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Abstract The solution existence of finite horizon optimal economic growth
problems is studied by invoking Filippov’s Existence Theorem for optimal
control problems from the monograph of L. Cesari [Optimization Theory and
Applications, Springer-Verlag, New York, 1983]. Our results are obtained not
only for general problems but also for typical ones, where the production
function is given by either the AK function or the Cobb–Douglas one, while
the utility function can be in a linear or power form. Some open questions and
conjectures about the regularity of global solutions of finite horizon optimal
economic growth problems are formulated in this paper.
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1 Introduction

Models of economic growth have played an essential role in economics and
mathematical studies since the 30s of the twentieth century. Based on differ-
ent consumption behavior hypotheses, they allow ones to analyze, plan, and
predict relations between global factors, which include capital, labor force, pro-
duction technology, and national product, of a particular economy in a given
planning interval of time. Principal models and their basic properties have
been investigated by Ramsey [1], Harrod [2], Domar [3], Solow [4], Swan [5],
Cass [6], Koopmans [7], Romer [8], Lucas [9] and others. Surveys and details
about the origins and developments of economic growth theories can be found
in the recent papers [10–13] of Spear and Young and in the books [14] of Barro
and Sala-i-Martin and [15] of Acemoglu.

Along with the analysis of the global economic factors, another major issue
regarding an economy is the so-called optimal economic growth problem, which
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can be roughly stated as follows: Define the amount of consumption (and there-
fore, saving) at each time moment of a given planning interval to maximize a
certain target of consumption satisfaction while fulfilling given relations in the
growth model of that economy. This optimal consumption/saving problem was
first formulated and solved to a certain extent by Ramsey [1]. Later, significant
extensions of the model in [1] were suggested by Cass [6] and Koopmans [7].
Note that the planning interval of optimal economic growth problems can be
finite or infinite (see, e.g., [14, Section 3.6], [16, p. 407], and esp., [17, pp.
445–446, 450 – 459] for detail discussions). When it is finite (resp., infinite),
one has optimal economic growth problems with finite horizon (resp., infinite
horizon). Thus, these two classes of optimal economic growth problems can be
studied independently. However, an optimal economic growth problem with
finite horizon might be considered as a special case of the infinite horizon
counterpart (see, e.g., [15, p. 260]) and an optimal economic growth problem
with infinite horizon can be approximated by the corresponding problems with
finite horizon, provided that the planning interval is sufficiently long (see, e.g.,
[20, p. 144]).

A major part in the literature on optimal economic growth problems is
devoted to the characterization of the solutions. Necessary optimality condi-
tions and sufficient optimality conditions have been discussed in the books
[15, Chapters 7 and 8], [16, Chapter16], [17, Chapter 5], [18, Chapters 5, 7,
10, and 11], [19, Chapter 20] and papers cited therein while computational
aspects can be found in [20, Chapters 4 and 6]. It is worthy to note that neces-
sary optimality conditions only allow us to sort out “candidates” for solutions.
To conclude that those candidates are solutions, we need to verify sufficient
optimality conditions, which normally require that the problem under consid-
eration possesses enough concavity (see, e.g., [15, Theorems 7.11 and 7.14]).
If the problem does not satisfy such requirements, the justification for using
the necessary optimality conditions is much weaker and sufficient conditions
to assure the solution existence are really needed. However, the results on so-
lution existence of optimal economic growth problems seem much fewer than
the results on solution characterizations (see, [15, p. 259]). For infinite horizon
models, some existence results were given in [15, Example 7.4] and [21, Subsec-
tion 4.1]. For finite horizon models, our careful searching in the literature leads
just to [22, Theorem 1]. Though one might consider a finite horizon problem
as a special case of its infinite horizon counterpart (see the comments in [15,
p.260] and [21, p. 328]), there are examples (see, e.g., [23] and [17, Subsec-
tion b, pp. 450 – 459]) showing that while solutions of finite horizon problems
exist, the corresponding one with infinite horizon does not have a solution.
These observations motivate the present investigation on solution existence of
optimal economic growth problems with finite horizon, which are treated as
an independent class of problems.

This paper considers the solution existence of finite horizon optimal eco-
nomic growth problems of an aggregative economy; see, e.g., [17, Sections C
and D in Chapter 5]. Our main tool is Filippov’s Existence Theorem for opti-
mal control problems with state constraints of the Bolza type from the mono-
graph of Cesari [24]. Our new results on the solution existence are obtained
under some mild conditions on the per capita production function and the util-
ity function, which are two major inputs of the model in question. The results
for general problems are also specified for typical ones, where the production
function is given by either the AK function or the Cobb-Douglas one while
the utility function can be in a linear or power form. Some interesting open
questions and conjectures about the regularity of global solutions of finite hori-
zon optimal economic growth problems are formulated in the final part of the
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paper. Note that, since the saving policy on a compact segment of time would
not be practicable if it has an infinite number of discontinuities, our concept
of regularity of solutions of the optimal economic growth problem has a clear
practical meaning.

The solution existence theorems in this paper for finite horizon optimal
economic growth problems can neither be obtained from [22, Theorem 1] for
problems in a similar finite horizon setting nor be derived from [15, Exam-
ple 7.4] and [21, Subsection 4.1] for problems with infinite horizon, even if one
might consider finite horizon problems as special cases of the counterpart with
infinite horizon. Among other things, the assumptions therein on the strict
concavity or the differentiability (such as continuous differentiability, vanish-
ing at infinity of the derivative, and Inada conditions) on the utility function
and the per capita production function are not required herein. In Remark 3.1,
we will see a per capita production that is not concave and differentiable on
IR+ but satisfies our assumptions in Theorem 3.1 on the solution existence
of general problems. Also, when the per capita production function and util-
ity function are both linear, which means they are concave and continuously
differentiable everywhere but does not meet the criteria about strict concav-
ity, vanishing at infinity of the derivative, and Inada conditions, we can still
guarantee the solution existence of the problem by Theorem 4.1.

The rest of this paper is organized as follows. Section 2 presents the mod-
eling of optimal economic growth problems with finite horizon and some back-
ground materials including the above-mentioned Filippov’s theorem. Results
on the solution existence for general and typical problems are addressed, re-
spectively, in Sections 3 and 4. Further discussions about the assumptions on
the per capita production function and about the regularity of global solutions
are given in Section 5.

2 Preliminaries

This section collects some notations, definitions, and results that will be used in
the sequel. The emphasis will be made on optimal economic growth problems.

By IR (resp., IR+ and IN) we denote the set of real numbers (resp., the set
of nonnegative real numbers and the set of positive integers). The Euclidean
norm in the n-dimensional space IRn is denoted by ‖.‖. The Sobolev space
W 1,1([t0, T ], IRn) (see, e.g., [25, p. 21]) is the linear space of the absolutely
continuous functions x : [t0, T ]→ IRn equipped with the norm

‖x‖W 1,1 = ‖x(t0)‖+

∫ T

t0

‖ẋ(t)‖dt.

It is well-known (see, e.g., [26]) that any absolutely continuous function x :
[t0, T ]→ IRn is Fréchet differentiable almost everywhere on [t0, T ]. Moreover,
the function ẋ(·) is integrable on [t0, T ] with the integral being understood
in the Lebesgue sense. The space W 1,1([t0, T ], IR) is vital for us, because the
capital-to-labor ratio function k(·) (see Subsection 2.1 below) in the economic
growth models is sought in that space.

2.1 Optimal Economic Growth Models

Following Takayama [17, Sections C and D in Chapter 5], we consider the
problem of optimal growth of an aggregative economy. Suppose that the econ-
omy can be characterized by one sector, which produces the national product
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Y (t) at time t. Suppose that Y (t) depends on two factors, the labor L(t) and
the capital K(t), and the dependence is described by a production function F .
Namely, one has

Y (t) = F (K(t), L(t)), t ≥ 0.

It is assumed that F : IR2
+ → IR+ is a function defined on the nonnegative

orthant IR2
+ of IR2 having nonnegative real values, and that it exhibits constant

returns to scale, i.e.,

F (αK,αL) = αF (K,L), ∀α > 0, ∀(K,L) ∈ IR2
+. (1)

For every t ≥ 0, by C(t) and I(t), respectively, we denote the consumption
amount and the investment amount of the economy. The equilibrium relation
in the output market is depicted by

Y (t) = C(t) + I(t), ∀t ≥ 0. (2)

Since the consumption amount can be neither negative nor exceed the total
outcome, one has

0 ≤ C(t) ≤ Y (t), ∀t ≥ 0. (3)

The relationship between the capital K(t) and the investment amount I(t) is
given by the differential equation

K̇(t) = I(t), ∀t ≥ 0, (4)

where K̇(t) =
dK(t)

dt
denotes the Fréchet derivative of K(·) at time instance

t (see, e.g., [19, pp. 465–466]). If the investment function I(·) is continuous,
then one can compute the capital stock K(t) at time t by the formula

K(t) = K(0) +

∫ t

0

I(τ)dτ,

where the integral is Riemannian and K(0) signifies the initial capital stock. In
particular, the rate of increase of the capital stock K̇(t) at every time moment
t exists and it is finite.

If the initial labor amount is L0 > 0 and the growth rate of labor force is
a constant σ > 0 (i.e., L̇(t) = σL(t) for all t ≥ 0), then the labor amount at
any time t is

L(t) = L0e
σt, ∀t ≥ 0. (5)

As L(t) > 0 for any t ≥ 0, it follows from (1) that Y (t)
L(t) = F

(
K(t)
L(t) , 1

)
for

all t ≥ 0. By introducing the capital-to-labor ratio k(t) := K(t)
L(t) for t ≥ 0 and

the function φ(k) := F (k, 1) for k ≥ 0, from the last equality we have

φ(k(t)) =
Y (t)

L(t)
, ∀t ≥ 0. (6)

Due to (6), one calls φ(k(t)) the output per capita at time t and φ : IR+ → IR+

the per capita production function. This function φ(·) is well-defined on IR+

and has nonnegative values because the production function F (·, ·) is defined
on IR2

+ and has nonnegative values.
Combining the continuous differentiability of K(·) and L(·), which is guar-

anteed by (4) and (5), with the equality defining the capital-to-labor ratio,
one can asserts that k(·) is continuously differentiable. Thus, from the relation
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K(t) = k(t)L(t) one obtains K̇(t) = k̇(t)L(t) + k(t)L̇(t) for all t ≥ 0. Dividing
both sides of the last equality by L(t) and recalling that L̇(t) = σL(t), we get

K̇(t)

L(t)
= k̇(t) + σk(t), ∀t ≥ 0. (7)

Similarly, dividing both sides of the equality in (4) by L(t) and using (2),

we have K̇(t)
L(t) = Y (t)

L(t) −
C(t)
L(t) for all t ≥ 0. So, by considering the per capita

consumption c(t) := C(t)
L(t) of the economy at time t and invoking (6), one

obtains K̇(t)
L(t) = φ(k(t))− c(t) for all t ≥ 0. Combining this with (7) yields

k̇(t) = φ(k(t))− σk(t)− c(t), ∀t ≥ 0. (8)

The dynamic constraint (8) is called the fundamental differential equation
of neoclassical economic growth [16, p. 402]. By (6), the constraint on the
consumption amount (3) becomes

0 ≤ c(t) ≤ φ(k(t)), ∀t ≥ 0. (9)

Thus, the growth problem of the aggregative economy under consideration is:
Find pairs of functions (k, c) that together satisfy the dynamic constraint (8),
the inequality constraint (9), and an initial condition k(t0) = k0 with k0 > 0
being a given value for the capital-to-labor ratio at initial time t0.

Note that the just-mentioned growth problem is not easy to study. Firstly,
the differential equation(8) is always a nonlinear, unless the function φ(·) is
linear or constant. Secondly, though the per capita consumption c(t) appears
linearly in the dynamic constraint (8), which is a quite nice property, the sec-
ond inequality in (9) means that the per capita consumption c(t) depends on
the capital-to-labor ratio k(t) at each reference time t via the per capita pro-
duction function φ(·); hence, c(t) might be unbounded. The latter properties
usually cause difficulties in the study of optimal economic growth problems.
To avoid this, one can use an alternative way to formulate the growth problem
as follows.

Introduce the propensity to save s(t) at time t with

0 ≤ s(t) ≤ 1, ∀t ≥ 0 (10)

and present the consumption amount by

C(t) = (1− s(t))Y (t), ∀t ≥ 0. (11)

Then, by dividing both sides of (11) by L(t) and referring to (6), one gets

c(t) = (1− s(t))φ(k(t)), ∀t ≥ 0. (12)

Thanks to (12), one can rewrite (8) equivalently as

k̇(t) = s(t)φ(k(t))− σk(t), ∀t ≥ 0. (13)

The economic growth problem now becomes: Find pairs of functions (k, s)
that fulfill the dynamic constraint (13), the inequality constraint (10), and the
initial condition k(t0) = k0.

As we can see, these two formulations for the economic growth problem
are linked by the relation (12) between the per capita consumption c(·) and
the propensity to save s(·). The constraint on the consumption amount (3)
is represented by (9) in the first formulation and by (10) in the second one.
Obviously, the constraint in (10) is simpler than (9). For this technical reason,
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we will consider in this paper the economic growth problem which is formulated
via the propensity to save s(·), instead of the per capita consumption c(·). It
is worthy to note that one might consider the economic growth problem in the
second formulation with some special saving behaviors, such as the constancy
of the saving rate, i.e., (13) is satisfied with s(t) = s ∈ [0, 1] for all t ≥ 0, as in
growth models of Solow [4] and Swan [5] or the classical saving behavior as in
[17, p. 439].

One major concern of the planners is to choose a pair of functions (k, c)
(resp., (k, s)) defined on a planning interval [t0, T ], that satisfies (8), (9) (resp.,
(10), (13)) and the initial condition k(t0) = k0, to maximize a certain target

of consumption. A target function one may choose is
∫ T
t0
c(t)dt, which is the

total amount of per capita consumption on the time period [t0, T ]. A more
general kind of the target function is∫ T

t0

ω(c(t))e−λtdt, (14)

where ω : IR+ → IR is a utility function associated with the representative
individual consumption c(t) in the society, e−λt is the time discount factor,
and λ ≥ 0 is the real interest rate. Clearly, the former target function is a
particular case of (14) with ω(c) = c being a linear utility function and the
real interest rate λ = 0. For more discussions about the choice the utility
function ω(·) (it must be linear, or it can be nonlinear? ) as well as the choice
of the real interest rate (one must have λ = 0, or one can have λ > 0? ),
we refer the reader to [17, pp. 445–447]. Note that the length of the planning
interval of optimal economic growth problems can be finite or infinite (see, e.g.,
[16, p. 407], [14, Section 3.6] and esp., [17, pp. 445–446, 450 – 459] for detail
discussions). When it is finite (resp., infinite), one has optimal economic growth
problems with finite horizon (resp., infinite horizon). Thus, these two classes of
optimal economic growth problems can be studied and treated independently.
In this paper, we will work with optimal economic growth problems with finite
horizon where the target function is in the general setting (14) and the real
interest rate λ can be either zero or a positive number. Note also that, because
of the relationship between c(t) and s(t) in (12), the target function in (14)
can be expressed via k(t) and s(t) by∫ T

t0

ω[(1− s(t))φ(k(t))]e−λtdt.

In summary, the optimal economic growth problem that we are going to
consider is formulated as follows. Let there be given a production function
F : IR2

+ → IR+ satisfying (1) and a utility function ω : IR+ → IR. Define
the per capita production function φ : IR+ → IR+ by setting φ(k) = F (k, 1).
Assume that a finite planning interval [t0, T ] with T > t0 ≥ 0, a growth rate
of labor force σ > 0, a real interest rate λ ≥ 0, and an initial capital-to-labor
ratio k0 > 0 are given. The problem of finding an optimal growth process for
an aggregative economy is:

Maximize I(k, s) :=

∫ T

t0

ω[(1− s(t))φ(k(t))]e−λtdt (15)

over k ∈W 1,1([t0, T ], IR) and measurable functions s : [t0, T ]→ IR satisfying
k̇(t) = s(t)φ(k(t))− σk(t), a.e. t ∈ [t0, T ]

0 ≤ s(t) ≤ 1, a.e. t ∈ [t0, T ]

k(t) ≥ 0, ∀ t ∈ [t0, T ]

k(t0) = k0.

(16)
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Denote the problem in (15)–(16) by (GP ). This an optimal control problem
with k(·) playing the role of the state variable and s(·) playing the role of the
control variable. By the integral form in the objective function (15) and the
state constraint k(t) ≥ 0 in (16), (GP ) is an optimal control problem of the
Lagrange type with state constraints.

To make (GP ) competent with the given modeling presentation, one has
to explain why the state trajectory can be sought in W 1,1([t0, T ], IR) and
the control function is just required to be measurable. If one assumes that
the investment function I(·) is continuous on [t0, T ], then (4) implies that
K(·) is continuously differentiable; hence so is k(·). However, in practice, the
investment function I(·) can be discontinuous at some points t ∈ [t0, T ] (say,
the policy has a great change, and the government decides to allocate a large
amount of money into the production field, or to cancel a large amount of
money from it). Thus, the requirement that k(·) is differentiable at these points
may not be fulfilled. To deal with this situation, it is reasonable to assume
that the state trajectory k(·) belongs to the space of continuous, piecewise
continuously differentiable functions on [t0, T ], which is endowed with the norm
‖k‖ = max

t∈[t0,T ]
|k(t)|. Since the latter space is incomplete one embeds it into the

space W 1,1([t0, T ], IR), which possesses many good properties (see [26]). In
that way, tools from the Lebesgue integration theory and results from the
conventional optimal control theory can be used for (GP ). Now, concerning
the control function s(·), one has the following observation. Since the derivative
k̇(t) exists almost everywhere on [t0, T ] and k̇(·) is a measurable function, for
the fulfillment of the relation k̇(t) = s(t)φ(k(t))− σk(t) almost everywhere on
[t0, T ], it suffices to assume that s(·) is a measurable function. Recall that a
function ϕ : [t0, T ] → IR is said to be measurable if for any α ∈ IR the set
{t ∈ [t0, T ] : ϕ ∈ (−∞, α)} is Lebesgue measurable.

2.2 Filippov’s Existence Theorem for Bolza Problems

To recall a solution existence theorem for finite horizon optimal control prob-
lems with state constraints of the Bolza type, we will use the notations and
concepts given in the monograph of Cesari [24, Sections 9.2, 9.3, and 9.5].
For solution existence theorems in optimal control theory, apart from [24], the
reader is referred to [27,28], and the references therein. Let A ⊂ IR× IRn and
U : A⇒ IRm be a set-valued map defined on A. Let

M := {(t, x, u) ∈ IR× IRn × IRm : (t, x) ∈ A, u ∈ U(t, x)},

f0(t, x, u) and f(t, x, u) = (f1, f2, . . . , fn) be functions defined on M . Let B
be a given subset of IR × IRn × IR × IRn and g(t1, x1, t2, x2) be a real valued
function defined on B. Let there be given an interval [t0, T ] ⊂ IR. Consider
the problem of minimizing the function

I(x, u) := g(t0, x(t0), T, x(T )) +

∫ T

t0

f0(t, x(t), u(t))dt (17)

over pairs of functions (x, u) such that x : [t0, T ] → IRn is absolutely con-
tinuous, u : [t0, T ] → IRm is measurable, f0(., x(·), u(·)) : [t0, T ] → IR is
Lebesgue integrable, and

ẋ(t) = f(t, x(t), u(t)), a.e. t ∈ [t0, T ]

u(t) ∈ U(t, x(t)), a.e. t ∈ [t0, T ]

(t, x(t)) ∈ A, ∀ t ∈ [t0, T ]

(t0, x(t0), T, x(T )) ∈ B.

(18)
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Such a pair (x, u) is called a feasible process. The problem (17)–(18), which is
an optimal control of the Bolza type with state constraints, is denoted by B.

If (x, u) is a feasible process for B, then x is said to be a feasible state, and
u a feasible control. The set of all the feasible processes for B is denoted by
Ω. A feasible process (x̄, ū) is said to be a global minimizer for B if one has
I(x̄, ū) ≤ I(x, u) for any feasible process (x, u).

Let A0 :=
{
t : ∃x ∈ Rn s.t. (t, x) ∈ A

}
. Set A(t) =

{
x ∈ IRn : (t, x) ∈ A

}
for each t ∈ A0 and

Q̃(t, x) =
{

(z0, z) ∈ IRn+1 : z0 ≥ f0(t, x, u), z = f(t, x, u) for some u ∈ U(t, x)
}

for every (t, x) ∈ A.
The forthcoming statement is known as Filippov’s Existence Theorem for

Bolza problems.

Theorem 2.1 (see [24, Theorem 9.3.i, p. 317, and Section 9.5]) Sup-
pose that Ω is nonempty, B is closed, g is lower semicontinuous on B, f0

and f is continuous on M and, for almost every t ∈ [t0, T ], the sets Q̃(t, x),
x ∈ A(t), are convex. Moreover, assume either that A and M are compact or
that A is not compact but closed and contained in a slab [t1, t2]× IRn with t1
and t2 being finite, and the following conditions are fulfilled:

(a) For any ε ≥ 0, the set Mε := {(t, x, u) ∈M : ‖x‖ ≤ ε} is compact;
(b) There is a compact subset P of A such that every feasible trajectory x of
B passes through at least one point of P ;

(c) There exists c ≥ 0 such that x1f1(t, x, u)+ · · ·+xnfn(t, x, u) ≤ c(‖x‖2 +1)
for all (t, x, u) ∈M.

Then, B has a global minimizer.

Clearly, condition (b) is satisfied if the initial point (t0, x(t0)) or the end point
(T, x(T )) is fixed. As shown in [24, p. 317], the following condition implies (c):

(c0) There exists c ≥ 0 such that ‖f(t, x, u)‖ ≤ c(‖x‖+1) for all (t, x, u) ∈M .

In the next two sections, several results on the solution existence of optimal
economic growth problems will be derived from Theorem 2.1.

3 General Optimal Economic Growth Problems

Our first result on the solution existence of the finite horizon optimal economic
growth problem (GP ) in (15)–(16) is stated as follows.

Theorem 3.1 For the problem (GP ), suppose that ω(·) and φ(·) are contin-
uous on IR+. If, in addition, ω(·) is concave on IR+ and the function φ(·)
satisfies the condition

(c1) There exists c ≥ 0 such that φ(k) ≤ (c− σ)k + c for all k ∈ IR+,

then (GP ) has a global solution.

Proof To apply Theorem 2.1, we have to interpret (GP ) in the form of B.
For doing so, we let the variable k (resp., the variable s) play the role of the
state variable x in B (resp., the control variable u in B). Then, (GP ) has
the form of B with n = m = 1, A = [t0, T ] × IR+, U(t, k) = [0, 1] for all
(t, k) ∈ A, B = {t0} × {k0} × {T} × IR, M = [t0, T ] × IR+ × [0, 1], g ≡ 0
on B, f0(t, k, s) = −ω((1 − s)φ(k))e−λt, and f(t, k, s) = sφ(k) − σk for all
(t, k, s) ∈M .
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Setting s(t) = 0 and k(t) = k0e
−σ(t−t0) for all t ∈ [t0, T ], one can easily

verify that the pair (k, s) is a feasible process for (GP ). Thus, the set Ω of the
feasible processes is nonempty. It is clear that B is closed, g is continuous on
B and, by the assumed continuity of ω(·) and φ(·), f0 and f are continuous
on M . Besides, the formula for A implies that A0 = [t0, T ] and A(t) = IR+

for all t ∈ A0. In addition, by the formulas for f0, f and U , one has for any
(t, k) ∈ A the following:

Q̃(t, k)

=
{

(z0, z) ∈ IR2 : z0 ≥ f0(t, k, s), z = f(t, k, s) for some s ∈ U(t, k)
}

=
{

(z0, z) ∈ IR2 : ∃s ∈ [0, 1] s.t. z0 ≥ −ω((1− s)φ(k))e−λt, z = sφ(k)− σk
}
.

Let us show that, for any t ∈ [t0, T ] and k ∈ A(t) = IR+, the set Q̃(t, k) is

convex. Indeed, given any (z0
1 , z1), (z0

2 , z2) ∈ Q̃(t, k) and µ ∈ [0, 1], one can
find s1, s2 ∈ [0, 1] such that

z0
1 ≥ −ω((1− s1)φ(k))e−λt, z1 = s1φ(k)− σk,
z0

2 ≥ −ω((1− s2)φ(k))e−λt, z2 = s2φ(k)− σk.

Therefore, it holds that

µz0
1 + (1− µ)z0

2 ≥ −µω((1− s1)φ(k))e−λt − (1− µ)ω((1− s2)φ(k))e−λt (19)

and
µz1 + (1− µ)z2 = µ[s1φ(k)− σk] + (1− µ)[s2φ(k)− σk]. (20)

Setting sµ = µs1 + (1− µ)s2, one has sµ ∈ [0, 1] and it follows from (20) that

µz1 + (1− µ)z2 = sµφ(k)− σk. (21)

Clearly, the concavity of ω(·) on IR+ yields

− µω((1− s1)φ(k))− (1− µ)ω((1− s2)φ(k))

≥ −ω[µ(1− s1)φ(k) + (1− µ)(1− s2)φ(k)] = −ω((1− sµ)φ(k)).

Hence, by (19) we obtain µz0
1 + (1 − µ)z0

2 ≥ −ω[(1− sµ)φ(k)]e−λt, which

together with (21) implies that µ(z0
1 , z1) + (1− µ)(z0

2 , z2) ∈ Q̃(t, k).
Now, although A = [t0, T ] × IR+ is noncompact, the fact that A is closed

and contained in a slab [t1, t2] × IR with t1 and t2 being finite is clear. It
remains to check the conditions (a)–(c) in Theorem 2.1.

For any ε ≥ 0, the set Mε is compact because

Mε = {(t, k, s) ∈ [t0, T ]× IR+ × [0, 1] : |k| ≤ ε}
= [t0, T ]× [0, ε]× [0, 1].

So, condition (a) is satisfied. As P := {(t0, k0)} is a compact subset of A,
and every feasible trajectory of (GP ) passes through (t0, k0), condition (b)
is fulfilled. Applied to the case of (GP ), where f(t, k, s) = sφ(k) − σk and
M = [t0, T ]× IR+× [0, 1] as explained above, condition (c) in Theorem 2.1 can
be rewritten as

(c′) There exists c ≥ 0 such that skφ(k) ≤ (c + σ)k2 + c for all (k, s) in
IR+ × [0, 1].

By the comment given after Theorem 2.1, condition (c) is valid if condition
(c0) holds. As f(t, k, s) = sφ(k) − σk and M = [t0, T ] × IR × [0, 1], the latter
can be stated as
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(c′0) There exists c ≥ 0 such that |sφ(k) − σk| ≤ c(k + 1) for all (k, s) in
IR+ × [0, 1].

To prove (c′0), observe that the estimates

|sφ(k)− σk| ≤ sφ(k) + σk ≤ φ(k) + σk (22)

hold for any (k, s) ∈ IR+ × [0, 1]. Furthermore, thanks to the assumption (c1),
we can find a constant c ≥ 0 such that φ(k) ≤ (c − σ)k + c for all k ∈ IR+.
Since the last inequality can be rewritten as φ(k) + σk ≤ c(k + 1), from (22)
we get (c′0).

Since our problem (GP ) in the interpretation given above satisfies all the
assumptions of Theorem 2.1, we conclude that it has a global solution. ut

In Theorem 3.1, it is not required that φ(·) is concave on IR+. It turns
out that if the concavity of φ(·) is available, then there is no need to check
(c1). Since the assumption saying that the per capita production function
φ(k) := F (k, 1) is concave on IR+ is reasonable in practice, next theorem
seems to be interesting.

Theorem 3.2 If both functions ω(·) and φ(·) are continuous and concave on
IR+, then (GP ) has a global solution.

Proof Set ψ = −φ and put ψ(k) = +∞ for every k ∈ (−∞, 0). Then, the
function ψ : IR → IR ∪ {+∞} is a proper convex function and the effective
domain domψ of ψ is IR+. Select any k̄ > 0. Since k̄ belongs to the interior of
domψ, by [29, Theorem 23.4] we know that the subdifferential (see, e.g., [29,
p. 215]) ∂ψ(k̄) of ψ at k̄ is nonempty. Thus, taking an element a ∈ ∂ψ(k̄), one
has

ψ(k)− ψ(k̄) ≥ a(k − k̄), ∀k ≥ 0,

or, equivalently,

φ(k) ≤ −ak + ak̄ + φ(k̄), ∀k ≥ 0. (23)

For c := max{0, σ − a, φ(k̄) + ak̄}, one has c ≥ 0 and

−ak + ak̄ + φ(k̄) ≤ (c− σ)k + c, ∀k ≥ 0. (24)

Combining (23) and (24), one can assert that condition (c1) in Theorem 3.1
is fulfilled. Thus, the assumed continuity of ω(·) and φ(·) together with the
concavity of ω(·) allows us to apply Theorem 3.1 to conclude that (GP ) has a
global solution. ut

The next proposition reveals the nature of condition (c1), which is essential
for the validity of Theorem 3.1.

Proposition 3.1 Condition (c1) and the conditions (c′) and (c′0), which were
formulated in the proof of Theorem 3.1, are equivalent. Moreover, each of these
conditions is equivalent to the condition

lim sup
k→+∞

φ(k)

k
< +∞ (25)

on the asymptotic behavior of φ.
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Proof The implications (c1)⇒ (c′0) and (c′0)⇒ (c′) were obtained in the proof
of Theorem 3.1. So, the proposition will be proved if we can show that (c′)
implies (25) and (25) implies (c1).

To get the implication (c′) ⇒ (25), suppose that (c′) holds. Then, there
exists c ≥ 0 satisfying skφ(k) ≤ (c + σ)k2 + c for all (k, s) ∈ IR+ × [0, 1].
Thus, choosing s = 1, one has

φ(k)

k
≤ c+ σ +

c

k2
, ∀k > 0.

By taking the limsup on both sides of the last inequality when k → +∞, one
gets (25).

Now, to obtain the implication (25)⇒ (c′), suppose that (25) holds. Then,

there exist γ1 > 0 and µ > 0 such that φ(k)
k ≤ γ1 for every k > µ. Thanks to the

continuity of φ at k = 0, one can find γ2 > 0 and ε ∈ (0, µ) such that φ(k) ≤ γ2

for all k ∈ [0, ε). Moreover, by the continuity of the function k 7→ φ(k)/k on

the compact interval [ε, µ], the number γ3 := max
{
φ(k)
k : k ∈ [ε, µ]

}
is well

defined. Thus, for any c ≥ max{γ1 + σ, γ2, γ3 + σ}, it holds that

φ(k) ≤ γ2 ≤ c ≤ (c− σ)k + c ∀k ∈ [0, ε),

φ(k) ≤ γ3k ≤ (c− σ)k + c ∀k ∈ [ε, µ]

and

φ(k) ≤ γ1k ≤ (c− σ)k + c ∀k ∈ (µ,+∞).

Therefore, one has φ(k) ≤ (c−σ)k+c for every k ≥ 0, which justifies (c1). ut

Remark 3.1 There are many continuous functions φ : IR+ → IR+ that are not
concave on IR+ but satisfy condition (c1) in Theorem 3.1. Indeed, suppose
that the values k̄ > 0, φ0 ≥ 0, and a > 0 are given arbitrarily. Setting

φ(k) =

{
φ0, if k ∈ [0, k̄]

a(k − k̄) + φ0, if k ∈ (k̄,−∞),

one has a function φ, that is continuous and not concave on IR+. But, since
the coercivity condition (25) is fulfilled, this φ satisfies (c1). More generally,
the continuous function

φ(k) =

{
φ1(k), if k ∈ [0, k̄]

a(k − k̄)α + φ1(k̄), if k ∈ (k̄,−∞),

where α ∈ (0, 1] is a constant and φ : [0, k̄]→ IR+ is a continuous function, also
satisfies (c1) because (25) is fulfilled. Clearly, there are many ways to choose
φ1(k) such that this function φ in nonconcave on IR+.

Economic growth problems with utility functions ω(·) and production func-
tions F (·) of two typical types will be the subject of our consideration in next
section.
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4 Typical Optimal Economic Growth Problems

As observed by Takayama [17, p. 450], the production function given by

F (K,L) =
1

a
K, ∀(K,L) ∈ IR2

+, (26)

where a > 0 is a constant representing the capital-to-output ratio, is of a
great importance. This function is in the form of the AK function (see, e.g.,
[14, Subsection 1.3.2]) with the diminishing returns to capital being absent,
which is a key property of endogenous growth models. The function in (26) is
also referred to in connection with the Harrod-Domar model of which a main
assumption is that the labor factor is not explicitly involved in the production
function (see, e.g., [17, Footnote 5, p. 464]). In the notations of Subsection 2.1,
by (26) one has

φ(k) =
1

a
k, ∀k ≥ 0.

So, the differential equation in (16) becomes

k̇(t) =
1

a
s(t)k(t)− σk(t), a.e. t ∈ [t0, T ].

Another important type of the production function F is the Cobb-Douglas
function (see, e.g., [14, p. 29]), which is given by

F (K,L) = AKαL1−α, ∀(K,L) ∈ IR2
+, (27)

with A > 0 and α ∈ (0, 1) being constants. The exponent α (resp., 1−α) refers
to the output elasticity of capital (resp., the output elasticity of labor), which
represents the share of the contribution of the capital (resp., of the labor) to
the total product F (K,L). Meanwhile, A expresses the total factor productiv-
ity (TFP; see, e.g., https://en.wikipedia.org/wiki/Total factor productivity).
This measure of economic efficiency is the ratio of output over the weighted
average of labor and capital input. TFP represents the increase in total produc-
tion which is in excess of the increase that results from increase in inputs and
depends on some intangible factors such as technological change, education,
research and development, etc. As α ∈ (0, 1), F exhibits diminishing returns to
capital and labor (see, e.g., [17, p. 433]). The latter means that the marginal
products of both capital and labor are diminishing (see, e.g.,[15, p. 29]). The
presence of diminishing returns to capital, which plays a very important role
in many results of the basic growth model (see, e.g., [15, p. 29]), distinguishes
the production given by (27) with the one in (26). The per capita production
function corresponding to (27) is

φ(k) = Akα, ∀k ≥ 0. (28)

Therefore, (16) collapses to

k̇(t) = As(t)kα(t)− σk(t), a.e. t ∈ [t0, T ]. (29)

Since (26) can be written in the form of (27) with α := 1 and A := 1/a,
one can combine the above two types of production functions in a general one
by considering (27) with A > 0 and α ∈ (0, 1]. This means that one has deal
with the model (28)–(29), where A > 0 and α ∈ (0, 1] are given constants. In
the same manner, concerning the utility function ω(·), the formula

ω(c) = cβ , ∀c ≥ 0 (30)
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with β ∈ (0, 1] can be considered. The function ω(·) is linear when β = 1 and
nonlinear when β ∈ (0, 1).

In the rest of this section, for the problem (GP ), we assume that φ(·) and
ω(·) are given respectively by (28) and (30). Then, the target function of (GP )
is

I(k, s) =

∫ T

t0

[1− s(t)]βφβ(k(t))e−λtdt = Aβ
∫ T

t0

[1− s(t)]βkαβ(t)e−λtdt.

Thus, we have to solve the following equivalent problem:

Maximize

∫ T

t0

[1− s(t)]βkαβ(t)e−λtdt (31)

over k ∈W 1,1([t0, T ], IR) and measurable functions s : [t0, T ]→ IR satisfying
k̇(t) = Akα(t)s(t)− σk(t), a.e. t ∈ [t0, T ]

0 ≤ s(t) ≤ 1, a.e. t ∈ [t0, T ]

k(t) ≥ 0, ∀ t ∈ [t0, T ]

k(t0) = k0.

(32)

with A > 0, α ∈ (0, 1], β ∈ (0, 1], T > t0 ≥ 0, σ > 0, λ ≥ 0, and k0 ≥ 0 being
eight given parameters.

The forthcoming result is a consequence of Theorem 3.2.

Theorem 4.1 For any A > 0, α ∈ (0, 1] and β ∈ (0, 1], the optimal economic
growth problem in (31)–(32) possesses a global solution.

Proof By the assumptions A > 0, α ∈ (0, 1], and β ∈ (0, 1], the functions
φ(k) = Akα and ω(c) = cβ are continuous on IR+. The concavity of φ(·) on
(0,+∞) follows from the fact that φ′′(k) = Aα(α − 1)kα−2 < 0 for every
k ∈ (0,+∞) (see, e.g., [29, Theorem 4.4]). As φ(·) is continuous at 0, we can
assert that φ(·) is concave on IR+. The concavity of φ(·) on IR+ is verified
similarly. Since both functions ω(·) and φ(·) are continuous and concave on
IR+, Theorem 3.2 assures the solution existence for the problem (31)–(32). ut

Depending on the displacement of α and β on (0, 1], we have four types of
the model (31)–(32):

– “Linear-linear”: φ(k) = Ak and ω(c) = c (both the per capita production
function and the utility function are linear);

– “Linear-nonlinear”: φ(k) = Ak and ω(c) = cβ with β ∈ (0, 1) (the per
capita production function is linear, but the utility function is nonlinear);

– “Nonlinear-linear”: φ(k) = Akα and ω(c) = c with α ∈ (0, 1) (the per
capita production function is nonlinear, but the utility function is linear);

– “Nonlinear-nonlinear”: φ(k) = Akα and ω(c) = cβ with α ∈ (0, 1) and
β ∈ (0, 1) (both the per capita production function and the utility function
are nonlinear).

Although the problem in question of each type has a global solution by
Theorem 4.1, the above classification arranges the difficulties of solving (31)–
(32), say, by the Maximum Principle given in [30, Theorem 9.3.1]. Obviously,
problems of the first type are the easiest ones, while those of the fourth type
are the most difficult ones.
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5 Further Discussions

In this section, first we discuss some assumptions used for getting Theorems 3.1
and 3.2. Then we will look deeper into these theorems and the typical optimal
economic growth problems in Section 4 by raising some open questions and
conjectures about the uniqueness and the regularity of the global solutions of
(GP ).

5.1 The asymptotic behavior of φ and its concavity

The results in Section 3 were obtained under certain assumptions on the per
capita production function φ, which is defined via the production function
F (K,L) by the formula

φ(k) = F (k, 1) =
F (K,L)

L
(33)

with k :=
K

L
signifying the capital-to-labor ratio. We want to know: How the

assumptions made on φ can be traced back to F?

Proposition 5.1 The per capita production function φ : IR+ → IR+ satisfies
condition (c1) if and only if the production function F : IR2

+ → IR+ has the
following property:

(c′1) There exists c ≥ 0 such that F (K,L) ≤ (c − σ)K + cL for all K ≥ 0 and
L > 0.

Proof Suppose that (c1) is satisfied, i.e., there exists c ≥ 0 such that φ(k) ≤
(c−σ)k+ c for all k ∈ IR+. Then, given any K ≥ 0 and L > 0, by substituting

k =
K

L
into the last inequality and using (33), one gets

F (K,L)

L
≤ (c− σ)

K

L
+ c.

This justifies (c′1). Conversely, suppose that F (K,L) ≤ (c−σ)K+cL holds for
allK ≥ 0 and L > 0, where c ≥ 0 is a constant. Then, letting L = 1 andK = k,
where k ≥ 0 is given arbitrarily, one gets the inequality φ(k) ≤ (c − σ)k + c.
Thus, (c1) is fulfilled. ut

Proposition 5.2 The function φ satisfies (25) if and only if F fulfills the
following inequality:

lim sup
K
L→+∞

F (K,L)

K
< +∞. (34)

Proof By (33), for any K > 0 and L > 0, one has

F (K,L)

K
=
L−1F (K,L)

L−1K
=
φ(k)

k

with k :=
K

L
. So, the equivalence between (25) and (34) is straightforward. ut

Propositions 5.1 and 5.2 show that the assumption made on φ(·) in The-
orem 3.1 and its equivalent representations given in Proposition 3.1 can be
checked directly on the original function F (·, ·).
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Proposition 5.3 The per capita production function φ : IR+ → IR+ is con-
cave on IR+ if and only if the production function F : IR2

+ → IR+ is concave
on IR+ × (0,+∞).

Proof Firstly, suppose that F is concave on IR+ × (0,+∞). Let k1, k2 ∈ IR+

and λ ∈ [0, 1] be given arbitrarily. The concavity of F and (33) yield

F (λ(k1, 1)+(1−λ)(k2, 1)) ≥ λF (k1, 1)+(1−λ)F (k2, 1) = λφ(k1)+(1−λ)φ(k2).

Since F (λ(k1, 1) + (1−λ)(k2, 1)) = F (λk1 + (1−λ)k2, 1), combining this with
(33), one obtains φ(λk1 + (1 − λ)k2) ≥ λφ(k1) + (1 − λ)φ(k2). This justifies
the concavity of φ.

Now, suppose that φ is concave on IR+. If F is not concave on IR+×(0,+∞),
then there exist (K1, L1), (K2, L2) in IR+ × (0,+∞) and λ ∈ (0, 1) such that

F (λK1 + (1− λ)K2, λL1 + (1− λ)L2) < λF (K1, L1) + (1− λ)F (K2, L2).

By (33), it holds that F (K,L) = Lφ
(K
L

)
for any (K,L) ∈ IR+ × (0,+∞).

Therefore, we have

[λL1 + (1− λ)L2]φ
(λK1 + (1− λ)K2

λL1 + (1− λ)L2

)
< λL1φ

(K1

L1

)
+ (1− λ)L2φ

(K2

L2

)
.

Dividing both sides of this inequality by λL1 + (1− λ)L2 gives

φ
(λK1 + (1− λ)K2

λL1 + (1− λ)L2

)
<

λL1

λL1 + (1− λ)L2
φ
(K1

L1

)
+

(1− λ)L2

λL1 + (1− λ)L2
φ
(K2

L2

)
.

(35)

Setting µ =
λL1

λL1 + (1− λ)L2
, one has 1 − µ =

(1− λ)L2

λL1 + (1− λ)L2
, µ ∈ (0, 1),

and

µ
K1

L1
+ (1− µ)

K2

L2
=
λK1 + (1− λ)K2

λL1 + (1− λ)L2
.

Thus, (35) means that

φ
(
µ
K1

L1
+ (1− µ)

K2

L2

)
< µφ

(K1

L1

)
+ (1− µ)φ

(K2

L2

)
.

This contradicts to the assumed concavity of φ on IR+ and completes the
proof. ut

We have seen that the assumption on the concavity of φ used in Theo-
rem 3.2 can be verified directly on F .

5.2 Regularity of the optimal economic growth processes

Solution regularity is an important concept which helps one to look deeper into
the structure of the problem in question. One may have deal with Lipschitz
continuity, Hölder continuity, and degree of differentiability of the obtained so-
lutions. We refer to [30, Chapter 11] for a solution regularity theory in optimal
control and to [31, Theorem 9.2, p. 140] for a result on the solution regularity
for variational inequalities.

The results of Sections 3 and 4 assure that, if some mild assumptions
on the per capital function and the utility function are satisfied, then (GP )
has a global solution (k̄, s̄) with k̄(·) being absolutely continuous on [t0, T ]
and s̄(·) being measurable. Since the saving policy s̄(·) on the time segment
[t0, T ] cannot be implemented if it has an infinite number of discontinuities,
the following concept of regularity of the solutions of the optimal economic
growth problem (GP ) appears in a natural way.
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Definition 5.1 A global solution (k̄, s̄) of (GP ) is said to be regular if the
propensity to save function s̄(·) only has finitely many discontinuities of first
type on [t0, T ]. This means that there is a positive integer m such that the
segment [t0, T ] can be divided into m subsegments [τi, τi+1], i = 0, . . . ,m− 1,
with τ0 = t0, τm = T , τi < τi+1 for all i, s̄(·) is continuous on each open
interval (τi, τi+1), and the one-sided limit lim

t→τi+
s̄(t) (resp., lim

t→τi−
s̄(t)) exists

for each i ∈ {0, 1, . . .m− 1} (resp., for each i ∈ {1, . . .m}).
In Definition 5.1, as s̄(t) ∈ [0, 1] for every t ∈ [t0, T ], the one-sided limit

lim
t→τi+

s̄(t) (resp., lim
t→τi−

s̄(t)) must be finite for each i ∈ {0, 1, . . .m− 1} (resp.,

for each i ∈ {1, . . .m}).

Proposition 5.4 Suppose that the function φ is continuous on [t0, T ]. If (k̄, s̄)
is a regular global solution of (GP ), then the capital-to-labor ratio k̄(t) is a con-
tinuous, piecewise continuously differentiable function on the segment [t0, T ].
In particular, the function k̄(·) is Lipschitz on [t0, T ].

Proof Since (k̄, s̄) is a regular global solution of (GP ), there is a positive integer
m such that the segment [t0, T ] can be divided into m subsegments [τi, τi+1],
i = 0, . . . ,m− 1, and all the requirements stated in Definition 5.1 are fulfilled.
Then, for each i ∈ {0, . . . ,m− 1}, from the first relation in (16) we have

˙̄k(t) = s̄(t)φ(k̄(t))− σk̄(t), a.e. t ∈ (τi, τi+1). (36)

Hence, by the continuity of φ on [t0, T ] and the continuity of s̄(·) on (τi, τi+1),

we can assert that the derivative ˙̄k(t) exists for every t ∈ (τi, τi+1). Indeed,
fixing any point t̄ ∈ (τi, τi+1) and using the Lebesgue Theorem [26, Theorem 6,
p. 340] for the absolutely continuous function k̄(·), we have

k̄(t) =

∫ t

t̄

˙̄k(τ)dτ, ∀t ∈ (τi, τi+1), (37)

where integral on the right-hand-side of the equality is understood in the the
Lebesgue sense. Since the Lebesgue integral does not change if one modifies
the integrand on a set of zero measure, thanks to (36) we have

k̄(t) =

∫ t

t̄

[s̄(τ)φ(k̄(τ))− σk̄(τ)]dτ. (38)

As the integrand of the last integral is a continuous function on (τi, τi+1), the
integration in the Lebesgue sense coincides with that in the Riemanian sense,

(38) proves our claim that the derivative ˙̄k(t) exists for every t ∈ (τi, τi+1).
Moreover, taking derivative of both sides of the equality (37) yields

˙̄k(t) = s̄(t)φ(k̄(t))− σk̄(t), ∀t ∈ (τi, τi+1). (39)

So, the function k̄(·) is continuously differentiable of (τi, τi+1). In addition, the
relation (39) and the existence of the finite one-sided limit lim

t→τi+
s̄(t) (resp.,

lim
t→τi−

s̄(t)) for each i in {0, 1, . . .m− 1} (resp., for each i in {1, . . .m}) implies

that the one-sided limit lim
t→τi+

˙̄k(t) (resp., lim
t→τi−

˙̄k(t)) is finite for each i in

{0, 1, . . .m − 1} (resp., for each i in {1, . . .m}. Thus, the restriction of k̄(·)
on each segment [τi, τi+1], i = 0, . . . ,m − 1, is a continuously differentiable
function. We have shown that the capital-to-labor ratio k̄(t) is a continuous,
piecewise continuously differentiable function on the segment [t0, T ].

We omit the proof of the Lipschitz property of on [t0, T ] of k̄(·), which
follows easily from the continuity and piecewise continuously differentiablity
of the function by using the classical mean value theorem. ut
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We conclude this subsection by two open questions and three independent
conjectures, whose solutions or partial solutions will reveal more the beauty
of the optimal economic growth model (GP ).

Open question 1: The assumptions of Theorem 3.1 are not enough to
guarantee that (GP ) has a regular global solution?

Open question 2: The assumptions of Theorem 3.2 are enough to guar-
antee that every global solution of (GP ) is a regular one?

Conjectures: The assumptions of Theorem 4.1 guarantee that
(a) (GP ) has a unique global solution;
(b) Any global solution of (GP ) is a regular one;
(c) If (k̄, s̄) is a regular global solution of (GP ), then the optimal propensity

to save function s̄(·) can have at most one discontinuity on the time segment
[t0, T ].
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