
ON THE VISCOSITY APPROACH TO A CLASS OF FULLY
NONLINEAR ELLIPTIC EQUATIONS

HOANG-SON DO AND QUANG DIEU NGUYEN

Abstract. In this paper, we study some properties of viscosity sub/super-solutions of
a class of fully nonlinear elliptic equations relative to the eigenvalues of the complex
Hessian. We show that every viscosity subsolution is approximated by a decreasing
sequence of smooth subsolutions. When the equations satisfy some conditions on the
limit at infinity, we verify that the comparison principle holds, and as a sequence, we
obtain a result about the existence of solution of the Dirichlet problem. Using the
comparison principle, we show that, under suitable conditions, a Perron-Bremermann
envelope can be approximated by a decreasing sequence of viscosity solutions.
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1. Introduction

Let Γ  Rn be an open, convex, symmetric cone with vertex at the origin such that
Γn ⊆ Γ ⊆ Γ1, where

Γk = {x ∈ Rn : σ1(x) > 0, ..., σk(x) > 0},
for every 1 ≤ k ≤ n. Here σk(x) is the k-th elementary symmetric sum of the coefficients
of x, i.e.,

σk(x) =
∑

1≤j1<...<jk≤n
xj1 ...xjk .

Let f : Γ→ (0,∞) be a continuous function such that

• f is symmetric, strictly increasing in each variable and concave.
• f |Γ > 0, f |∂Γ = 0.

We define F : Hn → [−∞,∞) by

(1) F (H) =

{
f(λ(H)) if H ∈M(Γ, n),

−∞ if H ∈ Hn \M(Γ, n),

where Hn is the set of all n × n Hermitian matrices and M(Γ, n) is the subset of Hn

containing matrices H with the eigenvalues λ(H) = (λ1, ..., λn) ∈ Γ. The conditions on f
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imply that F is concave on M(Γ, n) (see [3]) and

(2) F (M +N) > F (M),

for every M ∈M(Γ, n) and for each positive semidefinite matrix N 6= 0.

We consider the fully nonlinear elliptic equation:

(3) F (Hu) = ψ(z, u),

in a bounded domain Ω ⊂ Cn, where Hu is the complex Hessian of u and ψ ≥ 0 is a
continuous function in Ω× R which is non-decreasing in the last variable.

In the smooth setting, the existence and uniqueness of the classical solution of the
Dirichlet problem of (3) has been studied in [16] (see also [20] for corresponding prob-
lems on compact Hermitian manifolds). The real version of (3) has been studied ear-
lier by Caffarelli-Nirenberg-Spruck [3], Guan [6], Trudinger [21]... (see also [13], [7],
[8], [9], [14] for some recent developments). Some important equations of the form
(3) are the complex Monge-Ampère equations, the complex Hessian equations and the
complex Hessian quotient equations, where we take, respectively, f(x) = (σn(x))1/n,
f(x) = (σk(x))1/k(1 ≤ k ≤ n) and f(x) = (σk(x)/σl(x))k−l(1 ≤ l < k ≤ n).

The viscosity method introduced in [1, 17] (see [2] for a survey) is useful for study-
ing partial differential equations in the non-smooth setting. A viscosity approach to the
equation (3) has been studied in [4]. The goal of this paper is to expand this research
direction. Following [2], a function u ∈ USC(Ω) is a viscosity subsolution (resp., super-
solution) of (3) iff for every z0 ∈ Ω and for any C2-smooth function q in a neighbourhood
U of z0 such that (u− q)(z0) = 0 = maxU(u− q) (resp., (u− q)(z0) = 0 = minU(u− q)),
we have F (Hq(z0)) ≥ ψ(z0, u(z0)) (resp., F (Hq(z0)) ≥ ψ(z0, u(z0))). The reader can find
more details about the defintions and properties of viscosity sub/super-solutions in [4]
(see also the Preliminaries). By [11, Lemma 4.6, Remark 4.9 and Theorem B.8], for every
u ∈ USC(Ω), the following conditions are equivalent:

(i) F (Hu) ≥ 0 in the viscosity sense in Ω.
(ii) For every open set U b Ω there exists a decreasing sequence {uj} of smooth Γ-

subharmonic functions on U such that uj → u as j →∞. Here a smooth function
w is Γ-subharmonic if Hw(z) ∈M(Γ, n) for every z.

We say that a function u ∈ USC(Ω) is Γ-subharmonic if it satisfies the above equivalent
conditions. Since Γ ⊂ Γ1, every Γ-subharmonic function is subharmonic. An alternative
proof for the equivalence of (i) and (ii) is provided in this paper (see Corollary 3.3).
Futhermore, we generalize this fact for viscosity subsolutions of (3) in the case where
ψ(z, r) is independent of r. Our first main result is as follows:

Theorem 1.1. Assume that ψ(z, r) does not depend on the last variable r ∈ R. Then
a function u ∈ USC(Ω) is a viscosity subsolution of (3) iff u is Γ-subharmonic and
F (H(u ∗ χε)) ≥ ψ ∗ χε in Ωε (in the classical sense). Here χε is the standard modifier, ∗
is the convolution operator and Ωε = {z ∈ Ω : d(z, ∂Ω) > ε}.

When f satisfies some conditions on the limit at infinity, we use Theorem 1.1 to show
that every viscosity subsolution of (3) can be approximated by a decreasing sequence
of classical subsolution of (3). In the cases of Monge-Ampère equations and Hessian
equations, this fact has been proved in [5] and [18].

Corollary 1.2. Assume that ψ(z, r) does not depend on r and

lim
R→∞

f(R,R, ..., R) > sup
Ω
ψ.
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Then a function u ∈ USC(Ω) is a viscosity subsolution of (3) iff for every open set
U b Ω, there exists a decreasing sequence {uj} of smooth Γ-subharmonic functions on U
such that uj → u as j →∞ and F (Huj(z)) ≥ ψ(z) in U for every j.

Our second purpose is to study the comparison principle for (3). It follows from [12]
that the comparison principle holds if ψ(z, r)− εr is non-decreasing in r for some ε > 0.
Under appropriate growth restrictions on the behavior of F , one can permit ε = 0 (see [4]).
In this paper, we establish a version of the comparison principle with weaker conditions
for F :

Theorem 1.3. Let Ω ⊂ Cn be a bounded domain. Let u ∈ USC ∩ L∞(Ω) and v ∈
LSC ∩ L∞(Ω), respectively, be a bounded subsolution and a bounded supersolution of the
equation

(4) F (Hw) = ψ(z, w),

in Ω. Assume that u ≤ v in ∂Ω and

lim
R→∞

f(R,R, ..., R) > sup
K
ψ(z, v(z)),

for every K b Ω. Then u ≤ v in Ω.

By Theorem 1.3 and the Perron method, if v is a viscosity supersolution of (3) satisfying
some suitable conditions then the function

Φv = sup{w : w is a subsolution of (3), w ≤ v},
is a discontinuous viscosity solution of (3) (see Proposition 4.2). In the case where ψ(z, r)
is independent of r, we show that Φv is further locally approximated by a decreasing
sequence of viscosity solutions.

Theorem 1.4. Assume that ψ does not depend on the last variable and

lim
R→∞

f(R,R, ..., R) > ψ(z),

for every z ∈ Ω. Suppose that v ∈ L∞ ∩ LSC(Ω) is a bounded viscosity supersolution of
(3) in Ω which is continuous at every point z ∈ ∂Ω. Then, for every relatively compact
open subset U of Ω, there exists a decreasing sequence uj of viscosity solutions of (3) in
U such that limj→∞ uj = Φv in U .

Acknowledgements. The authors would like to thank Lu Hoang Chinh for fruitful
discussions on discontinuous viscosity solutions. This research began while the first named
author was visiting Vietnam Institute for Advanced Study in Mathematics(VIASM). He
would like to thank the institution for the hospitality.

2. Preliminaries

In this section, we recall the definitions and some properties of viscosity sub/super-
solutions.

Definition 2.1. (Test functions) Let w : Ω −→ R be any function defined in Ω and
z0 ∈ Ω a given point. An upper test function (resp., a lower test function) for w at the
point z0 is a C2-smooth function q in a neighbourhood of z0 such that w(z0) = q(z0) and
w ≤ q (resp., w ≥ q) in a neighbourhood of z0.

Definition 2.2. 1. A function u ∈ USC(Ω) is said to be a (viscosity) subsolution of

(5) F (Hu) = ψ(z, u),

in Ω if for any point z0 ∈ Ω and any upper test function q for u at z0, we have F (Hq(z0)) ≥
ψ(z0, u(z0)) (and then Hq(z0) ∈M(Γ, n)). In this case, we also say that F (Hu) ≥ ψ(z, u)
in the viscosity sense in Ω.



4 HOANG-SON DO AND QUANG DIEU NGUYEN

2. A function v ∈ LSC(Ω) is said to be a (viscosity) supersolution of (5) in Ω if for any
point z0 ∈ Ω and any lower test function q for v at z0, we have F (Hq(z0)) ≤ ψ(z0, u(z0)).
In this case, we also say that F (Hv) ≤ ψ(z, v) in the viscosity sense in Ω.
3. A function u ∈ C(Ω) is said to be a (viscosity) solution of (5) in Ω if it is a subsolution

and a supersolution of (5) in Ω.
4. A function u ∈ L∞(Ω) is said to be a discontinuous viscosity solution of (5) in Ω if u∗

is a subsolution and u∗ is a supersolution of (5) in Ω.

It follows from the definition directly that if u, v are viscosity subsolutions of (5) then
max{u, v} is a viscosity subsolution of (5). Furthermore, we also have:

Proposition 2.3. Assume that G ( Ω is an open set. Suppose that v is a viscosity
subsolution of (5) in G and u is a viscosity subsolution of (5) in Ω such that

lim sup
G3z→z0

v(z) ≤ u(z0),

for every z0 ∈ ∂G ∩ Ω. Then, the function

ũ =

{
u in Ω \G,
max{u, v} in G,

is a viscosity subsolution of (5) in Ω.

In the case of Hessian equations (i.e., f(x) = (σk(x))1/k and Γ = Γk), we use the
notation Fk instead of F . The following result has been proved in [18]:

Proposition 2.4. Let u ∈ USC(Ω). Then the following conditions are equivalent:

a) u is a viscosity subsolution of the equation Fk(Hw) = ψ(z, w) in the sense of
Definition 2.2;

b) for every z0 ∈ Ω, for every upper test function q for u at z0, we have σk(λ(Hq(z0)) ≥
ψk(z0, u(z0)) (it does not require that Hq(z0) ∈M(Γk, n)).

Actually, in [18], a function u ∈ USC(Ω) is called a viscosity subsolution of the equa-
tion σk(λ(Hw)) = ψk(z, w) if it satisfies the condition b) in the above proposition. By
the proof of [18, Lemma 3.7], if b) is satisfied then, for every z0 ∈ Ω and for every upper

test function q for u at z0, the Hessian matrix Hq(z0) = ( ∂2q
∂zα∂zβ

(z0)) is k-positive, i.e.,

Hq(z0) ∈M(Γk, n). Then b)⇒ a). The fact a)⇒ b) is obvious.

If u ∈ USC(Ω) (resp., u ∈ LSC(Ω)) then for every x ∈ Ω, the set

J±u(z) = {(Dw(z), Hw(z)) ∈ R2n ×Hn : w is an upper test function (resp. a lower test
function) for u at z}

is called the super-(resp., sub-)differential of u at z. The set

J
±
u(z) = {(p, Z) ∈ R2n ×Hn : ∃zm → z and (pm, Zm) ∈ J±u(zm) such that

(pm, Zm)→ (p, Z) and u(zm)→ u(z)}
is called the limiting super-(resp. sub-)differential of u at z. By the continuity of F and ψ,
the limiting super/sub-differentials can be used to identify viscosity sub/super-solutions
as follows:

Proposition 2.5. a) Let u ∈ USC(Ω). Then u is a viscosity subsolution of the equation

(5) iff for any point x ∈ Ω, for every (p,X) ∈ J
+
u(z), we have

F (X) ≥ ψ(z, u).

b) Let u ∈ LSC(Ω). Then u is a viscosity supersolution of the equation (5) iff for any

point x ∈ Ω, for every (p,X) ∈ J
−
u(z), we have

F (X) ≤ ψ(z, u).
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The following proposition is deduced by combining Proposition 2.5 and [2, Proposition
4.3]:

Proposition 2.6. a) Assume that {uα} is a family of viscosity subsolutions of the equation

(6) F (Hw) = ψ(z, w),

in Ω. If u = supα uα is locally bounded from above then its usc regularization u∗ is a
viscosity subsolution of (6) in Ω.
b) Assume that {uα} is a family of viscosity supersolutions of (6) in Ω. If u = infα uα is
locally bounded from below then its lsc regularization u∗ is a viscosity supersolution of (6)
in Ω.
b) Assume that uj is a decreasing (resp., increasing) sequence of viscosity subsolutions
(resp., supersolutions) to (6). Then u = limj→∞ uj is either a viscosity subsolutions
(resp., supersolutions) to (6) or identically −∞ (resp., ∞).

3. Approximation of subsolutions

In this section, we will prove the Theorem 1.1 and Corollary 1.2. First, we have the
following lemma:

Lemma 3.1. There exists a mapping

Φ : M(Γ, n)→M(Γn, n)

H 7→ H̃ = Φ(H)

depending on F such that

a) For all B ∈M(Γ, n),

(7) F (B) = inf{∆H̃B + F (H)−∆H̃H : H ∈M(Γ, n)},

where ∆H̃B = trace(H̃B) =
n∑

j,k=1

h̃jkbkj.

b) For all B ∈ Hn, if

(8) inf{∆H̃B + F (H)−∆H̃H : H ∈M(Γ, n)} ≥ 0,

then B ∈M(Γ, n).

Proof. a) By the concavity of F in M(Γ, n), for every H ∈ M(Γ, n), the subdifferential
∂(−F (H)) is nonempty, i.e., there exists H̃ ∈ Hn \ {0} such that

(9) F (B)− F (H) ≤ ∆H̃(B −H) = ∆H̃(B)−∆H̃(H),

for all B ∈M(Γ, n). Moreover,

(10) F (B) = lim
H→B

(F (H) + ∆H̃(B −H)).

Combining (9) and (10), we have

(11) F (B) = inf{∆H̃(B) + F (H)−∆H̃(H) : H ∈M(Γ, n)}.

By (2) and (9), for every N ∈M(Γn, n) \ {0} and for each H ∈M(Γ, n), we have

(12) ∆H̃(N) = ∆H̃(H +N −H) ≥ F (H +N)− F (H) > 0.

Hence, H̃ ∈M(Γn, n) for every H ∈M(Γ, n).

b) Assume that B /∈ M(Γ, n) and the condition (8) is satisfied. Let t0 > 0 such that
B + t0I ∈ ∂M(Γ, n). Then, for every t > t0, we have B + tI ∈ M(Γ, n). By the
assumption, we get

∆
B̃+tI

B + F (B + tI)−∆
B̃+tI

(B + tI) ≥ inf
H∈M(Γ,n)

{∆H̃B + F (H)−∆H̃H} ≥ 0,
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for every t > t0. Then

F (B + tI)− t∆
B̃+tI

I ≥ 0,

for every t > t0. Letting t↘ t0, we get

(13) lim sup
t→t+0

∆
B̃+tI

I ≤ lim
t→t+0

F (B + tI)

t
=
F (B + t0I)

t0
= 0.

Moreover, it follows from (9) that

F (B + (1 + t0)I)− F (B + tI) ≤ (1 + t0 − t)∆B̃+tI
I,

for every t0 < t < t0 + 1. Letting t↘ t0, we get

(14) lim inf
t→t+0

∆
B̃+tI

I ≥ lim
t→t+0

F (B + (1 + t0)I)− F (B + tI)

1 + t0 − t
= F (B + (1 + t0)I) > 0.

By (13) and (14), we get a contradiction.

Thus, the condition (8) implies that B ∈M(Γ, n). �

Corollary 3.2. Let t ∈ [0, 1] and 0 ≤ ψ1, ψ2 ∈ C(Ω). Assume that uj is a viscosity
subsolution of the equation F (Hw) = ψj(z) in Ω for j = 1, 2. Then, the function tu1 +
(1− t)u2 is a subsolution of the equation F (Hw) = tψ1(z) + (1− t)ψ2(z).

Proof. By Lemma 3.1, we have, for j = 1, 2,

(15) ∆H̃uj + F (H)−∆H̃H ≥ ψj,

in the viscosity sense in Ω for every H ∈M(Γ, n). Then, it follows from [10, Proposition
3.2.10’, page 147] that (15) holds in the distribution sense. Therefore, we have

(16) ∆H̃(tu1 + (1− t)u2) + F (H)−∆H̃H ≥ tψ1(z) + (1− t)ψ2(z),

in the distribution sense. Using again [10, Proposition 3.2.10’, page 147], we get (16)
holds in the viscosity sense. Thus, by Lemma 3.1, we obtain

F (H(tu1 + (1− t)u2)) ≥ tψ1(z) + (1− t)ψ2(z),

in the viscosity sense. �

Corollary 3.3. Let u ∈ USC(Ω). Then the following conditions are equivalent

a) u is subharmonic and for every ε > 0, u∗χε is Γ-subharmonic in Ωε. Here χε is the
standard modifier, ∗ is the convolution operator and Ωε = {z ∈ Ω : d(z, ∂Ω) > ε}.

b) u is Γ-subharmonic.
c) F (Hu) ≥ 0 in the viscosity sense, i.e., for any point z0 ∈ Ω and any upper test

function q for u at z0, we have Hq(z0) ∈M(Γ, n).

Proof. (a)⇒ (b) and (b)⇒ (c) are clear. It remains to show (c)⇒ (a).
Assume that F (Hu) ≥ 0 in the viscosity sense. Then, by the definition and by the

condition Γ ⊂ Γ1, we have ∆u ≥ 0 in the viscosity sense. Hence, by [10, Proposition
3.2.10’, page 147], we get u ∈ SH(Ω).

Moreover, it follows from Lemma 3.1 that

(17) ∆H̃u+ F (H)−∆H̃H ≥ 0,

in the viscosity sense for every H ∈M(Γ, n). Then, it follows from Lemma 3.4 that (17)
holds in the distribution sense. Hence

∆H̃(u ∗ χε) + F (H)−∆H̃H ≥ 0,
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in the classical sense in Ωε for every H ∈ M(Γ, n). Using again Lemma 3.1, we have

H(u ∗ χε)(z) ∈M(Γ, n) for every ε > 0 and z ∈ Ωε. Thus u ∗ χε is Γ-subharmonic in Ωε.
The proof is completed. �

Lemma 3.4. Let U ⊂ RN(N ≥ 2) be a bounded domain. Assume that g ∈ C(U) and
u ∈ USC(U). Then, ∆u ≥ g in the viscosity sense iff ∆u ≥ g in the distribution sense.

Proof. If g ∈ C2
c (RN) then v = E∗g is a classical solution to the Poisson equation ∆w = g,

where

E(x) =

{
1

2π
log |x| (N = 2),
−1

N(N−2)cN

1
|x|N−2 (N ≥ 3),

and cN is the volume of BN . It follows from [10, Proposition 3.2.10’, page 147] that
∆(u − v) ≥ 0 in the viscosity sense iff ∆(u − v) ≥ 0 in the distribution sense. Hence,
∆u ≥ g(= ∆v) in the viscosity sense iff ∆u ≥ g in the distribution sense.

In the general case, since the problem is local, we can assume that g ∈ Cc(RN). Then,
we can choose a sequence gj ∈ C2

c (RN) such that gj ↗ g as j →∞. Hence, by the above
argument, we have

(∆u ≥ g in the viscosity sense) ⇔ (∆u ≥ gj in the viscosity sense for every j)
⇔ (∆u ≥ gj in the distribution sense for every j)
⇔ (∆u ≥ g in the distribution sense).

�

Proof of Theorem 1.1. If u is Γ-subharmonic and F (H(u ∗ χε)) ≥ ψ ∗ χε in Ωε for every
ε > 0 then, by the definition, we have F (H(u ∗ χε)) ≥ ψ ∗ χε in the viscosity sense in Ωε

for every ε > 0. Hence, F (H(u∗χε)) ≥ ψr in the viscosity sense in Ωr for every 0 < ε < r,
where ψr(z) = inf |z−w|<r ψ(w). Since u is subharmonic, we have u ∗ χε ↘ u as ε ↘ 0.
Using Proposition 2.6, we get F (Hu) ≥ ψr in the viscosity sense in Ωr for every r > 0.
Letting r ↘ 0, we obtain F (Hu) ≥ ψ in the viscosity sense in Ω.

Conversely, assume that u is a viscosity subsolution of the equation F (Hw) = ψ(z) in
Ω. By Corollary 3.3, we have u and u ∗ χε are Γ-subharmonic (ε > 0). Moreover, by the
same argument as in the proof of Corollary 3.3, we also have

∆H̃(u ∗ χε) + F (H)−∆H̃H ≥ ψ ∗ χε,

in the classical sense in Ωε for every H ∈M(Γ, n). Hence, it follows from Lemma 3.1 that
F (H(u ∗ χε)) ≥ ψ ∗ χε in Ωε in the classical sense. �

Proof of Corollary 1.2. If there exists a decreasing sequence {uj} of smooth Γ-subharmonic
functions on U such that uj → u as j →∞ and F (Huj(x)) ≥ ψ(z) in Ω for every j then,
by Proposition 2.6, u is a viscosity subsolution of (3).

For the converse, assume that u is a viscosity subsolution of (3) and U is a relatively
compact open subset of Ω. By Theorem 1.1, we have u∗χε ↘ u as ε↘ 0 and F (Hu∗χε) ≥
ψ ∗ χε in U for every 0 < ε < ε0, where ε0 > 0 is small enough such that U b Ωε0 . Since
ψ ∗ χε converges uniformly to ψ in U , there exists 0 < ... < εj+1 < εj < ... < ε1 < ε0 such
that limj→∞ εj = 0 and

|ψ ∗ χε − ψ| <
1

2j
,

in U . By the assumption, there exists R � 1 such that f(R,R, ..., R) > supU ψ + r for
some 0 < r < 1. For every j > − log2 r, we denote:

uj(z) = u ∗ χεj +
R|z|2

2j+1r
.
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Then, uj is a decreasing sequence of smooth Γ-subharmonic functions in U satisfying
limj→∞ uj = u. Moreover, for every j > − log2 r and for each z ∈ U , we have

F (Huj) ≥ (1− 1

2jr
)F (Hu ∗ χεj) +

1

2jr
F (H(u ∗ χεj +

R|z|2

2
))

≥ (1− 1

2jr
)ψ ∗ χε +

1

2jr
F (RI)

≥ (1− 1

2jr
)(ψ(z)− 1

2j
) +

1

2jr
(ψ(z) + r)

> ψ(z),

in U . �

4. Comparison principle and applications

Now we prove the second main theorem of this paper:

Theorem 4.1. Let u ∈ USC ∩L∞(Ω) and v ∈ LSC ∩L∞(Ω), respectively, be a bounded
subsolution and a bounded supersolution of the equation

(18) F (Hw) = ψ(z, w),

in Ω. Assume that u ≤ v in ∂Ω and

(19) lim
R→∞

f(R,R, ..., R) > sup
Ω
ψ(z, v(z)).

Then u ≤ v in Ω.

Proof. First, we consider the case where u− δ|z|2 is a subsolution of (18) for some δ > 0.
Assume that there exists z0 ∈ Ω such that

(20) (u− v)(z0) = max
Ω

(u− v) > 0.

For each N > 0, we denote

φN(z, w) = u(z)− v(w)−N |z − w|2,

for all (z, w) ∈ Ω
2
. Since Ω

2
is compact and φN is upper semicontinuous, there exists

(zN , wN) ∈ Ω
2

such that

φN(zN , wN) = max
Ω

2
φN .

Moreover, by [2, Lemma 3.1], we can assume that zN and wN converge to z0 as N →∞.
In particular, there exists N0 > 0 such that zN , wN ∈ B(z0, R) for every N > N0, where
0 < R < d(z0, ∂Ω). By the maximum principle [2, Theorem 3.2], there exist ZN ,WN ∈ Hn

such that (2N(zN −wN), ZN) ∈ J
+
u(zN), (2N(zN −wN),WN) ∈ J

−
v(wN) and ZN ≤ WN

for all N > N0. Hence, we have

(21) F (ZN − 2δI) ≥ ψ(zN , u(zN)),

and

(22) F (WN) ≤ ψ(wN , v(wN)),

and

(23) F (ZN) ≤ F (WN).

Combining (22) and (23), we get

(24) F (ZN) ≤M,

for all N > N0, where M := sup{ψ(z, v(z)) : x ∈ B(z0, R)}. Since limR→∞ f(R, ..., R) >
M , there exist R0 � 1 and 0 < r � 1 such that
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F (RI) = f(R, ..., R) > M + r.

for all R > R0. Then, by (24) and by the concavity of F , we have, for every 0 < ε < 1,

F (ZN)− F (ZN − 2δI)

2δ
≥ F (ZN +R0I)− F (ZN)

R0

≥ εF (ZN/ε) + (1− ε)F (R0I/(1− ε))−M
R0

≥ (1− ε)(M + r)−M
R0

,

for all N > N0. Letting ε =
r

2M + r
, we get

(25) F (ZN) ≥ F (ZN − δI) +
2Mδ2

(2M + r)R0

,

for every N > N0. Combining (21), (22), (23) and (25), we obtain

(26) ψ(zN , u(zN)) +
2Mδ2

(2M + r)R0

≤ ψ(wN , v(wN)),

for every N > N0. Since zN , wN → z0 and ψ is uniformly continuous, we also have

(27) lim
N→∞

(ψ(zN , u(zN))− ψ(wN , u(zN))) = 0.

Moreover, it follows from [2, Lemma 3.1] that limN→∞(u(zN)−v(wN)) = max
Ω

(u−v) > 0.

Hence, since ψ is non decreasing in the last variable, we get

(28) lim inf
N→∞

(ψ(wN , u(zN))− ψ(wN , v(wN))) ≥ 0.

Combining (26), (27) and (28), we get

0 ≤ lim inf
N→∞

(ψ(zN , u(zN))− ψ(wN , v(wN))) ≤ − 2Mδ2

(2M + r)R0

,

and this is a contradiction. Thus, (20) is not true.
In the general case, for each δ > 0, we denote uδ(z) = u(z) + δ(|z|2 − A), where

A = max{|w|2 : w ∈ Ω}. By the above argument, we have uδ ≤ v in Ω for all δ > 0.
Letting δ ↘ 0, we get u ≤ v in Ω.

The proof is completed. �

By using the Perron method [2] and Theorem 1.3, we obtain the following result:

Proposition 4.2. Let v ∈ LSC ∩ L∞(Ω) be a bounded supersolution of the equation

(29) F (Hw) = ψ(z, w),

in Ω such that

lim
Ω3z→ẑ

v(z) = v(ẑ),

for all ẑ ∈ ∂Ω and

lim
R→∞

f(R,R, ..., R) > sup
Ω
ψ(z, v(z)).

Denote by S the set of all viscosity subsolutions w to (29) satisfying w ≤ v. Then the
function

u(z) = sup{w(z) : w ∈ S},
is a discontinuous viscosity solution of (29) with u = u∗ ∈ S.

Proof. By Proposition 2.6, we have u∗ is a viscosity subsolution of the equation F (D2w) =
ψ(x,w) in Ω. Moreover, since u ≤ v in Ω, we have
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lim sup
Ω3z→ẑ

u∗(z) = lim sup
Ω3z→ẑ

u(z) ≤ lim
Ω3z→ẑ

v(z) = v(ẑ),

for all ẑ ∈ ∂Ω. Then, it follows from Theorem 1.4 that u∗ ≤ v. Hence, u∗ ∈ S and u = u∗.
It remains to show that u∗ is a viscosity supersolution.

Assume that there exist a point z0 ∈ Ω, an open neighbourhood U ⊂ Ω of z0 and a
function η ∈ C2(U) such that η(z0) = u∗(z0), η ≤ u∗|U , Hη(z0) ∈M(Γ, n) and

F (Hη(z0)) > ψ(z0, η(z0)).

By the continuity of F, ψ, η and Hη, there exist r, s > 0 such that B(z0, r) ⊂ U , Hη(x)−
2sI ∈M(Γ, n) for all z ∈ B(z0, r) and

F (Hη(z)− 2sI) > ψ(z, η(z) + s),

for every z ∈ B(z0, r). Denote

η̃(z) = η(z)− s|z − z0|2 + min{s, sr
2

4
}.

We have

(30) F (Hη̃(z)) ≥ ψ(z, η̃(z)), ∀|z − z0| ≤ r,

and

(31) η̃(z) ≤ u(z), ∀r/2 ≤ |z − z0| ≤ r.

Denote

ũ(z) =

{
u(z) if z ∈ Ω \B(z0, r),

max{u(z), η̃(z)} if z ∈ B(z0, r).

Then ũ ∈ S and ũ ≥ u. Since u = sup{w : w ∈ S}, we have ũ = u. Moreover,

ũ∗(z0) ≥ η̃(z0) ≥ u∗(z0) + min{s, sr
2

4
} > u∗(z0).

and it implies that ũ is not identical to u. We get a contradiction. Thus, u∗ is a superso-
lution of (29). �

Note that every harmonic function is a supersolution of (29). By using Theorem 1.3
and Proposition 4.2, we obtain the following result which will be used in the next section:

Proposition 4.3. Assume that Ω is a bounded smooth domain and ϕ is a continuous
function on ∂Ω satisfying

lim
R→∞

f(R,R, ..., R) > ψ(z, sup
∂Ω

ϕ),

for every z ∈ Ω. Suppose that there exists u ∈ USC(Ω) such that u|∂Ω = ϕ and F (Hu) ≥
ψ(z, u) in the viscosity sense in Ω. Then, there exists a unique u ∈ C(Ω) such that
u|∂Ω = ϕ and F (Hu) = ψ(z, u) in the viscosity sense in Ω.

5. Maximal viscosity subsolutions

In this section, we study some properties of maximal viscosity subsolutions (see below
for the defintion). Theorem 1.4 is deduced by combining Proposition 5.1 and Theorem
5.2.

Similar to the concept of maximal plurisubharmonic functions [19] (see also [15]), we
say that a viscosity subsolution u for (3) is maximal if u satisfies the following condition:
For every open set U b Ω and for each v ∈ USC(U) such that v is a subsolution for (3)
in U and v ≤ u in ∂U , we have v ≤ u in U .
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Proposition 5.1. Under the assumption of Theorem 1.4, the function Φv is a maximal
viscosity subsolution for (3).

Proof. By Proposition 4.2, we have Φv is a viscosity subsolution of (3). We will show that
Φv is maximal.

Let U be a relatively open subset of Ω. Let w ∈ USC(U) such that w is a subsolution
for (3) in U and w ≤ Φv in ∂U . By Proposition 2.3, the function

u(z) =

{
Φv(z) if z ∈ Ω \ U,
max{w(z),Φv(z)} if z ∈ U,

is a subsolution of (3) in Ω. Since u = Φv ≤ v in Ω \U , it follows from Theorem 1.3 that
u ≤ v in Ω. Then, by the definition of Φv, we get u ≤ Φv in Ω.

Thus Φv is a maximal viscosity subsolution of (3). �

Theorem 5.2. Assume that ψ does not depend on the last variable and

(32) lim
R→∞

f(R,R, ..., R) > ψ(z),

for every z ∈ Ω. Suppose that u is a maximal viscosity subsolution for (3) in Ω. Then,
for every relatively compact open subset U of Ω, there exists a decreasing sequence uj of
viscosity solutions of (3) in U such that limj→∞ uj = u in U .

In order to prove Theorem 5.2, we need the following lemma:

Lemma 5.3. For every ε > 0, there exists an open set U with smooth boundary such that
Ωε b U b Ω, where

Ωε = {z ∈ Ω : d(z, ∂Ω) > ε}.

Proof. Consider the function g(z) = (d ∗ χε/4)(z), where χε/4 is the standard modifier, ∗
is the convolution operator and d(z) = −d(z, ∂Ω). We have g is well-defined and smooth
in Ωε/4. Moreover, for every ε/2 < t < 3ε/4,

Ωε b Ut b Ωε/4,

where Ut = {z ∈ Ωε/4 : g(z) < −t}. In particular, we have ∂Ut ⊆ g−1(t) b Ωε/4 for every
ε/2 < t < 3ε/4. By Sard’s Theorem, there exists t0 ∈ (ε/2, 3ε/4) such that Dg(z) 6= 0
for every z ∈ g−1(t0). Then, ∂Ut0 = g−1(t0) and U := Ut0 is a smooth open set satisfying
Ωε b U b Ω.

The proof is completed. �

Proof of Theorem 5.2. By Lemma 5.3, there exists a smooth open set V such that U b
V b Ω. By the compactness of U , we can assume that V has finite (open) connected
components. Then the problem is reduced to the case where U is a smooth domain.

By Corollary 1.2, for every open neighbourhood W b Ω of U , there exists a decreasing
sequence {vj} of smooth Γ-subharmonic functions on W such that vj → u as j →∞ and
F (Hvj(z)) ≥ ψ(z) in W for every j. By Proposition 4.3, for each j ∈ Z+, there exists a
unique uj ∈ C(U) such that uj|∂U = vj|∂U and F (Huj) = ψ(z) in the viscosity sense in
U . We will show that uj decreases to u as j →∞.

It follows from Theorem 1.3 that uj ≥ uj+1 ≥ u, and then

(33) ũ := lim
j→∞

uj ≥ u,

in U . It follows from Proposition 2.6 that ũ is a viscosity subsolution of the equation
F (Hw) = ψ(z). Moreover, we have

ũ|∂U = lim
j→∞

uj|∂U = lim
j→∞

vj|∂U = u|∂U .
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Since u is a maximal viscosity subsolution of the equation F (Hw) = ψ(z, w), we get

(34) u ≥ ũ,

in U . Combining (33) and (34), we obtain

u = ũ = lim
j→∞

uj,

in U .
The proof is completed. �

Corollary 5.4. Under the assumption of Theorem 5.2, if u is bounded then u is also a
discontinuous viscosity solution of (3).

Proof. By Theorem 5.2, for every relatively compact open subset U of Ω, there exists a
decreasing sequence uj of viscosity solutions of (3) in U such that limj→∞ uj = u in U .
Then, by Proposition 2.6, u∗ = (infj uj)∗ is a viscosity supersolution of (3) in U . Since U
is arbitrary, we get u∗ is a viscosity supersolution of (3) in Ω. Hence, u is a discontinuous
viscosity solution of (3). �

Remark 5.5. By the same arguments as in the proof of Theorem 5.2, if we assume further
that Γ, f and ψ satisfy the hypothesis of [16, Theorem 1.1] then each maximal viscosity
subsolution for (3) is approximated on every relatively compact subset of Ω by a decreasing
sequence uj of classical solutions of (3).

Remark 5.6. In general, if u ∈ USC ∩ L∞(Ω) is a discontinuous viscosity solution of
(3) then u may not be a maximal visocity subsolution. For example, let {aj}∞j=1 be a dense

subset of the unit ball B2n in Cn and let

v(z) = |z|2 +
∞∑
j=1

log |z − aj|
2j

.

We have u = ev is a bounded plurisubharmonic function and u∗ = 0 in B2n. Therefore,
u is a discontinuous viscosity solution of the equation Fn(Hw) = 0 in B2n. However,
u is not a maximal plurisubharmonic function in B2n, since its Monge-Ampère measure
(ddcu)n ≥ env(ddcv)n ≥ env(ddc|z|2)n is not identically 0. Then u is not a maximal
viscosity solution of the equation Fn(Hw) = 0 in B2n.
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[10] L. Hörmander: Notions of convexity. Progress in Math., Birkhäuser (1994).
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