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Abstract

We consider a version of the pole placement problem for one-sided
linear discrete time-varying linear systems. Our purpose is to prove
that uniform complete controllability is equivalent to possibility of ar-
bitrary assignment of the dichotomy spectrum.
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1 Introduction

One of the primary methods of designing of a control for linear systems with
time-invariant coefficients is the pole placement method, also known as the
pole-shifting or the spectrum assignment method [22], idea of which is to
construct of a feedback in such a way that the eigenvalues of the closed loop
system have a priory given location. A theoretical basis for this method is
a theorem proved by R. Kalman in [14], which shows that it is possible if
and only if the system under consideration is controllable.
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In order to cope with growing requirements formulated for control sys-
tems in the process of the model building we would like to generalize this
methodology to time-varying systems. Attempts of generalization of this
methodology to the time-varying systems faced many difficulties (see [5]).
One of them is that there is no single equivalent of poles for time-varying
systems. Their role to a certain extent is played by Lyapunov, Bohl, and
Perron exponents or by dichotomy spectrum. Problem of generalization of
pole placement theorem to the time-varying systems has been so far con-
sidered mainly for continuous-time systems and Lyapunov exponents as a
counterpart of poles [16]. Results for discrete-time systems and Lyapunov
exponents are summarized in [4], [6] and [3].

The main drawback of Lyapunov exponents is that they are not contin-
uous function of the system coefficients and therefore W. A. Coppel in the
preface to his book [9] wrote: ”Several years ago I formed the view that
dichotomies, rather than Lyapunov’s characteristic exponents, are the key
to questions of asymptotic behavior for non-autonomous differential equa-
tions” and in this book he effectively proved this statement, among others,
by showing one of the most important properties of dichotomies which is its
roughness under a wide class of perturbations. In general, the dichotomy
spectrum is also not a continuous function of the coefficients (see [19] for the
formulation of the problem of continuity and conditions for it) but, in con-
trast to Lyapunov spectrum, it does not change under perturbations tending
to zero if we consider the system on half line (see [20]).

When considering the concept of the dichotomy, one can observe sig-
nificant differences in properties and research methodologies depending on
whether we consider this concept on the whole time axis, or on the half
line. On the one hand, the dichotomy spectrum on the whole time axis is
important for persistence, as well as bifurcation problems of bounded so-
lutions (see [18] for a survey). On the other hand, the dichotomy spectra
for linear systems on the half line are crucial in stability theory and more
general for the ordering of invariant manifolds in the stable hierarchy (see
e.g. [17, Corollary 4.2.12)]). It is also known that, a half line exponential
dichotomy is a much weaker assumption than exponential dichotomy on the
whole line (see e.g. [20]). Accordingly, the related dichotomy spectrum on
half line is a subset of dichotomy spectrum on whole time axis and has
simpler fine structure. Moreover the dichotomy spectrum on half line is
more robust than in the full line case see [20]) and the dichotomy spec-
tra of upper-triangular linear systems are fully determined by the diagonal
elements (see [20]). The last property fails on the full time axis.

Due to the usefulness of the pole placement method in designing control



for systems with constant coefficients, it is natural to ask about possibility
of assignment of the dichotomy spectrum. This question was first raised
at work [10], where it was shown that for two-sided discrete time-varying
linear systems uniform complete controllability is a sufficient condition for
assignability of the dichotomy spectrum. The present paper continues this
line of research. The first aim is to extend the result of [10] to one-sided
discrete time-varying linear systems. Next, we show that for this system
uniform complete controllability is not only sufficient but also necessary
condition for assignability of the dichotomy spectrum . To prove this re-
sult we use the concept of uniform complete stabilizability introduced for
continuous-time system in [13].

The note is organized as follows: In Section 2, we introduce the setting
and state the main result. The proof of the main result is presented in
Section 3. Section 4 is devoted to reexamine the Example 1 from [4] to
illustrate the theoretical result of the paper. To conclude the introductory
section, we introduce some notations which are used throughout this paper:

Denote by N the set of natural numbers. By R™ we denote the n-
dimensional Euclidean space with Euclidean norm || - || and by R™*™ the
set of matrices of size n by m with real entries. For a matrix A € R"*"
I|A|| denotes the spectral norm. GL,(R) is the subset of R™*™ consisting
of invertible matrices. The identity matrix of size n by n is denoted by
I,. The set of all bounded sequences B : N — R™™ B = (B(k)),cy
is denoted by L¥(N,R™ ™), the set of all sequences A : N — R"™ "
A = (A(k))ey such that A(k) € GLn(R), A € L(N,R™*") and A~ =
(Afl(k))keN € £°(N,R™ ") is denoted by £"*(N,R"*") and the elements
of £3(N, R"*") will be called Lyapunov sequences.

2 Setting and the statement of the main result

Consider an one-sided linear time-varying system described by the following
equation

w(k+1) = A(k)z(k) + Blk)u(k), (1)

where A € L3(N,R™") B € L®(N,R™™) and u : N — R™ is the control.
For (ko,zo) € N x R™ the solution of system (1) satisfying x(ko) = o, will
be denoted by z(-, ko, xo, u). We now recall the notion of uniform complete
controllability of system (1), see e.g. [11] and also [25].

Definition 1 (Uniform complete controllability) System (1) is called
uniformly completely controllable if there exist a positive @ and a natural



number K such that for all (ko,&) € N xR™ there exists a control sequence
u(l), £ = ko, ko+1,...,ko+ K — 1 such that (ko + K, ko,0,u) = £ and

lu(O < algll,  €=koko+1,... . ko + K — 1.
If in system (1) we apply a control of the form
u(k) = F(k)x(k),  keN

where F' : N — R™*" ' = (F(k));cy is a linear feedback, we obtain a so
called closed loop system

z(k+1) = (A(k) + B(k)F (k)) z(k). (2)

A linear feedback F' € L£L®(N,R™*") such that A + BF € £%3(N,R"*")
will be called admissible. The main interest of this note is to determine
possibility of the assignability of the dichotomy spectrum associated with
(2) under admissible linear feedbacks. To formulate the main result of this
note, we recall now the notion of dichotomy spectrum for an arbitrary linear
discrete time-varying system of the form

o(k + 1) = M(k)z(k), (3)

where M = (M(k))pen € L9(N,R™™). Let Oy : N x N = RP¥", &y =
(®ar (K, £))y, pen denote the transition matrix of (3), ie.
M(k—-1)---M(), ifk>¢¥,
Dy (k,l) = I, if k=14,
Oy (k) if k< 2.
System (3) is said to admit an exponential dichotomy (ED), if there exist
C, a > 0 and an invariant family of projections (P (k))ren in R™*", ie.
P(k+1)M(k) = M(k)P(k) for k € N, such that for all k,¢ € N we have
|®as(k, )P0 < Ce =0 for k> ¢,
|®ar(k, 0) (I, — P(£))] < Ce** =0 for k< ¢,

see e.g. [8,12]. Based on the notion of exponential dichotomy, we have
the following definition of the dichotomy spectrum associated with (3), see

e.g. [2].



Definition 2 (Dichotomy spectrum) The dichotomy spectrum of (3) is
defined by

Sep(M) :={y eR:z(k+1) =e "M(k)z(k) has no ED} .

The structure of the dichotomy spectrum is described by the following
theorem from [2, Theorem 3.4]

Theorem 3 The dichotomy spectrum Xgp(M) consists of at most n dis-
joint closed intervals i.e.

YEp(M) = [ag, 1] U -+ U [ay, B,
where g < P <ag < Pog < < ap< By andf <n.

In what follows, we recall the definition of assignability of dichotomy spec-
trum, see [10].

Definition 4 (Assignability of dichotomy spectrum) The dichotomy spec-
trum of (1) is called assignable if for arbitrary 1 < £ < n and arbitrary closed
disjoint intervals [a1,b1], ..., [ag, be], there exists an admissible linear feed-
back F such that Sgp(A+ BF) = U'_, [a;, bi].

We are now in a position to state the main result of this paper.

Theorem 5 The dichotomy spectrum of (1) is assignable if and only if
system (1) is uniformly completely controllable.

3 Proof of the Main Result

3.1 Preparatory results

This subsection is devoted to recall some facts about dichotomy spectrum
which are useful for the proof of the main result. Firstly, we remind the
reader that system (3) is called kinematically equivalent to a system

y(k +1) = N(k)y(k), (4)
provided that there exists a sequence L € £¥3(N,R™ ") such that
L(k+1)N(k) = M(k)L(k) for all k € N.

The following result (see [20, Remark 4.33]) describes an important property
of the dichotomy spectrum.



Theorem 6 The dichotomy spectrum is tnvariant under kinematic equiv-
alence, i.e. if (3) and (4) are kinematically equivalent, then Ygp(M) =
YEp(N).

Finally, in our further consideration a crucial role is played by the fol-
lowing result known as diagonal significance of dichotomy spectrum (see [20,
Corollary 3.25]).

Theorem 7 If the matrices M = (M (k))ren € L3N, R™") in (3) are
upper triangular and mi; = (mi;i(k))ken , @ = 1,...,n are the diagonal ele-
ments of M = (M (k))ken, then

Yep(M) = U YED (M),
1=1

where Xgp(my;) is the dichotomy spectrum of the scalar system

It should be emphasized that the above theorem is no longer true when we
consider the dichotomy spectrum along the entire straight line (see [21, Ex-
ample 2.7]).

3.2 Proof of the necessity part of Theorem 5

In this subsection, we always assume that the dichotomy spectrum of (1) is
assignable. To prove that system (1) is uniformly completely controllable,
we will verify the following relations:

(R1) Assignability of dichotomy spectrum implies uniform complete stabi-
lization,

(R2) Uniform complete stabilization implies uniform complete controllabil-
ity.

Recall that the concept of uniform complete stabilizability was used for
the first time in the paper of Ikeda et al. [13] in the context of continuous
time-varying systems. For continuous time-invariant systems this is under-
stood as the possibility to assign arbitrary exponential decay rates (and this
is indeed the problem studied in [24]). Also for continuous time-varying sys-
tems the concept is discussed in [1, Remark 3.10]. The discrete counterparts
of this concept may be formulated as follows.



Definition 8 (Uniform complete stabilization) System (1) is called uni-
formly completely stabilizable if for any w > 0 there exist an admissible linear

feedback F and C' > 0 such that
1@ a4 5r (k, 0)]| < Cem? 0 (5)
forallk, 0 eN, k> /.
We first verify the relation (R1):

Theorem 9 If the dichotomy spectrum of (1) is assignable then (1) is uni-
formly completely stabilizable.

Proof. Let w > 0 be arbitrary but fixed. Choose and fix I' satisfying
that I' < —w. By the assumption on arbitrary assignability of dichotomy
spectrum, there exists an admissible linear feedback F' = (F(n))nen such
that the dichotomy spectrum Ygp(A + BF') of the system

2(n+1) = (A(n) + B(n)F(n))x(n)

is given by
Yep(A+ BF) ={T}. (6)

Thus, (F, OO) C pED(A + BF), where pED(A + BF) =R \ EED(A + BF)
Then for each v € (I, 00) the system

w(k+1) = e V(A(k) + B(k)F(k))z(k),

exhibits an exponential dichotomy with an invariant family of projections
(Py(k))ken. Thanks to [2, Lemma 3.2], we have

P, (k) = imPyy (k) for 1,72 € (I',00). (7)
Since A + BF € £%3(N,R™ "), there exists 3 > I' such that
|®aspr(k,0)| < ?FO  fork>¢
and therefore for any 3’ > /3 we have
e P * =0 4, pp(k, 0)| < eP=FIE=D " for k> 0.

The last inequality means that 5’ € prp(A + BF) and Pg (¢) = I, for all
¢ € N. Furthermore, it is known that pgp(A + BF') consists of several open
intervals (also called spectral gaps) and the projection associated with the



largest gap is the identity I,,, c.f. [15, Lemma 5.4]. Consequently, from (7)
we arrive that P_,,(¢) = I, for all £ € N. Then, there exist C,a > 0 such
that

|® 44 r(k, 0)| < Celmw=E=0 " for | > ¢,

which completes the proof. m
Next, we verify the relation (R2):

Theorem 10 If system (1) is uniformly completely stabilizable then it is
uniformly completely controllable.

Proof. Since A € £"%(N,R™ "), there exists C; > 0 such that
@4 (K1, ka)|| < C1lkr—kel ®

for all k1, ke € N. According to the assumption about uniform complete sta-
bilizability, there exists a linear feedback F' € £>°(N,R™*™) and a constant
C5 > 0 such that

I1E (R)|l < Ca (9)

|PatBr (K2, k1) < Ce—2C1(k2—k1) (10)

for all k1,ky € N, ko > k1 and certain C' > 0. Since the transition matrix
® 44 pr of the closed loop system satisfies

Parpr (ko k1) = Pa(ke, k1) +
ko—1

> ®a(ks,j+ )BG)F()@asnr (G, k1),
Jj=k1

for all k1, ko € N or equivalently

Dy (k1 k2) PagBr (ko2 k1) = In+
ko—1

> @alkr,j+1)BGF()®arpr (k1)
Jj=k1

then
2T = 2Tdy (k1,k2) Patpr (ka, k1)
ko—1

=Y aT (k1§ + D)B)F(j)®atnr (j, k1)
J=k1



for any nonzero z € R™ and therefore

[z ®a (k1 k2) [[®atpr (2, k1) |
ka—1
+ > 2T @akr, j+ DBOIFGOD @ arsr (ki) || = [zl
j=k1
Using (8)-(10) and the fact that e=C1(k2=%1) < 1 for ky > k; we obtain
kz—1
Cem M|z > |lz| = CCo Y (|2 @alkr, i+ 1)BG)| (1)
Jj=k1
for all k1,k2 € N, kg > ky.

Suppose now that (1) is not uniformly completely controllable. As it is
known ( [11] Definition 1, pp. 33 and Proposition 3, pp. 34, [25]) uniform
complete controllability of (1) is equivalent to the following: there exist
numbers a > 0, and 7" € N such that for all £ € N the following inequality
holds

al, <W(k+T,k),
where
ki1—1
W (ki ko) ==Y @alko,k+ 1)B(k)BT ()@} (ko k + 1).
k=ko
Therefore if (1) is not uniformly completely controllable, then for each o > 0
and each T' € N, there is y € R" such that inequality

yTW (ko + T, ko)y < alyl|>

satisfies for certain kg € N. From the last inequality we get

ko+T—1

Dy ®alko, i+ DB < allyl. (12)
J=ko

Using Cauchy-Schwarz inequality (see [23]) we get

ko+T—1

S Iy ®alko.j + 1)BG)|
Jj=ko

ko+T—-1

< AT D yT®alke, i+ 1)B3)2.
j=ko



Combining the last inequality with (12) we obtain

ko+T—1
>y ®alko, i+ 1)BG)| < VTalyl.
Jj=ko

Now, we set C3 = sup {||[A7'(j)| :j € N}, T = min {l EN:I> lngle}

and a = (QCQC’QQT)_l , and choose y and kg satisfying (12). Then, if we take
x =1y, k1 =koand ko = ko + T, in (11), we get

1 _ 2
3 llyll = Ce Tyl = Iyl = CC2VTally| = 3 vl

This is a contradiction. Therefore, system (1) is uniformly completely con-
trollable. m

Proof of the necessity part of Theorem 5. The proof follows imme-
diately from Theorem 9 and Theorem 10. m

3.3 Proof of the sufficiency part of Theorem 5

The fact that uniform complete controllability implies assignability of the
dichotomy spectrum of two-sided discrete time-varying systems has been
proved in [10]. The proof consists of two ingredients. The first one is that
for a uniformly completely controllable discrete time-varying control sys-
tem and a given diagonal discrete time-varying system, there is a bounded
linear feedback control such that the corresponding closed-loop system is
kinematically equivalent to an upper-triangular system whose diagonal part
coincides with the given diagonal system (see [6, Theorem 4.6]). The second
one is a presentation of the dichotomy spectrum of a special classes of upper-
triangular systems ( [10, Proposition 3.4]). Although these things can be
extended to one-sided system by several slight modifications, to make the
paper self-contained we give below a brief proof of the sufficiency part of
Theorem 5.

Proof of the sufficiency part of Theorem 5. Let [a1,b1],...,[as, by,
where 1 < ¢ < n, be arbitrary disjoint closed intervals. For 1 < ¢ < £,
we construct an arbitrary positive scalar sequence (p'(k))gen such that the
dichotomy spectrum Ygp(p') of

2(k41) = p'(k)z(k) for k € N.

10



is the interval [a;, b;]. For instance, we can choose (p'(k))ren as

W) e, for k € [22m 22m+1) 'm € NU {0},
P = ebi, for k €[22+ 22m+2) my c NU {0},

For £ +1 < i < n, let p'(k) = p'(k). According to [6, Theorem 4.6], there
exist an admissible linear feedback control and a sequence of upper triangular
matrices (C(k))k:EN € ELya(N’Ran)’ where C(k‘) = (Cij(k))lgi,jgn with
cii(k) = p'(k) such that

z(k+1) = (A(k) + B(k)F(k))z(k), y(k+1) = C(k)y(k)

are kinematically equivalent and therefore have the same dichotomy spectra
(see Theorem 6). By Theorems 6 and 7, we arrive at

n l
Sep(A+ BF) = Sep(C) = | Zep (') = [ Jlas bil.
i=1 i=1

The proof is complete. m
4 Example
Example 11 Let us define a sequence (ng)ren by the recurrent formulae

n1 =1, noym=mnom—1, N2mt1 = M+ Nopy

for all m € N. The sequence (ng)ren is strictly increasing for k > 2 and
tends to +o00

Put
1 for k=1,
b(k‘) = 1 for ke [n2m71,n2m — 1],
0 for k€ [nom,nom+1 — 1],
form =23,..., and consider the scalar linear control equation

z(k +1) = (k) + b(k)u(k). (13)

This example has been considered in [4], where it has been shown that system
(13) is not uniformly completely controllable but it has assignable Lyapunov
spectrum. From Theorem 5 it follows that system (13) does not have the
dichotomy spectrum assignable. We will show that only intervals of the form
[e,d], where 0 € [c,d] may be a dichotomy spectrum of system

z(k+1) = (1+bk)f(k))z(k), (14)

11



where (f(k))ken s an admissible linear feedback and that each such a interval
is a dichotomy spectrum of system (14) for certain admissible linear feedback
(f(k))ken. To proof of this we will use Proposition 2.4 from [21] which says
that the dichotomy spectrum of scalar equation

z(k+1) = a(k)z(k)

has the form of interval [3(a),f (a)], where B (a) and B (a) are the lower
and upper Bohl exponents of the sequence a = (a(k))ren, respectively, given

by
1 k+j—1
- (g (1 )
and
B . 1 k+j—1 »
=5 (;ﬁﬁéﬁ.‘.ln ( 11 '““)‘)) |

Suppose that for certain admissible linear feedback (f(k))ken an interval
[e,d] is the dichotomy spectrum of (14). Since nami1 — Nom — 00 when
m — 0o, then

k+n27n+17n27n71
sup In I1 |14 06(3) f(i)]

k=1,2,... i=k
d = lim
m—00 N2m+41 — N2m
nam+1—1 ) )
W TI 14050
1=N2m
> lim
m—00 Noam+1 — N2m
=0
and
k+namy1—nom—1
inf In I1 |1+ b(i)f(7)]
k=1,2,... =k
¢ = lim
m—00 N2m+41 — N2m
nom+y1—1 ‘ ‘
In( I [1+00)f(@)
1=N2m
< lim
m—00 N2m41 — N2m
= 0.

12



Therefore 0 € [c,d]. Now let us fix an interval [c,d] such that 0 € [c,d] and
define the linear feedback gain (f(k))ken as follows

et —1 forke [Mam—1, Nam — 1],
-]

e —1 fork ¢ [nam—1,n4m — 1],

for m € N. On the one hand, by the definition of fand by the inequality
e —1>0, we have
1+ b(0) f(i)] < e

and therefore

B(1+bf) <d. (15)

On the other hand, since Napm — Nam—1 = (2m — 1) ngy—1 — 00 when m —
oo, then

B(1+bf)
) ktj—1
= lim - sup In H |14 06(3)f()]
J—70 Jk=12,... iy
k4+n4am—nam—1—1
sup In I1 11+ b(2)f ()]
k=1,2,... i=k
> lim
m—+00 Nam — Ndm—1
n4m_1 . .
(T s 0]
. 1=N4m—1
> lim
M—00 Nam — Ndam—1
= d,
which together with (15) implies that
B(+0bf)=d.

In a similar way we may show that B (1+bf) = c.

5 Conclusions

In this paper we investigated a problem of assignability of dichotomy spec-
trum by time-varying bounded linear feedback. We have shown that the
dichotomy spectrum is assignable if and only if the system is uniformly
completely controllable. We proved this by using the concept of uniform

13



complete stabilizability and by showing that this property implies uniform
complete controllability. The last result is interesting by itself and an open
question is if the opposite implication is also true as for continuous-time
systems (see [1]). Observe also that our proof of sufficiency of uniform
complete controllability for assignability of the dichotomy spectrum is con-
structive and allow one to design a feedback loop that places the dichotomy
spectrum in a predetermined location. In this way, these proofs can be used
as a basis of a design method for time-varying control system similar to the
pole placement method.
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