω3δ1/4, max{|τ1|, |τ2|} < δ2, |r| ≤M and k > kε.
Combining (34), (35), (36) and (37), we get

(38) (ddcukτ1)
n ≥ (1− ε)2e∂tu

k
τ1

+F (t,z,ukτ1 )−εf(t, z)dV,

and

(39) (ddcvk,τ2)
n ≤ (1 + ε)2e∂tvk,τ2+F (t,z,vk,τ2 )+εf(t, z)dV,

in the viscosity sense in (3δ1/4, S) × Ω3δ1/4 for every k > kε and max{|τ1|, |τ2|} < δ2.
Therefore, w1 := ukτ1 + 3εt and w2 := vk,τ2 − 3εt is respectively a subsolution and a
supersolution to the equation

e∂tw+F (t,z,w)µ(t, z) = (ddcw)n,

in (3δ1/4, S)×Ω3δ1/4. Note that, by Lemma 3.1 and Lemma 3.2, the functions w1 and w2

satisfy the condition (15) in Lemma 3.3. Then, by using Lemma 3.3, we have

sup
(3δ1/4,S)×Ω3δ1/4

(w1 − w2) ≤ sup
∂P ((3δ1/4,S)×Ω3δ1/4

)

(w1 − w2)+ ≤ ε+ 6εS,

where the last inequality holds due to (33). Then

uk(t+ τ1,Φ(τ1, z))− vk(t+ τ2,Φ(τ2, z)) ≤ −6εt+ ε+ 6εS ≤ (6S + 1)ε,

in (3δ1/4, S)× Ω3δ1/4 for every k > kε and |τ | < δ2. Letting k →∞, we get

u(t+ τ1,Φ(τ1, z))− v(t+ τ2,Φ(τ2, z)) ≤ (6S + 1)ε

in (R, S) ×K ⊂ (3δ1/4, S) × Ω3δ1/4 for every max{|τ1|, |τ2|} < δ2. Choosing δ = δ(ε) =
δ2(ε/(6S + 1)), we obtain (25).

The proof is completed. �
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Corollary 4.2. Assume that Ω is a smooth strictly pseudoconvex domain and (u0, µ(0, z))
is admissible. Suppose that Φ and f satisfy the conditions in Theorem 1.1. Then the
Cauchy-Dirichlet problem (1) has a unique viscosity solution.

Proof. By Propositions 2.9 and 2.12, for every ε > 0, the problem (1) admits a continuous
ε-superbarrier which is Lipschitz in t and a continuous ε-subbarrier. Then, it follows from
Lemma 2.13 that

u := sup{v : v is a continuous subsolution to (1)},

is a discontinuous solution to (1), i.e., u∗ is a subsolution and u = u∗ is a supersolution.
Let (t, z) ∈ ΩT be an arbitrary point. By Theorem 1.1, for every ε > 0, there exists

0 < δ � 1 such that (t+ s,Φ(s, z)) ∈ ΩT and

u(t, z) + ε > u∗(t+ s,Φ(s, z)) ≥ u(t+ s,Φ(s, z)),

for every |s| < δ. Then lim sups→0 u(t + s,Φ(s, z) ≤ u(t, z) + ε. Letting ε ↘ 0, we get
lim sups→0 u(t+ s,Φ(s, z) ≤ u(t, z). Therefore, since u is lower semicontinuous, we have

(40) lim
s→0

u(t+ s,Φ(s, z) = u(t, z).

Moreover, it follows from Theorem 1.1 that for every ε > 0 there exists 0 < δ � 1 such
that (t+ s,Φ(s, z)) ∈ ΩT and

u(t+ s,Φ(s, z)) + ε > u∗(t, z),

for every |s| < δ. Then

(41) lim inf
s→0

u(t+ s,Φ(s, z) + ε ≥ u∗(t, z).

Combining (40) and (41), we have

u(t, z) + ε ≥ u∗(t, z).

Letting ε↘ 0, we obtain u(t, z) ≥ u∗(t, z), and then u = u∗ = u∗. Hence, u is a viscosity
solution to (1).

Now, we assume that u1 and u2 are two viscosity solutions to (1). By Theorem 1.1, for
every (t, z) ∈ ΩT and ε > 0, there exists 0 < δ � 1 such that (t+ s,Φ(s, z)) ∈ ΩT and

u1(t, z) + ε > u2(t+ s,Φ(s, z)),

for every |s| < δ. Since u2 is continuous, it implies that

u1(t, z) + ε ≥ lim
s→0

u2(t+ s,Φ(s, z)) = u2(t, z).

Letting ε↘ 0, we get u1(t, z) ≥ u2(t, z). By the same argument, we also have u1(t, z) ≤
u2(t, z). Then u1 ≡ u2.

Thus (1) admits a unique viscosity solution. �
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