THE MOUNTAIN PASS THEOREM IN TERMS OF TANGENCIES
SI TIEP DINH! AND TIEN-SON PHAM!

ABSTRACT. This paper addresses the Mountain Pass Theorem for locally Lipschitz functions
on finite-dimensional vector spaces in terms of tangencies. Namely, let f: R” — R be a

locally Lipschitz function with a mountain pass geometry. Let

:= inf t
c erelAtren[gﬁ]f(’y( ));

where A is the set of all continuous paths joining z* to y*. We show that either ¢ is a
critical value of f or c¢ is a tangency value at infinity of f. This reduces to the Mountain
Pass Theorem of Ambrosetti and Rabinowitz in the case where the function f is definable

(such as, semi-algebraic) in an o-minimal structure.

1. INTRODUCTION

The celebrated Mountain Pass Theorem of Ambrosetti and Rabinowitz [2]| is a very
useful tool in nonlinear analysis with many important applications. For more details, we
refer the reader to the comprehensive monographs [1, 16, 18, 26, 28, 31| with the references
therein.

The aim of this paper is to provide a version of the Mountain Pass Theorem for locally
Lipschitz functions on finite-dimensional vector spaces in terms of tangencies. To be more
precise, let us recall some basic terminology.

Let f: R® — R be a C! function and let z*,y* € R” be such that there exists an open
neighborhood U of x* satisfying the conditions y* ¢ U and

* * inf )
max{f(z"), [(y")} < inf [(2)
Consider the family A of all continuous paths joining z* to y* and set

= inf t)).
c ngAtrg[%f(’y( )

The following relation is well-known and has many interesting applications:
¢ € Ko(f) U Kxo(f),

Date: May 15, 2021.

2020 Mathematics Subject Classification. Primary 49J35; Secondary 58C20, 58K05, 58 K30.
Key words and phrases. Mountain pass; tangencies; locally Lipschitz; critical values; Clarke

subdifferential.



where Ky(f) is the set of critical values of f and K. (f) is the set of values at which f does

not satisfy the weak Palais—Smale condition, i.e.,
Ko(f) = { t € R: there is a point # € R" such that Vf(z) =0 and f(z) =t }

and

Ko (f) = t € R: there is a sequence z¥ — oo such that
T f(ak) = t and [l2*|[|V £ (a¥)]| = 0

In a difference line of development, suppose that the function f is polynomial (or more
general, definable in an o-minimal structure; see [30] for more on the subject). It is well
known that there exists a (minimal) finite set B(f) C R, called the bifurcation set of f, such

that the restriction map

fR*\ fTHB(f)) = R\ B(f)

is a locally trivial C*°-fibration (see, for example, |3, 11, 13, 20, 25, 29, 27|). Since f may not
be proper, the bifurcation set B(f) contains not only the set of critical values Ky(f), but also
the set Boo(f) of atypical values at infinity corresponding to the critical points at infinity.
While the set Ko(f) is relatively well understood, the other set B, (f) is still mysterious.
To control the set B (f), we can use the set T (f) of tangency values (at infinity) of f:

T (f) = t € R: there is a sequence r¥ — oo such that
- - f(2*) — t and rank{V f(z¥), 2%} =1 '

It is well-known (see, for example, [10, 12, 15, 17, 19]) that T (f) is a finite set and

Boo(f) C Too(f) C Koo(f).

The inclusions may be strict (see |21, 22]).

Motivated by the aforementioned works and the usefulness of tangencies in semi-algebraic
optimization (see [12, 14, 15, 17, 24] for more details), we will show in Theorem 3.1 that

¢ € Ko(f) UTw(f)-

Actually, the same conclusion holds even when the function f is not assumed to be differen-

tiable, but merely locally Lipschitz continuous.

The rest of the paper is organized as follows. Section 2 covers some preliminary mate-

rials. Section 3 presents the main result and its proof.



2. PRELIMINARIES

2.1. Notation. Throughout this work we shall consider the Euclidean vector space R" en-
dowed with its canonical scalar product (-, -), and we shall denote its associated norm || - ||.
The open ball (resp., the sphere) centered at z € R” of radius r will be denoted by B, (Z)
(resp., S,(z)). For simplicity, we write B” and S'~! if 2 = 0; and write B" and S" ! if z = 0
and » = 1. For a subset A of R", the closure, the boundary and the convex hull of A are
denoted by A, A and co(A) respectively. Let dist(A, B) stand for the Euclidean distance
between A and B C R", namely

dist(A, B) :=inf{||x —y|| : x € A, y € B}.
For convenience, if B # (), set dist((), B) := +o0.

2.2. Subdifferential of locally Lipschitz mappings. Here we recall the notions and some
elementary properties of the Clarke subdifferential and the generalized directional derivative
of locally Lipschitz functions used in this paper. The reader is referred to [6, 7, 8] for more
details.

Definition 2.1. Let F': R™ — R™ be a locally Lipschitz mapping. The Clarke subdifferential
of F at x € R" is defined by

OF () := co{limd«F : 2% — 2 and F is differentiable at 2"},

where d . F is the differential of " at z*, which can be identified with the Jacobian matrix
of ' at z*.

Definition 2.2. Let f: R™ — R be a locally Lipschitz function and v € R™. The generalized
directional derivative of f at x in the direction v, denoted by f°(z;v), is defined as follows:
ho) —
f°(z;v) :== limsup fy + hv) f(y)
y—x,h—07t h

Lemma 2.1. [8, Propositions 2.1.2 and 2.1.5| Let f: R™ — R be a locally Lipschitz function.

Then we have:

(i) For all x € R", the set Of(x) is a non-empty, convex, compact subset of R™.
(ii) The set-valued mapping Of is upper semi-continuous on R", i.e., for any v € R, if
28 € R™ and w* € Of (a*) are sequences such that x* — x and w* — w, then w € f (x).

(ili) fo(x;v) = maxyeaf(z)(w,v) for any v € R™.
The following lemma is a slightly changed version of [5, Lemma 3.3].

Lemma 2.2. Let f: R™ — R be a locally Lipschitz function and b > 0. Suppose that U C R"
18 an open set such that

inf ||lw|| >2b forall x€U.
weIf(x)



Then there exists a locally Lipschitz vector field v(x) defined on U satisfying
Iv(z)|]| <1 and (w,v(x)) > b for any w € Of(x).

Proof. Note that the assumption of the lemma is the conclusion of |5, Lemma 3.2] which is

used to prove |5, Lemma 3.3|, so the proof is completely similar to that of |5, Lemma 3.3]. O
In the sequel, we will need the following lemma.

Lemma 2.3. Let f: R® — R be a locally Lipschitz function and D C R™ be a compact set.
For each € > 0, there is hg = ho(€) > 0 such that for all y € Ny, (D), h € (0, ho] and v € B",

we have

fly+hv) — f(y)
h
where Ny (D) is the closed neighborhood of radius hy of D and x € D is a point such that

dist(y, D) = [ly — «|.

Proof. By contradiction, assume that there is ¢y > 0 such that for all integer k£ > 0, there
are y* € N1(D), z* € D, hy € (0,1] and v* € B" such that

'k
FWF + het®) — f(yF)
hy,

dist(y*, D) = [|ly* —2*|| and > fo(a";0") +e. (1)

By taking subsequences if necessary, we can suppose that the sequences z* and v*
converge to the limits 2° and v°, respectively. Since f is locally Lipschitz, there is a neigh-
borhood U of 2° and a constant K > 0 such that f is Lipschitz on U with the constant K. In
addition, by definition and by shrinking U if necessary, we can suppose that there is A > 0

such that

€

P+ = ) 0,0y 4 €
7 4

h

for all y € U and h € (0, h]. Set
2P =gk + by (VP = 00).

It is clear that y* — 20, 2¥ — 20 and 2% + hp0° — 2° as k — +o0. Consequently, for k large
E ~
enough so that y*, 2% € U, K|[vo* —1°|| < 1 and hy < h, we have

FWr+het®) = fF) fWF 4 ha(0F = 0°) 4+ hiet®) — f(yF + he(0F — %))
hk B hk
IO+ I =) = )
h
SR = &) S - 1Y
hy, I

< PE) + 5+ K= < %) + 5.

This contradicts (1) and so ends the proof of the lemma. U



3. THE MAIN RESULT AND ITS PROOF

For a locally Lipschitz function f: R™ — R, we define the set of critical values of f and
the set of tangency values (at infinity) of f, respectively, by

Ko(f) :={t €R: thereis x € f~'(t) such that 0 € 9f(x)}

and
T (f) = t € R: there are sequences r¥ — oo and v* € df(z") such that
R f(2*) — t and rank{z* v¥} =1 '

The main result of the paper is as follows.

Theorem 3.1 (Mountain pass). Let f: R* — R be a locally Lipschitz function and let
¥yt € R™ with x* # y*. Assume that there is an open neighborhood U of x* such that
y* €U and

F@®), fy) < inf f(z).
Let

;= inf 2
¢ := inf max f(v(1)), (2)

where A stands for the set of all continuous path joining x* to y*, i.e.,
A = {yeC([0,1,R"): ~(0) =2a, v(1) =y"}. (3)

Then

Let us start with some lemmas of preparation.

Lemma 3.1. Let X C R" be a compact set and let Z :={Z;: i =1,...,p} be a distinct
finite open cover of X. Then there exists a constant A\ > 0 depending on Z such that the
following statements hold:
(i) For any i € {1,...,p} and any x € Z; N X such that Z; is the unique open set in the
cover containing x, then dist(z,07;) > 3\.
(ii) For any i € {1,...,p} and any © € Z; N X such that dist(z,0Z;) < 3\, there is
je{l,....p}\ {i} depending on x such that

r € Z; and dist(z,0Z;) > 3\

(i) Let i € {1,...,p} and x € Z; N X be such that dist(x,0Z;) = 2\ and dist(x, X) < .
Then for each y € X with ||z — y|| < A, we have dist(y,07Z;) > X and there ezists
Jge{l,....p}\ {i} such that

x,y € Z;, dist(z,0Z;) > 2\ and dist(y,0Z;) > 3\



Proof. (i) By contradiction, assume that for any integer k& > 0, there is an index i) €
{1,...,p} and a point 2* € Z; N X such that Z;_ is the unique open set in Z containing
a¥ and dist(2¥,07;,) < 2.
suppose that i is fixed for all k, namely, i, = i € {1,...,p}. By the compactness of X,
* converges to a limit 2° € X. Clearly 2° € 0Z; N X,

Since Z is finite, by taking a subsequence if necessary, we can

we can assume that the sequence x
in particular, 2° ¢ Z;. Furthermore, 2° ¢ Z; for all j # i since otherwise, 2* € Z; for k
large enough which contradicts the fact that Z; is the unique open set in Z containing z*.
Consequently, 2° ¢ Uj—1..pZ;. So 2° ¢ X, which is a contradiction.

(ii) Let A be given by item (i). We will show that the statement holds by shrinking
A. For contradiction, assume that for any integer £ > 0 such that % < A, there is an index
ir € {1,...,p} and a point 2* € Z;, N X such that

e dist(z*,07;,) < %; and

e for each j € {1,...,p} \ {4}, either z* ¢ Z; or 2* € Z; with dist(z*,07;) < 3.
Since the cover is finite, by taking a subsequence if necessary, we may suppose that i, is fixed
for all k, namely, i, =i € {1,...,p}; moreover, for each j € {1,...,p}\ {i}, either 2% ¢ Z;
for all k or z* € Z; and dist(z*,0Z;) < 2 for all k. As X is compact, we may assume that the
sequence z* converges to a limit 2° € X. Clearly 2° € 8Z;N X. For each j € {1,...,p}\ {i},
by construction, either 2° ¢ Z; or 2° € Z; with dist(z°,0Z;) = 0, in particular, 2° ¢ Z;.
Therefore 2° ¢ Uj—1.. pZ;. Consequently 2° ¢ X, which is a contradiction.

(iii) Let A be given by (i) and (ii). By assumption, B}, (z) C Z;. Let y € X be such
that ||z — y|| < A. Then y € Z;. On the other hand,

dist(y, 0Z;) < ||z — yl| + dist(z, 0Z;) < 3\,
By item (ii), there is j € {1,...,p} \ {i} such that y € Z; and
dist(y, 0Z;) > 3.
Therefore B}, (y) C Z; and so z € Z;. In addition,
dist(z,07;) > dist(y, 0Z;) — ||z — y|| > 2.
This ends the proof of the lemma. U

Lemma 3.2. Let X C R" be a compact set and let Z := {Z;: i =1,...,p} be a distinct
finite family of open balls covering X. Assume that, for each i, there is a constant p; > 0,

an open set W; D Z; and a bi-Lipschitz homeomorphism n;: W; — n;(W;) C R™ such that
(W) ={ueR": |uj| <pi, j=1,....,n} and n;(W;NX) C {ueR": uy =0}

Let A > 0 be the constant depending on Z given by Lemma 3.1 and L > 1 be a common
Lipschitz constant of ny, . .. ,np,nfl, e ,np_l. Let 7: [a,b] — R™ be a continuous piecewise

linear curve such that dist(y(t),X) < 535 for t € [a,b]. Then there exist finite sequences



a=Ty<---<Ty:=bandigF# iy # - F#igq withip € {1,...,p} (k=0,...,¢—1) such
that:

(i) Y[Te-1, Tk C Wiy, for k=1,...,q; and

(i) m;, ' (w*) € Wi, N Wi, for k=1,...,q—1, where

k-1

o=, (1(T0) and b = (k2 )

rn

with
E_ _215 if 25 #0
Wy = A p ok

Proof. The construction of the desired sequence is done by induction as follow.

Step 1: k = 0. Let y° € X be such that ||y° — ~(Tp)|| = dist(y(Tp), X) < X. In view of
Lemma 3.1(i)-(ii), there is 49 € {1,...,p} such that y° € Z;, and dist(y",0Z;,) > 3. So

dist(v(Tp), 0Z;,) = dist(y®, 0Z;,) — |y — v(To)|| > 2.
Hence v(Tp) € Z;,. Set
Sy = sup{t € [Ty, b] : ~(s) € Z,, for all s € [Ty,t]} > Tp.
If S; = b, then set T; := b and we are done. Otherwise, we have v(S;) € 07;,. So if we let
Ty = sup{t € [Ty, b] : dist(v(s),0Z;,) = 2 for all s € [To,t]},
then clearly
Ty <Ty <b, [Ty, Ty) C Wy, and dist(y(11),0%Z;,) = 2.

By Lemma 3.1(iii), there is i1 # ip such that v(T}) € Z;, and dist(y(7}),0Z;,) > 2.

Step 2: Induction. For k > 0, assume that we have constructed sequences a =: Ty < - - - < T},
ig # i1 # -+ # i and {y°, ..., y*} such that, for [ = 1,..., k, we have:
(a) T; :=sup{t € [T}_1,b] : dist(y(s),0Z;,_,) = 2 for all s € [T}_4,t]};
(b) dist(y(1}),0Z;,_,) = 2\ and dist(v(1}), 0Z;,) > 2X;
(¢) YT, T € Wiy
() [ly"™" = (Ti-0)|| = dist(y(Zi-1), X) and [|y* = y(T3)|| = dist(y(Tx), X).
Set
Sk+1 = sup{t € [Ty, b] : ~(s) € Z;, for all s € [Ty, t]} > Tj.
If Sgy1 = 1, set ¢ :== k+ 1 and Ty := b. Then item (i) follows. Contrarily, we have
v(Sk+1) € 0Z;,. Let

Tyi1 = sup{t € [Ty, b] : dist(v(s),07;,) < 2 for all s € [T}, 1]},



then clearly T, < Tj41 < b and dist(y(Ty41),0%;,) = 2X\. By Lemma 3.1(iii), there is
ig+1 7 i such that y(Tyyq1) € Z;,,, and dist(y(Th41), 0Z;
be repeated with k replaced by k + 1.

Observe that the sequence a =: Ty < T} < --- is finite so there must be ¢ > 0 such that

i) > 2A. Hence the process can

T, = b. Indeed, suppose for contradiction that the sequence a =: Ty < 717 < --- is infinite.
Then there exists an index k that appears infinitely many times in the sequence i1y # i1 # - - -.
This implies that, in view of item (b), v cuts the sphere {x € Z; : dist(z,0Z) = 2A}
infinitely many times which is a contradiction since a piecewise linear curve can meets a
sphere at finitely many times. Consequently, (i) follows immediately.

Now we show that ni_kl(wk) eW, NW,;, fork=1,...,q—1.1If 25 = 0, since ni_kl is
Lipschitz with the constant L, then

k—1

Iz, (2%) = mi, (W) < L2 = w|| = L]lz5 — w3l = A (4)

Otherwise, by item (d) and by the assumption dist(y(t), X) < 535 for ¢ € [a,b], we have
A

ly* — Y(Tk)|| < 5. Hence ||, (y*) — 2*|| < 3, and so

In; (ZF) = ™)< g F) = g D+ s, (i (0F)) — 3, ()|
< Iy = ATl + Ll (%) — w”|
= ly* = AT + Ll () — 2*1 (5)
< (D AT < (1+ L2505 <A

Now (4) and (5), together with the facts dist(y(7%),0Z;,_,) = 2, give
dist(n;, ' (w"),0Z;,_,) > dist(n;'(z*),0Z;,_,) — |m;, (%) — m;, (W]
= dist(y(Tk),0Zi,_,) — IIn;, (%) — mi, " (wh) ]| > A,

Similarly, (4), (5) and dist(y(T%),0%;,) > 2X imply dist(n; '(w"*),0Z;) > A. Therefore
n;,(wh) e W, nW;, for k=1,...,¢— 1. So (i) follows and the lemma is proved. O

k—1
We need the following variant of the constant rank theorem for locally Lipschitz map-

pings.

Lemma 3.3. Let F: R — R™ be a locally Lipschitz mapping with n > m. Assume that
each element of OF (x) has rank m for any x in a neighborhood of x° € R™. Then there is
an open neighborhood Z of 2° in R™ and a bi-Lipschitz homeomorphism n: Z — n(Z) C R"
such that

Foﬁil(ul’ T ,Un) = (u17' c ,'me) + F(LEO),
for all (uq,...,u,) € n(Z2).

Proof. The proof follows directly from the proof of [4, Theorem 3.1]. O



Proof of Theorem 3.1. Recall that A is the set given by (3). For r > max{||z*||, ||y*||} and
e > 0, set

A(r,e) == {'y cA: 1&€H1[6a,)1(} f(y(t)) <c+e€ and trél[(z)% v < T} . (6)

By definition, for each ¢ > 0, there exists r > 1 such that A(r,€) is non-empty so the

function
(0,400) = (0,400), €~ R(e):=inf{r: A(r,e) # 0} (7)

is well-defined and moreover, it is decreasing. In particular, there exists the limit

lim R(e) € RU{+o0}.

e—0t

Now Theorem 3.1 is a direct consequence of Propositions 3.1 and 3.2 below. U
Proposition 3.1. If lim. ,o+ R(€) < +oo then ¢ € Ky(f).

We need some preparation before giving the proof of Proposition 3.1. As R(e) is de-
creasing, there is a constant Ry > 0 such that for all € > 0, we have R(¢) < Ry and so
A(Ry,€) # (. For each integer k > 0, take v* € A(RO,%) and let D be the superior

Kuratowski limit of the sequence of non-empty compact sets
Dy = {4(t) - t€[0,1] and f(75()) > c}.

Namely, = € D if and only if there is a sequence z* € Dy, such that " — z as | — +oo0.
It is clear that D is a non-empty compact set and f(z) = ¢ for any x € D. To prove that
¢ € Ko(f), it is enough to show that there is x € D such that 0 € Jf(z). Assume for
contradiction that 0 € Jf(x) for all x € D. By the compactness of the Clarke subdifferential
(Lemma 2.1(i)), it is not hard to see that for each x € D, there is a constant b, > 0 such
that

inf ||w| > 4b,.
weIf(x)

By Lemma 2.1(ii), there exists a bounded open neighborhood U, of = such that

inf |Jw| > 2b, forall ye U,.
wedf(y)

By assumption, we have
fla®), fly") < mf flz) <c
Thus z*,y* € D and so, we can shrink U, so that x*,y* & U,.

As D is compact and {U, : x € D} is an open cover of D, there exists a finite open

cover of D:

{U,: 2€D,i=1,...,p}



Let
b:: mln blﬂ>0 and U —Uva
..... i=1

In view of Lemma 2.2, there exists a locally Lipschitz vector field v(z) defined on U such
that

|v(z)]| <1 and (w,v(z)) > b for any w € Jf(z). (8)
Let hg := ho (%) be the constant determined by Lemma 2.3. So, for all y € Ny, (D),
h € (0, ho] and v € B", we have

f(y+hv)—f(?/)<fo<x;v)+§’ ()
h 4
where z € D is a point such that dist(y, D) = ||y — z||. Let V' C U be an open neighborhood
of D such that V. C UNN,, (D). By a smooth version of Urysohn’s lemma [23, Lemma 1.3.2],
there is a smooth function ¢: R™ — [0, 1] such that:

P(R"\U) =0 and ¢(V)=1. (10)

Let

V(@) = p(z)v(z),
which is obviously a locally Lipschitz vector field on R™. This, together with the facts that
U is bounded and supp(v) C U, implies that the vector field v is Lipschitz on R" with a

constant K > 0. Moreover, in view of Lemma 2.1(i), (ii), there is a constant K’ > 0 such
that ||w|| < K’ for all w € 0f(x) and = € U. We need the following lemma.

Lemma 3.4. For any trajectory a: (t1,t2) — R™ of —v, the function f o « is decreasing on
(t1,t2). In addition, for all u € (t1,t2) such that a(u) € V, we have

bh ) b
fla(u+h)) — fla(u)) < Y for he (O,mm{m,hoH : (11)
where hy := hg (%) s the constant determined by Lemma 2.35.
Proof. Take any u € (t1,t3). For all s € (1,13), we have

/ —v(« / ds’

Observe that the first statement is clear if a(u) € supp v C U so assume that a(u) € supp v.
Thus ¢(a(u)) > 0 and so a(u) € U. Let

\

Jate) = awll =

))||ds’

= |s — ul. (12)

_ pla(u))
Tb > 0.

10



For all h € (0 M] small enough, we have

Ilofut i) = Jlofe) _ f%mmaw+2—a<q+€

~ gty ()

- weg}?ﬁu»%@’ . u:hV( ())d8>

B _%$&W%<MZA%WM$M§+{

< g il [ Tew)
s [ a0 - FHa)ds) +o

< - _min (w{a(u)+ (13)
e |“’”/ —S(a(u))|ds + ¢

< - i (w <>>wwm+
x| ku/ Klla(s) — a(u)|ds + ¢

< —@(a(u))b—i—Kf//uu (5 — u)ds + ¢

= —wmw»n+K57£“%d(§_uQ4f

= _¢umu»b+l(K%ﬂ+a

where the first inequality follows from the definition of generalized directional derivative, the
first equality follows from Lemma 2.1(iii) and the last inequality follows from (8) and (12).

Therefore
fla(u+h)) — fla(u) < —p(a(u))bh + %/h? + eh < —Ml)h < 0. (14)

This implies that f o « is decreasing at w.

It remains to prove the second statement. Assume a(u) € V. In view of (10), we
have ¢(a(u)) = 1. Moreover, % € B" by (12). Thus, in view of (9), for all
h € (O, min {ﬁ, ho}], by replacing the first inequality in (13) by the following one

fla(u+h)) = fla(u)) afuth)—alw)
h h
where z € D is a point such that dist(«(u), D) = ||a(u) —z||, and repeating the computation
n (13), we get

< f°

flalu+) = faw) __, KK
h

+ €.

11



Consequently

Proof of Proposition 3.1. Let

, b
h = mln{m,ho} > 0.

By construction, it is clear that sup dist(x, D) — 0 as k — 4o00. Therefore, for k large
€Dy,

enough,

1 hb

Let us fix such an integer k. For each t € [0, 1], let ¢(t, s) be the (unique) trajectory of —v
with the initial condition ¢(t,0) = ~*(¢), i.e.,

¢m@—m%w—43wmyww.

According to [9, Theorem 9.5|, the mapping ¢ is continuous with respect to ¢. By construc-

tion, x*, y* € U and v vanishes outside of U. So
$(0,5) =~+*(0) = 2" and ¢(1, s) = 7v*(0) = y* for all s.

Consequently ¢(-,h) € A. We will show that f(¢(¢,h)) < ¢ for any ¢ € [0, 1] which contra-
dicts (2). Note that for ¢ € [0, 1] such that ¢(¢,0) = v*(t) € Dy, in light of Lemma 3.4, one

has

F(o(t, b)) < f((t,0)) = fF(*(1)) < e (16)
Thus it is enough to consider ¢ € [0, 1] such that v*(¢) € D,. Observe that for all such
t, we have p(¢(t,0)) = 1 in light of (10) and (15). Therefore, by Lemma 3.4, the fact
7% € A(Ro, 1) and (15), we get
bh 1
Fo(t, h) < f(9(£,0)) — 5 <et o — 5 <c (17)

Now, from (16) and (17), it follows that f(¢(¢,h)) < c for all ¢ € [0, 1]. This contradicts the
definition of ¢ given by (2) and so ends the proof of Proposition 3.1. O

Proposition 3.2. If lim. ,o+ R(€) = +o0 then ¢ € To(f).

Let us make some preparation before proving Proposition 3.2. Recall that the set
A(r, €) and the real number R(€) are defined respectively by (6) and (7). Let € > 0. For any
v € A(R(e) + €, €), we have v \ By, # 0, so the set

I=1I(7):={te[0,1]: )] > R}

is non-empty.
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Lemma 3.5. For all ¢ > 0 small enough, we have
fH e+ e) # 0 and R(e) > max{||2"|, [ly"||}-

Moreover, for all € > 0 (depending on €) small enough, there is a piecewise linear curve
v € A(R(€) + €, €) such that f(y(t)) > c forallt € [ = 1(7).

Proof. The first statement is clear so let us prove the second one. For this, let ¢ > 0 be such
that

2¢ < min {dist ({f < ¢} NBlyr, /7 (e +¢/2))  R(e) — |l (&) — ]2} . (18)

Pick an arbitrary § € A(R(€) + €, €), we will deform ( to get the desired curve. Set

1B it [|8(8)]] < R(e) — ¢
_ or f(B(t)) = c+e/2
a() = R(e) — ¢
max{ 18| - dist (5@)7]0,1 (c+ 6/2)) } otherwise.

Let us show that g is continuous on [0, 1]. Observe that the function
0,1] = R, ¢t — max {R(e) — €, ||B(t)]| — dist (8(¢), f " (c+¢€/2)) }
is continuous. Thus, it is clear that g is continuous at any ¢ € [0, 1] such that
1B # R(e) — € and f(B(t)) # c+€/2.
It remains to show that g is continuous at any ¢ € [0, 1] such that
1B = R(e) =€ or f(B(t)) = c+e/2.

Firstly, let ¢ € [0,1] be such that ||5(¢)|| = R(e) — €. Suppose that ¢, € [0, 1] is a sequence
such that ¢, — t with ||3(¢x)]| > R(e) — €, we need to show that g(tx) — ¢(t) (note that if
such a sequence does not exist, then g is continuous at ¢ obviously). For this, it is enough

to assume that
1Bt — dist (B(ty). f 7' (c+¢€/2)) > R(e) — ¢ (19)
for all £ and show that
1Bt — dist (B(te), f7' (e +€/2)) Ny R(e) — € = [|B(t)]].
This is equivalent to show that dist (3(tx), f~! (c +¢€/2)) — 0, i.e.,
dist (8(¢), f~' (c+€/2)) = 0.
On the other hand, from (19), we get

18(tr)]| > R(e) — € + dist (ﬁ(tk)7 f(c+ 6/2)) )

13



Letting k — 400, we get

1B > R(e) — € +dist (B(t), f " (e +¢/2)) = [IB()[| + dist (B(£), [ (¢ +¢/2)).

Hence dist (3(t), f~! (¢ + €/2)) = 0 and so g is continuous at any ¢ € [0, 1] such that ||3(¢)]| =
R(€e) — €¢/. Now we show that g is continuous at any ¢ € [0, 1] such that f(8(t)) = ¢+ €¢/2.

Let t;, € [0,1] be a sequence such that ¢, — t. Without loss of generality, assume that
1B8(t)|| > R(e) — € and ||5(tx)|| # ||B(t)]] for all k. Note that

1Bt — dist (B(te), [~ (c+€/2)) — B - dist (B(t), [ (c +¢/2)) = [IBE)]-
Thus, for k large enough,

18(t) || — dist (B(tx), ' (c+€¢/2)) > R(e) — ¢
Hence, by definition,

g(te) = [1B(t) || — dist (B(tk), f ' (c +¢/2))
which yields g(tx) — ||8(t)||. Consequently ¢ is continuous at any ¢ € [0, 1] such that

f(B(t)) = ¢+ €/2 and so is continuous on [0, 1].
Set

1B
0 it B(t) = 0.

We will show that  has the desired properties except being piecewise linear. It is clear that

o :{g@)& it A(0) £ 0

((t) is continuous and
ICOI < 8@ < R(e) + € for any ¢ € [0,1].

By (18) and by the definition of the function g, it follows that ((0) = 5(0) = * and ((1) =
B(1) = y*. Moreover, for all ¢ € [0, 1] such that ||3(¢)]| > R(e) — ¢ and f(B(t)) < c+¢€/2, we
have

1B@) = <O =18 —g(t) = min{||B#)] — (R(e) =€), dist (B(t), [ (c +€/2))}
< dist (B(8), f 7 (e +€/2)).
This, together with the fact f(5(t)) < ¢+ €/2, implies f(((t)) < ¢+ ¢/2. Consequently
¢ € A(R(e)+¢€, €). Now we show that f({(t)) > cforall t € I((). Assume that ||((¢)| = R(e),

then ||B(¢)|| = R(e) and so
¢ > 18(t) - ¢l = dist (5(8), F~ (e +¢/2)
Combining this with (18) gives

dist (C(8), f7 (e +€¢/2)) < 18() = COI + dist (B(), f 7" (¢ +€/2))
< 2¢ <dist ({f <_c} N Bg(e)w [ (c+¢€/2))
< dist ({f <cbn IB%T,;(EHe,, [ (c+¢€/2))
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which yields f({(t)) > c.

Finally, we need to deform ¢ to get the desired curve. Set

A= min{c—i—e — max f(((¢)), min f(¢(t)) — c} > 0.

t€[0,1] tel(¢)

Since ¢ and f are continuous on [0, 1] and EZ(G) Lo, Tespectively, they are uniformly continuous
on the respective sets by the Heine—Cantor theorem. Thus there are constants v, > 0 such
that

1<) — ¢(s)|| <v fort,s € [a,b] with |t —s|] </
and
|f(x) = fly)] < A for z,y € E;;(GHE, with ||z — y|| < v.
Let a =: Ty < Ty < -+ < T, := b be a finite sequence such that |T; — T;_4| < v/, for
i=1,...,qand let v: [0,1] — ]B%Z(e)ﬂ/ be the continuous piecewise linear curve defined by

the sequence {((1),...,¢(Ty)} so v(0) = ¢(0), v(1) = ¢(1). It is not hard to check the

following facts:

(a) [l(@)I < R(e) + € for any ¢ € [0, 1];
(b) max{|f(+(8)) — FCT D, (D) — FCTNI} <A for t € [Ty, T (i=1,....q).
For all t € [0, 1], let ¢ be such that t € [T;_1,T;]. By (b), we have

FO0) < O + () ~ FAE)] = FET) + F6(0) ~ )
< FCT) + A < ST + ot € — maxseppy S(C(s) < e e
Combining this with (a) yields
v € A(R(€) + € ¢).

We will show that f((t)) > cfor all t € I = I(7), which ends the proof of the lemma. Pick
arbitrarily ¢ € I and assume that [((7;_1),((T})] is the line segment containing (t). Since
Iv(@®)]] = R(e), it follows that max{||{(T;-1)|], |C(T3)||} = R(e). Without loss of generality,
assume that ||C(7;)|| = R(e), so ((T;) € I(¢). From this and (b), we get

fO@) = f((T) = 1F(v(@) = F((T)] = F(C(T2) = [f(v(#) = F(C(T))]
> JC(T)) = A= F(C(Th) = minger) fF(C(1F) —e >

The lemma is proved. O
Now the proof needs the following key lemma.

Lemma 3.6. Let € > 0 be as in Lemma 3.5. Then there are x € X := f~([c,c+¢€]) N S’éz:)

and v € Of () such that x and v are linear dependent.

Proof. The construction in the proof is illustrated in the figure below.
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Consider the mapping F': R" — R? defined by F(z) := (f(z),||=]]?). In light of [8,
Proposition 2.6.2(e)|, for « # 0, we have

OF(z) C df(z) x {22} = {( 21; ) Lve 8f(9c)}.

Assume for contradiction that x and v are linearly independent for all x € X and all v €
Jf(x). Then we have rank(w) = 2 for all z € X and all w € OF(x). In view of Lemma 3.3, for
each x € X, there exist an open neighborhood W, of x and a bi-Lipschitz homeomorphism
Ne: Wy = ne(W,) C R™ with n,(x) = 0 such that

Fom?l(ul,uQ, oy Un) = (ur, up) + F(2) = (ug, up) + (f(x),R(e)Q), (20)

for all u = (uq,...,u,) € ny(W,). For each x, shrinking W, if necessary so that z*,y* ¢ W,.
It is clear that there is p, > 0 such that

By ={ueR": |u| <pg i=1,...,n} Cn,(Wy).

Shrinking W, more if necessary so that B, = n,(W,). By construction, for any (u1, ..., u,) €
B,, (20) is equivalent to the following equalities

Fn; (g, g, .y up)) = ur + f(z) and ||, (ug, ug, .. up)||? = up + R(e)% (21)

Let Z, C W, be an open ball centered at z. As {Z, : = € X} is an open cover of X, by

compactness, there are distinct points {z!,..., 27} € X such that
P
X C U Ly
i=1

16



Let A > 0 be the constant depending on the cover {Z,: : i =1,...,p} given by Lemma 3.1
and L > 1 be a common Lipschitz constant for 1, = n,1,...,n, = N ,np_l Set

ARES Let ¢ > 0 and ~ be, respectively, the constant and the piecewise linear curve

2L2
depending on ¢’ determined by Lemma 3.5. We will show that if ¢ > 0 is small enough, then

Y\ Bi C Ny (f e, e+ € ﬂS?{(el) (22)

Indeed, assume for contradiction that for all k& > 0 large enough, there is v* € A (R(e) + e)

and
v €7\ (Bh UNL(f e, e+ NS ) # 0.

Observe that R(e) < ||y*]] < R(e) + 1. So by compactness, the sequence y* has at least
a cluster point, say y°. Clearly ||4°|| = R(e). In addition, as ¢ < f(y*) < ¢ + € in view of
Lemma 3.5, one has ¢ < f(y°) < ¢+ ¢. Hence

v e fe e+ dNSEy.
On the other hand, since y* & N, (ft[c,c+ €N S’;i:)), it follows that
dist(y*, fte,c+ €l N S;;zel)) > .
By letting £k — 400, we get
dist(y°, f e, e+ €] N ngel)) > v,

which is a contradiction. Therefore (22) must hold for ¢ > 0 sufficiently small. We will
deform 7 to get an other piecewise linear curve ¥ € A(R(¢), €) such that ||7(¢)|| < R(e) for
any t € [0,1]. As « is piecewise linear, ~y \ B has finitely many connected components.
Without loss of generality, assume that '\ ]B%R() is connected. In fact, if v\ IB%’}{(E) is not
connected, then it is enough to apply the process below on each connected component of
7\ Bro-

Let [a,b] C (0,1) be the interval such that v(¢) > R(e) if and only if ¢ € [a, b]. In view
of Lemma 3.2, there exist finite sequences a =: Ty < --- < Ty :=band iy # i1 # -+ # 14
with i, € {1,...,p} (k=0,...,q) such that:

(a) Y[Th—1,Tx] CW;,_, for k=1,...,¢q and

(b) n; ' (wk) € Wi, NW;, for k=1,...,q— 1, where

o=, (1(T0) and wh = (k)

rn

with

w. g
2 A k
—= if 23 =0.

b {—z§ if 28#40
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Since 7y is continuous, for 6 > 0 small enough, we have
a—d€[0,1], b+ €[0,1],

Y(a —0) € Wi, and y(b+0) € W, _,.

Let
CL—(S:ZT0<7A:‘1 Z:T1<"'<Tq_1 Z:Tq_1<TqZ:b—|—6,

wO = 772'0(7(?0)) S nio(mfio) = Bﬁﬂz‘oﬂ w? = 77iq—1 (V(Tq» € niq—1(Wiq—1) = Bxiq_ (23)

1

and
w* =, (g (W) for k=1,...,¢q—1.
Define the curve

[ i if ¢ e(0,1]\ (7o, 7,)
R [wkfurf—T#(a;k —w’H)] if te[Tn T (k=1,....q).

Tk—Tk-1

We note the following facts:

o WTo) = ;" (w°) = (To),

° nlfkl(wk) = nfkil(@k) fork=1,...,qg—1,
o (T,) =n;' (@) = +(T,), and

o Wl Wk e B, fork=1,...,q.

Thus 7 is continuous. We will prove that ||7(¢)|| < R(e) and f(7(t)) < c+e for any ¢ € [0, 1],
which contradicts the definition of R(e). Clearly,

IF()|| < R(e) and  f(3(t)) < c+e forall te[0,1]\ (To,T,).

So it remains to show that ||3(¢)|| < R(e) and f(3(t)) < ¢+ € for all t € (Tp, T,).
This and (23) implies

Iniy! (@)l = v (To)ll < R(e) and [|n;.!, (@) = [4(T,)I| < R(e).
On the other hand, by (21),
I, (wW)|I* = wy + R(e)* and [|n; !, (@)||* = @ + R(e)*.
Hence
wy < 0 and w§ < 0. (24)
In light of (21), (b) and the fact T, = T € [a,b] = I(y) for k=1,...,q — 1, we have
2+ R(e)” = |, GOIP = IV(T)* = R(e)*.
So 25 > 0. By construction, it follows that

wh <0 for k=1,...,q— 1. (25)
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Hence
Wy + R(e)* = [|n;. L, (@")[* = |lmg, " (w")|* = wy + R(e)* < R(e)?,
where the first and third equalities follows from (21). This yields
wy <0 for k=1,...,q— 1. (26)
Combining (24), (25) and (26), we get
wy_1, W € By, N{u€R": up <0} for k=1,...,q. (27)
As v € A(R(e) + €, ¢€), we get
fO(T0) < e+e and f(4(T,) <cte.
On the other hand, by (21) and the facts y(Ty) € Wi, and v(T,) € Wi, (by (23)), we get
FO(T0) = wf + f(@®) and f(4(T,)) = @ + f(a"").
Thus
w? < c+e— f(x™) and w! < c+e— f(a?). (28)
In view of (21), for k=1,...,¢ — 1, we have
F (b)) = wi + f(a™) = 2f + fa™) = f(;,'(9) = F(U(TH) < e +e.
So
wh <c+e— f(a™) for k=1,...,¢— 1. (29)
In addition,
@Y+ f@) = fln ! (@) = fln! (0h)) < e+e
This implies
W < c+e— f(a*r) for k=1,...,¢—1. (30)
From (28), (29) and (30), we get
Wy, W € By, N{ueR": uy <c+e— flz™1)} for k=1,...,q. (31)
Now for £k =1,...,q, by (27) and (31), we get
wh at € By, N{ueR": uy<c+e— f(x™=1), uy < 0}.

By convexity, B,,  N{u€R": u; <c+e— f(a"%1), up < 0} also contains the segment

k=1 w*], we have

[wk_l, @k] joining w*~! and w*. Clearly for any w = (wy, ..., w,) € [w
W< et e fa) and wy <0.
This and (21) yield

Fln L (w)) =wi + f(a*7) <ce+e and |2 (w)l] = Vws + R(e)? < R(e).
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Consequently ||[7(¢)|| < R(e) for any ¢ € (fO,Tq) and so this holds for all ¢ € [0,1]. This
contradiction ends the proof of the lemma. [l
Now we are in position to finish the proof of Proposition 3.2.
1
k
assumptions of Lemma 3.5, in view of Lemma 3.6, there are 2% € X, := f~!c,c+ %] 08221)
%

Proof of Proposition 3.2. For each integer £ > 0 large enough such that e = + satisfies the

and v* € Of(2*) such that 2" and v* are linear dependent. Since R (3) — +00 as k — 400,
we have z¥ — co. Furthermore, it is clear that f(z*) — c. Consequently ¢ € T (f). O
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