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Abstract

The first part of this paper is devoted to study a model of one dimensional
random walk with memory to the maximum position described as follows at each
step the walker resets to the rightmost visited site with probability r ∈ (0, 1) and
moves as the simple random walk with the remaining probability. Using the
approach of renewal theory, we prove the laws of large numbers and the central
limit theorems for the random walk. These results reprove and significantly
enhance the analysis of asymptotic behavior of the mean value and variance of
the process established in [13]. In the second part of this paper, we expand
the analysis to the situation when the resetting rate to the maximum position,
rn = min{rn−a, 12} with r, a positive parameters, decreases over time. For this
model, we first establish the asymptotic behavior of the mean values of Xn-
the current position and Mn-the maximum position of the random walk. As
a consequence, we observe an interesting phase transition in the asymptotic of
E[Xn]/E[Mn] when a varies, precisely it converges to 1 in the subcritical phase
a ∈ (0, 1), to a constant c ∈ (0, 1) in the critical phase a = 1, to 0 in the
supercritical phase a > 1. Finally, in the supercritical phase, a > 1, we show
that the model behaves closely to the simple random walk in the sense that
Xn√
n

(d)−→ N (0, 1), Mn√
n

(d)−→ max0≤t≤1Bt, where N (0, 1) is the standard normal

distribution and (Bt)t≥0 is the standard Brownian motion.

1 Introduction

Searching is one of the most basis and important processes and hence, there has been
a consistent effort by scientists to optimize the task. Naturally, by the convenience
the searching processes contain mainly the local steps in which the engine finds the
better position in the neighborhood of current location. Furthermore, both empirical
and theoretical researches show that the combination of the local steps with several
long range moves would accelerate the process, see e.g. [2, 12, 15]. For instance,
as illustrated in the Metropolis algorithms, if one use only the local steps to find
the minimum of a function, the process may get very fast to some local minimums
and then get stuck around there. Instead, if one sometime restart the searching to a
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position far away from the current area with some small but positive probability, the
process could escape the local minimums and eventually reach the global one. The
strategies of combining the local searches, usually modeled by diffusion of random
walks, with the long moves modeled by the random resetting have been applied in
a board of range disciplines, such as enzymatic reactions [16], biological processes
[17, 18], foraging ecology [1, 8, 4, 19]. We refer the reader to the survey by Evan,
Majumdar and Schehr [6] for more applications and the development of the stochastic
resetting algorithms.

In this paper, we focus on a simple model, so-called random walk with random
resetting to the maximum position, introduced by Majumdar, Sabhapandit and Schehr
in [13]. In this model, the walker moves the one dimensional lattice and sometime reset
to the maximum location visited so far. Intuitively, it can be viewed as a simulation
of the animals looking for food. During the foraging period, the animals explore the
territory locally (as a random walk) to find the food [3]. For smart animals, it can
remember the already reached sites and thus occasionally relocate to the boundary
between visited and unvisited regions to get higher chance of finding food. In the
setting of one dimensional case, the border positions are simply the maximum and
minimum sites.

More concretely, consider a random walk on Z, starting from the origin. Let Xn

and Mn denote the current position and the maximum one of the walker at the time
n, respectively. In particular,

Mn = max{X1, X2, . . . , Xn}.

The process evolves as follows. Let (rn)n≥1 be a sequence of real numbers in (0, 1).
At the step n, if the position Xn−1 is strictly less than the maximum one Mn−1, then
the walker is reset to the maximum position with probability rn. With the remaining
probability 1 − rn, the walker moves as the simple random walk. That means it
goes to the left or right position with equal probability 1−rn

2 . In the other case, if
Xn = Mn, the walker move either to the left or right with the same probability 1

2 .
This dynamics is summarized as follows:
if Xn−1 < Mn−1 then

(Xn,Mn) =


(Xn−1 + 1,Mn−1), with probability (1− rn)/2,

(Xn−1 − 1,Mn−1), with probability (1− rn)/2,

(Mn−1,Mn−1), with probability rn,

otherwise

(Xn,Mn) =

{
(Mn−1 + 1,Mn−1 + 1), with probability 1/2,

(Mn−1 − 1,Mn−1), with probability 1/2.

Our interest is to establish the limit theorems for Xn and Mn. To state these theorems
and to compare them with the existing results in the literature, we distinguish two
cases:

(i) Random walks with constant resetting probability to the maximum, i.e. the
resetting probability to the maximum is a constant, rn = r for all n.

(ii) Random walk with decreasing resetting probability to the maximum, i.e. the
resetting probability decreases to 0 and is of the form rn = min{rn−a, 12}.
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The resetting probability to the maximum is fixed

Consider the case that rn = r ∈ (0, 1) for all n. The authors in [13], by using
the generating function method, showed that the expectations of Xn and Mn grow
linearly, and its variances grow diffusively with the same scaling coefficients. In this
paper, by using the renewal theory we revisit the above results and prove the laws of
large numbers and central limit theorems for Xn and Mn.

Theorem 1.1 (Laws of large numbers and central limit theorems for the random
walk with constant resetting probability to the maximum). Assume that the resetting
probability to the maximum is fixed, i.e. rn = r ∈ (0, 1) for all n ≥ 1. Define

v(r) =
r(1− r)

r − 2r2 +
√

2r − r2
, (1)

and

D(r) =
[
(2− 2r − 5r2 + 3r3) + (2− r − r2 + 2r3)

√
r(2− r)

]
× (1− r)r2√

r(2− r)[r − 2r2 +
√
r(2− r)]3

. (2)

Then, the following statements hold:

(i) The strong laws of large numbers for Xn and Mn hold: as n→∞,

Mn

n

a.s−−→ v(r),
Xn

n

a.s−−→ v(r),

and

lim
n→∞

E[Mn]

n
= lim

n→∞

E[Xn]

n
= v(r).

(ii) The central limit theorems for Xn and Mn hold: as n→∞,

Mn − v(r)n√
n

(d)−−→ N (0, D(r)),
Xn − v(r)n√

n

(d)−−→ N (0, D(r)),

and

lim
n→∞

Var[Mn]

n
= lim

n→∞

Var[Xn]

n
= D(r),

where N (0, σ2) denotes the normal distribution of mean 0 and variance σ2.

The key to the proof of Theorem 1.1 is the observation that the maximum process
increases by 1, say Mn = Mn−1 + 1, when Xn−1 = Mn−1 and Xn = Mn and does not
change otherwise. In other words, Mn count the number of two consecutive zeroes
of the the difference process {Yn := Mn −Xn, n ≥ 0}. Moreover, (Yn)n≥0 evolves as
a memoryless random walk. By this observation, we can view (Mn)n≥0 as a renewal
reward process and then the limit theorems for Mn follow from the standard renewal
theory. Then the limit theorems for Xn are derived by controlling (Yn)n≥0.
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The resetting probability to the maximum is of the form rn = min{rn−a, 1
2
}

Consider the case that the resetting probability decreases to 0 as the time tends to

infinity and of the form rn = min
{1

2
,
r

na
}

, where a, r are positive constants. Note

that the model with decreasing resetting probability is quite natural, for e.g. the
animal memory usually diminishes, and the factor 1

2 can be replaced by any constant
taking value in (0, 1). Our first result is to establish the asymptotic behavior of the
mean values of Xn and Mn.

Theorem 1.2 (Asymptotic behavior of the mean values of the current position and
the maximal position of random walk with decreasing resetting probability to the
maximum). Consider the case rn = min{ rna ,

1
2} for n ≥ 1 with parameters a, r > 0.

(i) For a > 3
2 and r > 0, we have E[Xn] = O(1). For 0 < a ≤ 3

2 and r > 0,

lim
n→∞

E[Xn]

ϕa(n)
= FX(r, a), (3)

where

ϕa(n) =


n1−

a
2 if 0 < a ≤ 1,

n
3
2−a if 1 < a < 3

2 ,

log n if a = 3
2 ,

and

FX(a, r) =



√
2r

2− a
, if 0 < a < 1,

2r2
√

2

π
B(3/2, r), if a = 1,

λ2(a, r)− λ3(a, r) + λ4(a, r) if 1 < a ≤ 3
2 ,

with λ2(a, r), λ3(a, r), λ4(a, r) given in Lemma 3.8 and B(·, ·) the Beta function
defined by B(a, b) =

∫ 1
0 t

a−1(1− t)b−1dt.

(ii) For a, r > 0,

lim
n→∞

E[Mn]

ψa(n)
= FM (r, a),

where ψa(n) = nmax{1−a2 ,
1
2} and

FM (a, r) =



√
2r

2− a
if 0 < a < 1,

(2r2 + r)

√
2

π
B(3/2, r) if a = 1,√

2

π
if a > 1.

Remark 1.3. Theorem 1.2 indicates an interesting phase transition:

• Subcritical phase 0 < a < 1: Both E[Xn] and E[Mn] grow as n1−
a
2 with same

scaling factor
√
2r

2−a .
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• Critical phase a = 1: E[Xn] and E[Mn] grow at the same level as n1/2 but at
different scaling coefficients.

• Supercritical phase a > 1: E[Xn] and E[Mn] have different orders of magnitude,
and E[Xn] = o(E[Mn]).

Finally, we establish a limit result for Xn and Mn in the supercritical phase. Note
that in this phase (a > 1) the resetting events rarely occur, since the number of
resetting times has finite mean value. Hence, we can expect that the behavior of
the model is similar to the one of the simple random walk. We indeed prove this
prediction in the following result.

Theorem 1.4 (Limit theorem for random walk with decreasing resetting probability
to the maximum in the supercritical phase). Assume that a > 1. Then for all r > 0,

lim
n→∞

Var[Xn]

n
= 1, lim

n→∞

Var[Mn]

n
= 1− 2

π
,

and as n→∞,
Xn√
n

(d)−→ N (0, 1),
Mn√
n

(d)−→ max
0≤t≤1

Bt,

where (Bt)t≥0 is the standard Brownian motion.

Remark 1.5. (i) Notice that limit theorems for the simple random walk take place
with the same scaling factors and limiting distributions as in Theorem 1.4. It is worth
noting also that the case a = 1 has been studied by the authors in [13] by using non
rigorous arguments. We shall show in Remark 3.10 that their analysis is not correct.
The continuity of the scaling factors FX and FM at critical points will be discussed
in Remark 3.11.

(ii) At this moment, limit theorems for Xn and Mn in the subcritical and critical
phases are still missing. In fact, our numerical simulation indicates that the variances
of Xn and Mn also grow linearly, but we do not know how to prove and leave it as
an open question, see Section 4.2 for more discussion.

The paper is organized as follows. In Sections 2 and 3, we give the proof of
Theorems 1.1 and 1.2 respectively. In Section 4, we prove Theorem 1.4 and provide
some numerical simulation and discussion on the asymptotic behavior of the variance
in the case 0 < a ≤ 1.

Finally, we summarize some notation frequently used in the paper. If f and g
are two real functions, we write f = O(g) if there exists a constant C > 0, such
thatf(x) ≤ Cg(x) for all x; f � g if f = O(g) and g = O(f); f = o(g) if g(x)/f(x)→
0 as x→∞.

2 Laws of large numbers and central limit theorems for
the random walk with constant resetting probability
to the maximum

The proof of Theorem 1.1 is divided in two parts. In the first one, we study the
properties of the difference process {Yn := Mn −Xn, n ≥ 0}. In particular, we can
rewrite Mn as the count of the number of two consecutive zeroes of (Yn)n≥0 and then
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represent (Mn)n≥0 as a renewal reward process. In the second part, we apply the
standard renewal theory to prove the limit theorems for (Mn)n≥0 and (Xn)n≥0. In
this section, we assume that

rn = r ∈ (0, 1) for all n ≥ 1.

2.1 The difference process (Yn)n≥0

Although the two processes (Xn)n≥0 and (Mn)n≥0 are not Markovian, the difference
(Yn)n≥0 is. Indeed, it directly follows from the dynamics of the pair (Xn,Mn)n≥0
that regardless the value of Xn and Mn, the process (Yn)n≥0 evolves as follows:
• if Yn > 0, then

Yn+1 =


Yn − 1, with probability (1− r)/2,
Yn + 1, with probability (1− r)/2,
0, with probability r.

• if Yn = 0, then

Yn+1 =

{
0, with probability 1/2,

1, with probability 1/2.

Hence, (Yn)n≥0 is a random walk in N = {0, 1, . . .} starting at 0. At time n, if Yn > 0,
then in the next step, it moves to the left or right, with probability (1 − r)/2, and
jumps to 0 with probability r. On the other hand, if Yn = 0, then in the next step,
it stays at 0 with probability 1/2 or move to 1 with probability 1/2.

We now observe that Mi+1 = Mi + 1 when Yi = Yi+1 = 0 and Mi+1 = Mi other-
wise. That means Mn counts the number of two consecutive zeroes of the sequence
(Yn)n≥0, i.e.

Mn =
n−1∑
i=0

I(Yi = Yi+1 = 0).

Starting from this observation, we define a sequence of stopping time (Ti)i≥0 with
T0 = 0 and for i ≥ 1,

Ti = inf{j ≥ Ti−1 + 1 : Yj = 0}.
Then (Ti)i≥0 forms a renewal process and

Mn =

Kn∑
i=1

I(Ti = Ti−1 + 1), Kn = max{i ≥ 1 : Ti ≤ n}.

Moreover, for i ≥ 1, we define
τi = Ti − Ti−1,

which is indeed the ith waiting time of the process. Then (τi)i≥1 are i.i.d. random
variables with the same distribution as

τ = T1 = inf{i ≥ 1 : Yi = 0},

and

Mn =

Kn∑
i=1

I(τi = 1), Kn = max{i : τ1 + . . .+ τi ≤ n}. (4)

In other words, (Mn)n≥1 is a renewal reward process based on the renewal process
(Ti)i≥1 with the reward function given by f(τi) = I(τi = 1) for i ≥ 1.
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Lemma 2.1 (Generating function of τ). For any k ≥ 1,

P(τ > k) =
1

2
(1− r)k−1P(T1,0 > k − 1), (5)

where T0,1 = inf{i ≥ 1 : Zi = 0} is first time that the simple random walk (Zi)i≥0
starting at 1 touches 0. As a consequence, the generating function of τ is given by

K(s) := E[sτ ] = s+
s− 1

1− r
1−
√

1− a2

(a+
√

1− a2 − 1)
, for s ∈ (0, 1

1−r ), (6)

where a = (1− r)s.

Proof. We have
{τ > k} = {Y1 = 1, Y2 6= 0, . . . , Yk 6= 0}.

Let us define

Ak = {Y1 = 1} ∩ {(Yi)i≥2 doesn’t reset at any step i = 2, . . . , k}.

Then

P(Ak) =
1

2
(1− r)k. (7)

Moreover,

P(τ > k | Ak) = P(Y2 6= 0, . . . , Yk 6= 0 | Ak)
= P(Z1 6= 0, . . . , Zk−1 6= 0 | Z0 = 1). (8)

Indeed, for every step 2 ≤ i ≤ k, we see that

P(Yi = Yi−1 ± 1 | Yi−1 6= 0 ; i is not a resetting time) =
(1− r)/2

1− r
=

1

2
.

Hence, if Yi−1 6= 0 and if i is not a resetting time, in the next step, Yi moves up or
down, with probability 1/2, like the simple random walk. Therefore, we obtain (8).
Combining (7) and (8), we get the first result of Lemma 2.1.

To achieve the generating function of τ , we observe that

K(s) = E[sτ ] =

∞∑
k=0

P(τ = k)sk = s+ (s− 1)

∞∑
k=1

P(τ > k)sk

= s+
s(s− 1)

2

∞∑
k=0

(1− r)kP(T1,0 > k)sk

= s+
s(s− 1)

2

(
1 +

∞∑
k=1

P(T1,0 > k)((1− r)s)k
)
. (9)

The generating function of T1,0 is well known (see e.g. [11]) and is given as

F (s) = E[sT1,0 ] =

∞∑
k=0

P(T1,0 = k)sk =
1−
√

1− s2
s

,
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which implies that
∞∑
k=1

P(T1,0 > k)sk =
F (s)− 1

s− 1
,

and hence,
∞∑
k=1

P(T1,0 > k)ak =
F (a)− 1

a− 1
,

with a = (1− r)s. Combining the above equation with (9), we derive the generating
function of τ as

K(s) = s+
s(s− 1)

2

(
1 +

F (a)− 1

a− 1

)
= s+

s− 1

(1− r)
1−
√

1− a2 − a
2(a− 1)

= s+
s− 1

(1− r)
(1−

√
1− a2 − a)(a+

√
1− a2 − 1)

2(a− 1)(1−
√

1− a2)

× 1−
√

1− a2

(a+
√

1− a2 − 1)

= s+
s− 1

1− r
1−
√

1− a2

(a+
√

1− a2 − 1)
,

as the statement of the lemma.

Corollary 2.2. For r ∈ (0, 1), we have

E[τ ] =
1

2v(r)
, E[τ2] = E[τ ] +K ′′(1),

where v(r) is as in Theorem 1.1, and K ′′(1) is given by (12).

Proof. We compute the first derivative of generating function K(s) as

K ′(s) = 1 +
(1− r)(s− 1)s√

1− (1− r)2s2
(√

1− (1− r)2s2 + (1− r)s− 1
)

+
1−

√
1− (1− r)2s2

(1− r)
(√

1− (1− r)2s2 + (1− r)s− 1
)

−
(s− 1)

(
− (1− r)2s√

1− (1− r)2s2
− r + 1

)(
1−

√
1− (1− r)2s2

)
(1− r)

(√
1− (1− r)2s2 + (1− r)s− 1

)2 .

Thus,

E[τ ] = K ′(1) =
(1−

√
2r − r2)(

√
2r − r2 + r)

(1− r)(
√

2r − r2 − r)(
√

2r − r2 + r)
+ 1

=
r(1− 2r) +

√
2r − r2

2r(1− r)
=

1

2v(r)
. (10)

Similarly, we can also compute the second moment of τ as

E[τ2] =
d

ds

(
sK ′(s)

)
s=1

= K ′(1) +K ′′(1) = E[τ ] +K ′′(1). (11)
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After some algebraic calculation, we yield that

K ′′(1) = 2

[
(1− r)

√
2r − r2

(√
2r − r2 − r

)
−
(

1−
√

2r − r2
) √

2r − r2 + r − 1√
2r − r2(

√
2r − r2 − r)2

]
, (12)

as desired.

2.2 Proof of Theorem 1.1

First, we recall that (Mn)n≥0 is a renewal reward process with M0 = 0 and

Mn =

Kn∑
i=1

f(τi), f(x) = I(x = 1),

where (τi)i≥1 is a sequence of i.i.d. copies of τ and Kn = max{i ≥ 1 : τ1+. . .+τi ≤ n}.
Then it follows from the standard theory of renewal reward process (see e.g.

Chapter 4 in [7]) that as n→∞,

Mn

n

a.s.−→ µ, lim
n→∞

E[Mn]

n

a.s.−→ µ, (13)

and
Mn − µn√

n

(d)−−→ N (0, σ2), lim
n→∞

Var[Mn]

n
= σ2, (14)

where

µ =
E[f(τ)]

E[τ ]
, σ2 =

E[(f(τ)− τµ)2]

E[τ ]
.

Since P(τ = 1) = 1
2 and E[τ ] = 1/(2v(r)), by Corollary 2.2, we have

µ =
E[f(τ)]

E[τ ]
=

P(τ = 1)

E[τ ]
= v(r), (15)

and

σ2 =
E[(f(τ)− τµ)2]

E[τ ]
= 2v(r)E[I(τ = 1)− 2µI(τ = 1) + τ2µ2]

= v(r)
(
1− 2µ+ 2µ2E[τ2]

)
.

Using the formula E[τ2] obtained in Corollary 2.2 and some computations, we can
show that

σ2 = D(r), (16)

with D(r) given Theorem 1.1. The limit theorems for (Mn)n≥0 have been proved.

Finally, we prove the limit theorems for (Xn)n≥0. We first claim that

sup
n≥1

E[Y 4
n ] ≤ sup

n≥1
E
[
(TKn − n)4

]
<∞, (17)
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and thus as n→∞,

TKn − n√
n

a.s−−→ 0,
Yn√
n

a.s−−→ 0. (18)

Indeed, since 0 ≤ Yn ≤ n− TKn , it is sufficient to prove these claims for the sequence
(n− TKn)n≥1. From the definition of Kn, we observe that for any k ≥ 1

P(n− TKn ≥ k) ≤ P(TKn+1 − TKn ≥ k) = P(τKn+1 ≥ k) = P(τ ≥ k).

Therefore, by Lemma 2.1,

E[(n− TKn)4] ≤ E[τ4] ≤ 16 +
∑
k≥1

(k + 1)4P(τ > k)

≤ 16 +
∑
k≥1

(k + 1)4(1− r)k <∞.

Then the claim (18) follows from standard arguments using Markov’s inequality and
the Borel-Cantelli lemma.

We know that Xn = Mn − Yn and by the above claims, Yn√
n

a.s−−→ 0 as n → ∞,

and supn≥1 E[Y 4
n ] < ∞. Hence, the limit theorems (13) and (14) still hold when we

replace Mn by Xn. The proof Theorem 1.1 is completed. �

3 Asymptotic behavior of the mean values of the cur-
rent position and the maximal position of random walk
with decreasing resetting probability to the maximum

The strategy for the proof of Theorem 1.2 is as follows. First, in the subsection 3.1,
we adjust the dynamic of (Xn)n≥0 to get a simpler random walk (X̂n)n≥0 in which
at any time the resetting events can occur independently of the relative position
between (X̂n)n≥0 and the maximum process (M̂n)n≥0. We eventually show that the
modification does not affect the asymptotic behavior of the mean value of (Xn)n≥0
and (Mn)n≥0. Next, we investigate the behavior of E[X̂n] and E[M̂n] in three cases
0 < a < 1, a = 1 and a > 1 in the subsections 3.2, 3.3 and 3.4 respectively. Finally,
we conclude the proof of Theorem 1.2 in the subsection 3.5

3.1 A modification of (Xn)n≥0 and its properties

In the definition of random walk (Xn)n≥0, the resetting events depend on the relation
between the current position and the maximum one. Indeed, at the time n, the walker
has to check whether Xn−1 < Mn−1 before deciding to reset or not. We now adjust
this rule to obtain a simpler model where the resetting steps can appear freely. That
means at any time n, even while being at the maximum position, the walker makes
a reset with probability rn. More precisely, we consider the random walk (X̂n)n≥0
starting at 0 with the following transition probabilities

(X̂n, M̂n) =


(X̂n−1 + 1,max{M̂n−1, X̂n−1 + 1}) with probability 1−rn

2 ,

(X̂n−1 − 1, M̂n−1) with probability 1−rn
2 ,

(M̂n−1, M̂n−1) with probability rn,
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where for k ≥ 0,
M̂k = max{X̂i, i = 0, . . . , k}.

The following lemma shows that the difference between the two random walks can be
controlled via the number of resetting events.

Lemma 3.1 (Coupling lemma). Let (Zn)n≥0 be the simple random walk stating from
0. Let J be the random subset of {1, 2, . . .}, which is independent of (Zn)n≥0 and
defined by letting j ∈ J with probability rj independently. Then we can construct the
two processes (Xi)i≥0 and (X̂n)n≥0 from (Zn)n≥0 and J in such a way that

max
0≤i≤n

{|Mi − M̂i|, |Xi − X̂i|} ≤ |J ∩ [1, n]|, (19)

for any n ≥ 0, where |A| is the cardinality of A.

Proof. The law of (Xn)n≥0 and (X̂n)n≥0 implies that between two consecutive reset-
ting times, both processes move as simple random walks. Notice also that for every n,
(Zn+i−Zn)i≥0 is a simple random walk starting at 0, and is independent of (Zj)j≤n.
Hence, we can constitute two random walks (Xn)n≥0 and (X̂n)n≥0 using the path of
(Zn)n≥0 as follows.
• First, we call J = {t1, t2, . . .}, which plays the role as the set of resetting times.
• For 0 ≤ t ≤ t1 − 1, we set Xt = X̂t = Zt. At the resetting time t1, put

X̂t1 = M̂t1−1 = max0≤t≤t1−1 Zt. The value of Xt1 depends also on Xt1−1 and Mt1−1.
If Xt1−1 < Mt1−1, then Xt1 = Mt1−1 = max0≤t≤t1−1 Zt. Otherwise, Xt1 = Zt1 .
• For every i ≥ 1, we set{

X̂ti = X̂ti−1 + max{Zs − Zti−1 , ti−1 ≤ s ≤ ti − 1},
X̂t = X̂ti + Zt − Zti , for ti + 1 ≤ t ≤ ti+1 − 1.

Meanwhile, the construction of (Xn)n≥0 is slightly complicated.

(i) If Xti−1 = Mti−1, then Xt = Xti−1 + Zt − Zti−1, for ti ≤ t ≤ ti+1 − 1.

(ii) If Xti−1 < Mti−1,
Xti = Xti−1 + maxti−1≤s≤ti−1{Zs − Zti−1}

+ I(Xti−1 = Xti−1−1 − 1,maxti−1≤s≤ti−1{Zs − Zti−1} = 0),

Xt = Xti + Zt − Zti , for ti + 1 ≤ t ≤ ti+1 − 1.

In summary, for any interval (ti, ti+1), the path {X̂t, ti < t < ti+1} is obtained by
translating {Zt, ti < t < ti+1} from Zti to X̂ti , and at the resetting steps, X̂ti is set
to be the sum of X̂ti−1 and maxti−1≤s≤ti−1{Zs − Ztj−1}.
On the other hand, if Xti−1 = Mti−1 (resp. Xti−1 < Mti−1) then the path {Xt, ti ≤
t < ti+1} is derived by lifting the path {Zt, ti ≤ t < ti+1} from Zti−1 to Xti−1
(resp. Xti). For the value at resetting times, basically, we also set Xti = Xti−1 +
maxti−1≤s≤ti−1{Zs−Zti−1}. However, we have to consider more carefully the case that
Xti−1 = Xti−1−1− 1. If this happens, the walker does not reset at ti−1 and Xti−1−1 =
Mti−1 , and thus Xti−1 = Xti−1−1 − 1. Assuming further that maxti−1≤s≤ti−1{Zs −
Zti−1} = 0, the maximum value in the interval ti−1 ≤ s ≤ ti − 1 is Xti−1 which is
indeed Xti−1−1 − 1 = Mti−1−1 − 1. Therefore, at the time ti, the walker resets to
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the position of Xti−1−1 = Mti−1−1 = Xti−1 + 1. That explains the appearance of the
indicator function in the definition of Xti .

Next, we give an upper bound for the difference between the two processes. First,
observe that if t ∈ (ti, ti+1),

Xt = Xti + Zt − Zti , X̂t = X̂ti + Zt − Zti . (20)

Indeed, the equation for X̂t directly follows from the definition. If Xti−1 < Mti−1,
the equation for Xt is already given in (ii). For the case Xti−1 = Mti−1, we also have

Xt = Xti−1 + Zt − Zti−1 = Xti + Zt − Zti ,

since Xti = Xti−1 + Zti − Zti−1.
It follows from (20) that

max{|Xj − X̂j |, |Mj − M̂j | j = 1 . . . , n} = max{|Xti − X̂ti |, i ∈ J ∩ [1, n]}. (21)

We claim that that for all i ≥ 1,

|(Xti − X̂ti)− (Xti−1 − X̂ti−1)| = |(Xti −Xti−1)− (X̂ti − X̂ti−1)| ≤ 1, (22)

where Xt0 = X̂t0 = 0. Then this claim implies that

|Xti − X̂ti | ≤ i

for all i ≥ 1. Combining this with (21) we get (19).
Hence, it remains to prove (22). We have

X̂ti − X̂ti−1 = max
ti−1≤s≤ti−1

{Zs − Zti−1}. (23)

If Xti−1 = Mti−1, then Zti−1 − Zti−1 = maxti−1≤s≤ti−1{Zs − Zti−1} and

Xti = Xti−1 + Zti − Zti−1 = Xti−1 + Zti−1 − Zti−1 + Zti − Zti−1
= Xti−1 + max

ti−1≤s≤ti−1
{Zs − Zti−1}+ Zti − Zti−1.

Therefore,
|(Xti −Xti−1)− (X̂ti − X̂ti−1)| = |Zti − Zti−1| = 1.

If Xti−1 < Mti−1, by (ii)

0 ≤ (Xti −Xti−1)− max
ti−1≤s≤ti−1

{Zs − Zti−1} ≤ 1.

Combining the above estimates with (23), we obtain (22).

Now we investigate the behavior of the modified process (X̂n)n≥0. First, we call
the elements of the random set J in Lemma 3.1 as

J = {t1, t2, . . .},

and define
kn = max{i ≥ 1 : ti ≤ n}, t0 = 0,

12



Figure 1: An illustration of two random walks (X)n≥0 and (X̂n)n≥0 constructed from
the simple random walk (Z)n≥0 (blue line) and a set J consisting of two resetting
times t1, t2. Initially, three processes are identical until the time t1−1. At t1, both Xt1

and X̂t1 reset to the maximum position, then the two walkers move as the transition
by Z until t2 − 1 (red line). At t2, while X̂t2 reset to the maximum position (green
line), Xt2 follows the random walk Z to go down one step (purple line). After that,
the two processes copy the path of Z until t3 − 1.

with the convention that kn = 0 if J ∩ [1, n] = ∅. For every i, k ≥ 0, we define

m
(i)
k = max

0≤s≤k
{Zti+s − Zti}.

Then the mean value of m
(i)
k is independent of i, so we can set

g(k) = E[m
(i)
k−1] = E[ max

0≤s≤k−1
Zs]. (24)

The following lemma summarizes some properties of the asymptotic behavior of the
simple random walk (Zn)n≥0.

Lemma 3.2. [11] We have

lim
k→∞

g(k)√
k

=

√
2

π
, lim

k→∞

E[Z2
k ]

k
= lim

k→∞

E[(max0≤i≤k−1 Zi)
2]

k
= 1.

We define the function h : N→ R as follows. If i = 1 then h(1) = 0 and for j ≥ 2,

h(j) =

j−1∑
k=1

g(k)Pj,k, (25)

where

Pj,k := P[sup{i < j : i ∈ J } = j − k] = rj−k

k−1∏
l=1

(1− rj−l). (26)

We now give expressions of the mean values of X̂n and M̂n in term of two functions
g and h and the random set J .

13



Lemma 3.3. For any n ≥ 1,

E[X̂n] = E[g(t1)I(t1 ≤ n)]− E[h(t1)I(t1 ≤ n)] +
n∑
j=1

h(j)rj ,

E[M̂n] = E[X̂n] + E[g(n+ 1− tkn)].

Proof. By the construction of (X̂n)n≥0,

X̂tkn
=

kn−1∑
i=0

m
(i)
ti+1−ti−1.

By the strong Markov’s property of the simple random walk (Zn)n≥0

E[m
(i)
ti+1−ti−1 | Fti ] = E[g(ti+1 − ti)],

where Fti is the sigma field σ(Zt, t ≤ ti). Therefore,

E[X̂tkn
] = E

[ kn−1∑
i=0

g(ti+1 − ti)
]

=

∞∑
i=0

E
[
g(ti+1 − ti)I(ti+1 ≤ n)

]
. (27)

We observe that for any i ≥ 1,

E
[
g(ti+1 − ti) | ti+1 = j

]
=

j−1∑
k=1

g(k)P(ti = j − k | ti+1 = j)

=

j−1∑
k=1

g(k)Pj,k = h(j).

Furthermore, the condition i ≥ 1 is equivalent to ti > 0, and hence

h(ti+1) = E[g(ti+1 − ti)I(ti > 0) | ti+1]. (28)

Thus,

E[g(ti+1 − ti)I(0 < ti < ti+1 ≤ n)] = E
[
E[g(ti+1 − ti)I(0 < ti < ti+1) | ti+1]I(ti+1 ≤ n)

]
= E

[
h(ti+1)I(ti+1 ≤ n)

]
.

Now, combining the last equation with (27) we obtain

E[X̂tkn
] = E[g(t1)I(t1 ≤ n)] +

∞∑
i=1

E[h(ti+1)I(ti+1 ≤ n)]

= E[g(t1)I(t1 ≤ n)] + E
[ ∞∑
i=2

h(ti)I(ti ≤ n)
]

= E[g(t1)I(t1 ≤ n)] + E
[ kn∑
i=2

h(ti)I(kn ≥ 2)
]

= E[g(t1)I(t1 ≤ n)]− E[h(t1)I(t1 ≤ n)] + E
[ kn∑
i=1

h(ti)
]
.
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Moreover,

E
[ kn∑
i=1

h(ti)
]

= E
[ ∑
j∈J∩[1,n]

h(j)
]

=

n∑
j=1

E[h(j)I(j ∈ J )] =

n∑
j=1

h(j)rj .

Combining the two above equations, we get

E[X̂tkn
] = E[g(t1)I(t1 ≤ n)]− E[h(t1)I(t1 ≤ n)] +

n∑
j=1

h(j)rj . (29)

By the definition of M̂n,

M̂n = max
tkn≤j≤n

X̂tkn
+ Zj − Ztkn = X̂tkn

+m
(kn)
n−tkn ,

and thus

E[M̂n] = E[X̂tkn
] + E[g(n+ 1− tkn)].

On the other hand, since X̂n = X̂tkn
+ Zn − Ztkn ,

E[X̂n] = E[X̂tkn
].

Combining the last two equations with (29) we achieve the desired results.

From the above lemma, to get E[M̂n] and E[X̂n], we have to study the function
h(·). In next subsections, we will show that the asymptotic behavior of h(·) changes
when the parameter a crosses the cirical value 1, and as consequence the behavior of
E[M̂n] and E[X̂n] changes as well.

3.2 The subcritical phase 0 < a < 1

Lemma 3.4. Assume that 0 < a < 1. Then

lim
j→∞

h(j)

ja/2
=

1√
2r
.

Proof. To prove this lemma, it is sufficient to show that as j →∞,

hc(j) :=

[ja log2 j]∑
k=[ja/ log2 j]

g(k)Pj,k =

(
1√
2r

+ o(1)

)
ja/2, (30)

and
h(j)− hc(j) = o(ja/2). (31)

We start by proving (30). Observe that if ja/ log2 j ≤ k ≤ ja log2 j and j is large
enough, rj−l = r(j − l)−a = rj−a(1 + o(1)) for any l = 1, . . . , k. Hence, using the
approximation log(1− x) = −x(1 + o(1)), we get

Pj,k = rj−k

k−1∏
l=1

(1− rj−l) = rj−k exp

(
k−1∑
l=1

log(1− rj−l)

)

= rj−k exp

(
−(1 + o(1))

k−1∑
l=1

rj−l

)
= (1 + o(1))rj−a exp

(
−(r + o(1))kj−a

)
.
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By Lemma 3.2, g(k) =

√
2+o(1)
π

√
k. Therefore, when j →∞,

hc(j) = (1 + o(1))

√
2

π

r

ja

[ja log2 j]∑
k=[ja/ log2 j]

√
k exp (−(r + o(1))k/ja)

= (1 + o(1))

√
2

π

r

ja

∫ ja log2 j

ja/ log2 j

√
x exp (−(r + o(1))x/ja) dx

= (1 + o(1))

√
2

πr
ja/2

∫ r log2 j

r/ log2 j

√
y exp(−(1 + o(1))y)dy

= (1 + o(1))

√
2

πr
ja/2

∫ ∞
0

√
y exp(−y)dy =

1 + o(1)√
2r

ja/2.

Here we have used the integral approximation and the change of variable y = rx
ja and

the equation
∫∞
0

√
ye−ydy =

√
π
2 .

Next we prove (31). The case k ≤ ja/ log2 j can be treated by the same argument
as above, since we still have

Pj,k = (1 + o(1))rj−a exp
(
−(r + o(1))kj−a

)
,

and g(k) = O(
√
k) = O(ja/2/ log j). Hence

dja/ log2 je∑
k=1

g(k)Pj,k = O(1)
ja/2

log j
× r

ja

dja/ log2 je∑
k=1

exp(−(1 + o(1))rk/ja)

=
O(ja/2)

ja log j

∫ ja/ log2 j

1
exp(−rx/ja)dx = o(ja/2), (32)

as j →∞. Finally, for the case ja log2 j ≤ k ≤ j − 1,

Pj,k = rj−k

k−1∏
l=1

(1− rj−l) ≤
dk/2e∏
l=1

(1− rj−l) ≤ (1− rj)k/2

= (1− rj−a)k/2 ≤ exp(−kr/(2ja)) ≤ exp(−r log2 j/2).

Hence, using g(k) = O(
√
k) = O(

√
j), we obtain that

j−1∑
k=dja log2 je

g(k)Pj,k = O(j3/2) exp(−r log2 j/2) = o(1), (33)

as j →∞. Combining (32) and (33) yields (31).

Corollary 3.5. Assume that 0 < a < 1. Then it holds that

lim
n→∞

E[M̂n]

n1−a/2
= lim

n→∞

E[X̂n]

n1−a/2
=

√
2r

2− a
.

Proof. First, it is not hard to check that

E[g(t1)] + E[h(t1)] = O(1). (34)
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According to Lemma 3.3, we need to compute the sum
∑n

j=1 h(j)rj . Observe that

[n/ logn]∑
j=1

h(j)rj =

[n/ logn]∑
j=1

h(j)
(
r
ja ∧

1
2

)
≤ 1

2

d(2r)1/ae∑
j=1

h(j) + r

n/ logn∑
j=1

h(j)j−a

≤ O(1) +O(1)

[n/ logn]∑
j=1

j−a/2 = o(n1−a/2),

where we have used h(j) = O(ja/2).
Moreover, by Lemma 3.4, h(j) = ( 1√

2r
+ o(1))ja/2 for j large enough. Hence,

n∑
j=dn/ logne

h(j)rj =
n∑

dj=n/ logne

rh(j)

ja
= (1 + o(1))

√
r

2

n∑
j=dn/ logne

j−a/2

= (1 + o(1))

√
r

2

∫ n

n/ logn
x−a/2dx = (1 + o(1))n1−a/2

√
2r

2− a
,

as n→∞. Therefore,

lim
n→∞

∑n
j=1 h(j)rj

n1−a/2
=

√
2r

2− a
. (35)

Combining (34), (35) and Lemma 3.3, we obtain

lim
n→∞

E[X̂n]

n1−a/2
=

√
2r

2− a
. (36)

On the other hand,

E[g(n+ 1− tkn)] ≤ g(n+ 1) = O(
√
n) = o(n1−a/2). (37)

Combining the last two equations with Lemma 3.3 we get the result for E[M̂n].

3.3 The critical phase a = 1

Similarly to subcritical case, we first investigate the order of magnitude of h(j) as j
tends to infinity.

Lemma 3.6. Assume that a = 1. Then

lim
j→∞

h(j)√
j

=

√
2

π
rB
(
3
2 , r
)
, (38)

where we recall that B(·, ·) is the Beta function defined by B(a, b) =
∫ 1
0 t

a−1(1−t)b−1dt.

Proof. To prove this lemma, we will show that as j →∞,

hc(j) :=

[j−log2 j]∑
k=[j/ log2 j]

g(k)Pj,k = (1 + o(1))

√
2

π
rB
(
3
2 , r
)√

j, (39)

17



and

h(j)− hc(j) = o(
√
j). (40)

We first prove (39). Let Γ(z) =
∫∞
0 xz−1e−xdx be the Gamma function and recall the

Stirling’s approximation, as z →∞

Γ(z) =

√
2π

z

(
z

e

)z
(1 + o(1)). (41)

Moreover, using Γ(z + 1) = zΓ(z), we rewrite Pj,k as

Pj,k =
r

j − k

k−1∏
l=1

(
1− r

j − l

)
=

r

j − k

j−1∏
i=j−k+1

(
1− r

i

)

=
r

j − k
Γ(j − r)

Γ(j)

Γ(j − k + 1)

Γ(j − k − r + 1)
. (42)

Hence, when k ≤ j − log2 j and j is large enough, plugging (41) into (42) yields that

Pj,k = (1 + o(1))
r

j − k

√
j

j − r

√
j − k − r + 1

j − k + 1

(
1− r

j

)j
×
(

1 +
r

j − k − r + 1

)j−k−r+1 (j − k + 1)r

(j − r)r

= (r + o(1)) exp(r + o(1)) exp(−r − o(1))
(j − k + 1)r−1

(j − r)r

= (1 + o(1))r
(j − k + 1)r−1

(j − r)r
. (43)

Combining this with g(k) =

√
2+o(1)
π

√
k (by Lemma 3.2), we have as j →∞,

hc(j) =

[j−log2 j]∑
k=[j/ log2 j]

(1 + o(1))

√
2

π
r
√
k

(j − k + 1)r−1

(j − r)r

= (1 + o(1))

√
2

π
r

∫ j−log2 j

j/ log2 j

√
x

(j − x+ 1)r−1

(j − r)r
dx

= (1 + o(1))

√
2

π
r

√
jjr

(j − r)r

∫ 1−log2 j/j

1/ log2 j

√
y(1− y)r−1dy

= (1 + o(1))

√
2

π

√
j

∫ 1

0

√
y(1− y)r−1dy = (1 + o(1))

√
2

π
rB(3/2, r)

√
j.

Here we have used the integral approximation, the change of variable y = jx, and∫ 1
0

√
t(1− y)r−1dy = B(3/2, r).

We turn to prove (40). Using (43) and g(k) = O(
√
k), we derive that as j →∞,

dj/ log2 je∑
k=1

g(k)Pj,k = O(1)r

√
j

log j

dj/ log2 je∑
k=1

(j − k + 1)r−1

(j − r)r

= O(1)r

√
j

log j

(
j

j − r

)r ∫ 1/ log2 j

0
(1− t)r−1dt = o(

√
j). (44)
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Finally, observe that if j − log2 j ≤ k ≤ j − 1 then

Pj,k ≤ r
k−1∏
l=1

(1− rj−l) ≤ r
(

1− r

log2 j

)k/2
≤ r exp(−rk/(2 log2 j))

≤ r exp(r/2) exp(−rj/(2 log2 j)).

Hence,

j−1∑
k=j−log2 j

g(k)Pj,k = O(
√
j) log2 j exp(−rj/(2 log2 j)) = o(1), (45)

as j →∞. Combining (45) and (44) we get (40).

Corollary 3.7. Assume that a = 1. Then it holds that

lim
n→∞

E[X̂n]√
n

= 2r2
√

2

π
B(3/2, r), lim

n→∞

E[M̂n]√
n

= (2r2 + r)

√
2

π
B(3/2, r).

Proof. Analogously to Corollary 3.5, to get the mean values of E[M̂n] and E[X̂n], we
compute the sum

∑n
j=1 h(j)rj . First, we consider

[n/ logn]∑
j=1

h(j)rj =

[n/ logn]∑
j=1

h(j)

(
r

j
∧ 1

2

)
≤ 1

2

d2re∑
j=1

h(j) + r

[n/ logn]∑
j=1

h(j)j−1

= O(1) +O(1)

[n/ logn]∑
j=1

j−1/2 = o(
√
n),

since h(j) = O(
√
j) by Lemma 3.6.

Moreover, using h(j) =
(
r
√

2
πB(3/2, r) + o(1)

)√
j, we obtain that as n→∞,

n∑
j=dn/ logne

h(j)rj = (1 + o(1))r2
√

2

π
B(3/2, r)

n∑
dn/ logne

1√
j

= (1 + o(1))r2
√

2

π
B(3/2, r)

∫ n

n/ logn

1√
x
dx

= 2(1 + o(1))r2
√

2

π
B(3/2, r)

√
n.

Thus,
n∑
j=1

h(j)rj = (2 + o(1))r2
√

2

π
B(3/2, r)

√
n. (46)

On the other hand,

E[g(t1)I(t1 ≤ n)] =

n∑
k=1

g(k)P(t1 = k) =

n∑
k=1

k−(r+
1
2) = o(

√
n), (47)
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since g(k) = O(
√
k) and

P(t1 = k) =

k−1∏
j=1

(
1− r

j

)
1

k
≤ k−1 exp(−

k−1∑
j=1

r/j) = O(k−r−1).

Similarly,
E[h(t1)I(t1 ≤ n)] = o(

√
n). (48)

Using (47), (48) with (46) and Lemma 3.3, we get

lim
n→∞

E[X̂n]√
n

= 2r2
√

2

π
B(3/2, r). (49)

Finally, to compute E[M̂n] = E[X̂tkn
] + E[g(n+ 1− tkn)]. Observe that

E[g(n− tkn)] =
n∑
k=1

g(k)P(n+ 1− tkn = k) + g(n+ 1)P(t1 > n)

=
n∑
k=1

g(k)Pn+1,k + g(n+ 1)P(t1 > n) = h(n+ 1) + g(n+ 1)P(t1 > n).

Therefore,

E[M̂n] = E[X̂tkn
] + h(n+ 1) + g(n+ 1)P(t1 > n).

Notice that

g(n+ 1)P(t1 > n) = g(n+ 1)
n∏
j=1

(
1− (r/j ∧ 1/2)

)
= o(g(n+ 1)) = o(

√
n)

and by Lemma 3.6

h(n+ 1) = (1 + o(1))r

√
2

π
B(3/2, r)

√
n. (50)

Combining the last three equations and Lemma 3.3 yields

lim
n→∞

E[M̂n]√
n

= (2r2 + r)

√
2

π
B(3/2, r),

which completes the proof of lemma.

3.4 The suppercritical phase a > 1

In the case a > 1, we observe that the resetting rate rn decays very fast and the
number of reset points is quite small (with finite expectation). Thus we expect that
when n → ∞, the asymptotic behavior of the random walk gets closer to the one of
the simple random walk. In particular, we will show that E[Mn] is of order

√
n and

E[Xn] = o(E[Mn]). Moreover, in the next section, we also prove that the variance of
Xn and Mn is asymptotically the same as the one of the simple random walk. Recall
that for a > 1, we set

ϕa(n) =


n
3
2−a if 1 < a < 3

2 ,

log n if a = 3
2 ,

1 if a > 3
2 .

(51)
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Lemma 3.8. Assume that a > 1. Then the following statements hold.

(i)

lim
j→∞

h(j)√
j

= λ(a, r) :=

√
2

π

(
1−

∞∏
i=1

(1− ri)
)
.

(ii)

lim
n→∞

E[g(t1)I(t1 ≤ n)]

ϕa(n)
= λ1(a, r),

where λ1(a, r) is as in (58).

(iii)

lim
n→∞

E[h(t1)I(t1 ≤ n)]

ϕa(n)
= λ2(a, r),

where λ2(a, r) is as in (59).

(iv)

lim
n→∞

∑n
j=1 h(j)rj

ϕa(n)
= λ3(a, r),

where λ3(a, r) is as in (60).

(v)

lim
n→∞

E[g(n+ 1− tkn)]√
n

=

√
2

π
.

Proof. Similarly to the previous cases, to prove (i) we shall show that as j →∞,

hc(j) :=

j−1∑
k=[j−log2 j]

g(k)Pj,k = (1 + o(1))λ1(a, r)
√
j, (52)

and
h− hc(j) = o(

√
j). (53)

By Lemma 3.2, g(k) = (
√

2/π + o(1))
√
k. Thus as j →∞,

hc(j) = (
√

2/π + o(1))
√
j

j−1∑
k=[j−log2 j]

Pj,k

= (
√

2/π + o(1))
√
j

j−1∑
k=[j−log2 j]

rj−k

k−1∏
l=1

(1− rj−l)

= (
√

2/π + o(1))
√
j

[log2 j]∑
i=1

ri

j−1∏
s=i+1

(1− rs)

= (
√

2/π + o(1))
√
j

∞∑
i=1

ri

∞∏
s=i+1

(1− rs) = (λ(a, r) + o(1))
√
j.
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Here for the last equation, we have used
∑∞

i=1 ri
∏∞
s=i+1(1 − rs) = P(J 6= ∅) =

1 − P(J = ∅) = 1 −
∏∞
i=1(1 − ri), and for the fourth equation, we have used the

following approximation

∣∣∣ [log2 j]∑
i=1

ri

j−1∏
s=i+1

(1− rs)−
∞∑
i=1

ri

∞∏
s=i+1

(1− rs)
∣∣∣

≤
[log2 j]∑
i=1

ri

(
j−1∏
s=i+1

(1− rs)−
∞∏

s=i+1

(1− rs)

)
+
∞∑
i=j

ri

∞∏
s=i+1

(1− rs)

≤
[log2 j]∑
i=1

ri

1−
∞∏
s=j

(1− rs)

+
∞∑
i=j

ri

≤
[log2 j]∑
i=1

ri

 ∞∑
s=j

rs

+

∞∑
i=j

ri =

1 +

[log2 j]∑
i=1

ri

 ∞∑
s=j

rs

 = o(1),

as j →∞, since the sum
∑

s≥1 rs is convergent when a > 1. Hence, (52) is proved.

Next, we prove (53). By Lemma 3.2, g(k) = O(
√
k) = O(

√
j). Moreover, if

1 ≤ k ≤ j − log2 j then Pj,k ≤ rj−k = r(j − k)−a. Therefore,

h(j)− hc(j) =

[j−log2 j]∑
k=1

g(k)Pj,k ≤ rO(
√
j)

[j−log2 j]∑
k=1

(j − k)−a

= O(
√
j(log2 j)1−a) = o(

√
j).

We turn to prove (ii). First, recall that

E[g(t1)I(t1 ≤ n)] =

n∑
k=1

g(k)P(t1 = k).

The case 1 < a < 3/2. Using g(k) = (
√

2/π + o(1))
√
k and the definition of Pj,k, it

follows that as n→∞,

[n/ logn]∑
k=1

g(k)P(t1 = k) =

[(2r)1/a]∑
k=1

g(k)P(t1 = k) +

[n/ logn]∑
k=d(2r)1/ae

g(k)P(t1 = k)

= O(1) +O(1)

[n/ logn]∑
k=d(2r)1/ae

√
k

ka

k−1∏
l=1

(1− rl)

= O(1) +O(1)

(
n

log n

)3/2−a
= o(n3/2−a). (54)

and

n∑
k=dn/ logne

g(k)P(t1 = k) = (
√

2/π + o(1))r

∫ n

n/ logn

√
k

ka

∞∏
l=1

(1− rl)

=
(
√

2/π + o(1))
∏∞
l=1(1− rl)r

3/2− a
n3/2−a, (55)
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by using the integral approximation. Combine (54) and (55), we get that

lim
n→∞

E[g(t1)I(t1 ≤ n)]

n3/2−a
=

√
2/π

∏∞
l=1(1− rl)r

3/2− a
. (56)

The case a = 3/2. We have

[logn]∑
k=1

g(k)P(t1 = k) = O(1)
√

log n

[logn−1]∑
k=1

rk = O(
√

log n),

since the series
∑

k≥1 rk converges for a = 3/2. Moreover, using the integral approx-
imation and Lemma 3.2 we obtain

n∑
k=dlogne

g(k)P(t1 = k) = (
√

2/π + o(1))r
n∑

k=dlogne

k−1
k−1∏
l=1

(1− rl)

= (
√

2/π + o(1))

∞∏
l=1

(1− rl)r log n.

Hence, if a = 3/2 then

lim
n→∞

E[g(t1)I(t1 ≤ n)]

log n
=
√

2/π

∞∏
l=1

(1− rl)r. (57)

The case a > 3/2. It is not hard to show that

lim
n→∞

E[g(t1)I(t1 ≤ n)] = lim
n→∞

n∑
k=1

g(k)rk

k−1∏
l=1

(1− rl) =

∞∑
k=1

g(k)rk

k−1∏
l=1

(1− rl) <∞.

In summary, we yield the statement of (ii) saying that

lim
n→∞

E[g(t1)I(t1 ≤ n)]

ϕa(n)
= λ1(a, r),

where

λ1(a, r) =


√

2/πr
∏∞
l=1(1− rl)

3/2− a
if 1 < a < 3

2 ,√
2/πr

∏∞
l=1(1− rl) if a = 3

2 ,∑∞
k=1 g(k)rk

∏k−1
l=1 (1− rl) if a > 3

2 .

(58)

The proof of (iii) and(iv) is analogous. First, recall that

E[h(t1)I(t1 ≤ n)] =
n∑
k=2

h(k)P(t1 = k).

Using (i) and similar arguments as for (ii), we can deduce the following

lim
n→∞

E[h(t1)I(t1 ≤ n)]

ϕa(n)
= λ2(a, r), lim

n→∞

∑n
j=1 h(j)rj

ϕa(n)
= λ3(a, r),
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where

λ2(a, r) =


λ(a, r)r

∏∞
l=1(1− rl)

3/2− a
if 1 < a < 3

2 ,

λ(a, r)r
∏∞
l=1(1− rl) if a = 3

2 ,∑∞
k=1 h(k)rk

∏k−1
l=1 (1− rl) if a > 3

2 ;

(59)

and

λ3(a, r) =


λ(a, r)r

3/2− a
if 1 < a < 3

2 ,

λ(a, r)r if a = 3
2 ,∑∞

j=1 h(j)rj if a > 3
2 .

(60)

To prove (v), we observe that

g(n+ 1) ≥ E[g(n+ 1− tkn)] ≥ g(n+ 1− [n1/2])P(tkn ≤ [n1/2]).

Moreover, g(k) = (
√

2/π+ o(1))
√
k and P(tkn ≤ [n1/2]) ≥

∏
k≥[n1/2](1− r/ja)→ 1 as

n→∞, since a > 1. Therefore, g(n+ 1− tkn) = (
√

2/π + o(1))
√
n.

Combining Lemma 3.8 and Lemma 3.3, we derive the asymptotic behavior of
E[X̂n] and E[M̂n].

Corollary 3.9. Assume that a > 1. Then it holds that

lim
n→∞

E[X̂tkn
]

ϕa(n)
= lim

n→∞

E[X̂n]

ϕa(n)
= FX(a, r), lim

n→∞

E[M̂n]√
n

=

√
2

π
,

where ϕa(n) is given in (51), and FX(a, r) = λ1(a, r) − λ2(a, r) + λ3(a, r), with
λ1(1, r), . . . , λ3(a, r) as in Lemma 3.8.

3.5 Conclusions

We now give the proof of Theorem 1.2 by using the previous results. It follows from
Lemma 3.1 that

max{|E[Xn]− E[X̂n]|, |E[Mn]− E[M̂n]|} ≤ max{E[|Xn − X̂n|],E[|Mn − M̂n|]}

≤ E[|J ∩ [1, n]|] =: Ra(n) =

n∑
j=1

rj =


O(n1−a) if 0 < a < 1,

O(log n) if a = 1,

O(1) if a > 1.

Hence, Ra(n) = o(E[M̂n]) for any a > 0, and Ra(n) = o(E[X̂n]) for 0 < a ≤ 3
2 . Thus,

the limit theorems for E[Mn] with a > 0 and for E[Xn] with 0 < a ≤ 3
2 follow from

Corollaries 3.5, 3.7 and 3.9. When a > 3
2 , we have E[Xn] = O(1), since Ra(n) = O(1)

and E[X̂n] = O(1). �
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(a) The graphs of FM (1, r) (red line)
and fM (1, r) (blue line).

(b) The graphs of FX(1, r) (red line)
and fX(1, r) (blue line).

Figure 2: Comparison of our scaling factors with results in [13].

Remark 3.10 (Comparison with mean field results). In [13], the authors also studied
the case a = 1. By using non rigorous arguments, they gave the asymptotic behavior
of E[Xn] and E[Mn] as

fM (r) = lim
n→∞

E[Mn]√
n

=
1√
2r

[(r + 1/2)erf(
√
r) +

√
r/π exp(−r)],

fX(r) = lim
n→∞

E[Xn]√
n

=
1√
2r

[(r − 1/2)erf(
√
r) +

√
r/π exp(−r)],

where erf(z) = 2√
π

∫ z
0 exp(−u2)du. These results are different from ours, see in par-

ticular Figure 2. A gap of the mean field arguments in [13] is that the authors used
the analysis for the case a = 0, i.e. rn = r ∈ (0, 1) for all n ≥ 1 (the resetting rate
is fixed) to apply to the case a = 1 (the rate decays as n−1). In fact, this approach
gives the correct order of magnitude of the expectation values of Xn and Mn, but it
offers incorrect scaling factors.

Remark 3.11 (Smooth interpolation of scaling factors). We consider the continuities
of the two scaling functions FX(a, r) and FM (a, r). We observe that the two functions
are not continuous in the usual sense at the critical points a = 0, a = 1 and a = 3/2
(the last point only for FX). This fact is reasonable since the order magnitude of E[Xn]
and E[Mn] changes when a crosses these points. However, considering these functions
in the broad sense, when a ↗ 1 for example, we should compare F (a ↗ 1, r) with
F (1, r) at r ↗ ∞, here and below F stands for both FX and FM . Indeed, denoting
rn,a = min{ rna ,

1
2}, we have r := nrn,a → ∞ as n → ∞, for any a < 1. Similarly,

as a ↘ 1, we compare F (a ↘ 1, r) with F (1, r) at r ↘ 0, and consider the same
analysis for other critical points a = 0 and a = 3/2. First, for the case a ↘ 0,
F (a ↘ 0, r) =

√
r/2. Moreover, as r → 0, F (0, r) = v(r) = ( 1√

2
+ o(1))

√
r. As a

consequence,

lim
r→0

F (a↘ 0, r)

F (0, r)
= 1. (61)

For a↗ 1, we have F (a↗ 1, r) =
√

2r. In addition, as r →∞, F (1, r) = (2
√

2/π +
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o(1))r2B(3/2, r) = (
√

2 + o(1))
√
r, since B(3/2, r) = (

√
π
2 + o(1))r−3/2. Hence,

lim
r→∞

F (a↗ 1, r)

F (1, r)
= 1. (62)

When a ↘ 1, we have
∏∞
i=1(1 − ri) → 0. Thus λ(a ↘ 1, r) =

√
2/π, and λ1(a ↘

1, r) = λ2(a ↘ 1, r) = 0, and λ3(a ↘ 1, r) =
√

8/πr. So FX(a ↘ 1, r) =
√

8/πr.
On the other hand, FX(1, r) =

√
8/πr2B(3/2, r) = (

√
8/π + o(1))r as r → 0, since

B(3/2, r) = (1 + o(1))r−1. Therefore,

lim
r→0

FX(a↘ 1, r)

FX(1, r)
= 1. (63)

Moreover, FM (a ↘ 1, r) =
√

2/π and FM (1, r) =
√

2
π (2r2 + r)B(3/2, r) =

√
2/π +

o(1), since B(3/2, r) = (1 + o(1))r−1 as r → 0. Thus

lim
r→0

FM (a↘ 1, r)

FM (1, r)
= 1. (64)

These equations (61) – (64) imply that the functions FX and FM are continuous in
the broad sense at a = 0 and a = 1. We say that the two functions have the smooth
interpolation property at these points. When a↗ 3

2 , the function FX(↗ 3
2 , r) blows

up and so the smooth interpolation is not true.

4 Limit theorems for random walk with decreasing reset-
ting probability to the maximum in the supercritical
phase

In this section, we study the variance and limit theorems of Xn and Mn in the
supercritical phase a > 1. Then we present the numerical results for the asymptotic
behavior of the variances of Xn and Mn in the other case 0 < a ≤ 1.

4.1 Proof of Theorem 1.4

Recall the coupling of two random walks (Xn)n≥0 and (X̂n)n≥0 via the simple random
walk (Zn)n≥0 and the random set J as in Lemma 3.1. We write

J = {t1, t2, . . .}, kn = |J ∩ [1, n]|, (65)

with the convention that kn = 0 when J ∩ [1, n] = ∅, and t0 = 0. Then for any l ∈ N,

E[kln] = E
[( n∑

j=1

I(j ∈ J )
)l]

=

n∑
j1,...,jl=1

P
(
j1, . . . , jl ∈ J

)

≤ 2l
[ l∑
i=1

( n∑
j=1

rj

)i]
= O(1), (66)

since
∑

j≥1 rj converges. In addition, by Lemma 3.1

max{|Xn − X̂n|, |Mn − M̂n|} ≤ kn. (67)
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Hence, |E[Xn]− E[X̂n] = O(1), and thus

|E[Xn]2 − E[X̂n]2| = O(E[|X̂n|]). (68)

Moreover, by the Cauchy-Schwarz inequality and (66)

|E[X2
n]− E[X̂2

n]| ≤ E[kn(|Xn|+ |X̂n|)] ≤
√

2E[k2n]1/2(E[X2
n] + E[X̂2

n])1/2

= O((E[X2
n] + E[X̂2

n])1/2). (69)

We observe that if |a− b| ≤ α
√
a+ b for some α > 0 then

|a− b| ≤ 8(α2 + 1)
√
b+ 1. (70)

Indeed, assume that |a − b| > 8(α2 + 1)
√
b+ 1. Then α

√
a+ b > 8(α2 + 1)

√
b+ 1.

Thus a ≥ max{2b, 8(α2 + 1)}. Therefore,

a

2
≤ a− b ≤ α

√
a+ b ≤ α

√
2a,

and thus a ≤ 8α2, which is a contradiction. Hence, (70) is proved.
It follows from (69) and (70) that

|E[X2
n]− E[X̂2

n]| = O(E[X̂2
n])1/2).

Combining this with (68), we yield that

|Var[Xn]−Var[X̂n]| ≤ |E[Xn]2 − E[X̂n]2|+ |E[X2
n]− E[X̂2

n]| = O(E[X̂2
n])1/2), (71)

since E[|X̂n|] ≤ (E[X̂2
n])1/2. Similarly,

|Var[Mn]−Var[M̂n]| = O(E[M̂2
n])1/2). (72)

The two estimates (71) and (72) suggest the variances of Xn and Mn can be approx-
imated by the counterparts of X̂n and M̂n. We now focus on computing Var[X̂n] and
Var[M̂n]. By the construction of (X̂n)n≥0,

X̂n = X̂tkn
+ Zn − Ztkn , M̂n = X̂tkn

+m
(i)
n−tkn , X̂tkn

=

kn−1∑
i=0

m
(i)
ti+1−ti−1, (73)

where t0 = 0 and t1, . . . , tkn are elements of J as in (65), and (Zn)n≥0 is the simple
random walk and for any i, k ≥ 0

m
(i)
k = max

0≤j≤k
{Zj+ti − Zti}.

Notice that given tkn , the variables Zn−Zn−tkn and m
(kn)
n−tkn are independent of X̂tkn

.
Therefore, since E[Zn − Ztkn | tkn ] = 0,

E[X̂2
n] = E[(Zn − Ztkn )2] + E[(X̂tkn

)2] = E[(Zn−tkn )2] + E[(X̂tkn
)2]. (74)

Moreover, sine E[m
(kn)
n−tkn | tkn ] = g(n+ 1− tkn)

E[M̂2
n] = E[(X̂tkn

)2] + 2E[X̂tkn
g(n+ 1− tkn)] + E[(m

(kn)
n−tkn )2], (75)
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here we recall that g(k) = E[mk−1]. We observe that X̂tkn
≥ 0, since it is the sum of

maximum values of the simple random walk in some intervals. Therefore,

0 ≤ E[X̂tkn
g(n+ 1− tkn)] ≤ E[X̂tkn

]g(n+ 1) = O(n1/2)E[X̂tkn
] = o(n), (76)

since E[X̂tkn
] = O(ϕa(n)) = o(n1/2), by Corollary 3.9.

Next, we deal with E[(X̂tkn
)2]. Let ε = min{a−12 , 14} and ` = d2εe. Then by

Markov’s inequality and (66),

P[kn ≥ nε] ≤
E[k`n]

nε`
= O(n−`ε) = O(n−2).

Thus E[(X̂tkn
)2I(kn ≥ nε)] ≤ n2P(kn ≥ nε) = O(1), and hence

E[(X̂tkn
)2] = O(1) + E[(X̂tkn

)2I(kn ≤ nε)]. (77)

By using (73) and the inequality that (x1 + . . .+ xk)
2 ≤ k(x21 + . . .+ x2k),

E[(X̂tkn
)2I(kn ≤ nε)] ≤ E

[
knI(kn ≤ nε)

kn−1∑
i=0

(
m

(i)
ti+1−ti−1

)2] ≤ nεE[ kn−1∑
i=0

(
m

(i)
ti+1−ti−1

)2]
.

(78)
Define

q(k) = E[m2
k−1] = E[( max

0≤i≤k−1
Zi)

2].

By Lemma 3.2,

lim
k→∞

q(k)

k
= 1. (79)

In particular, q(k) ≤ Ck for all k ≥ 1 with C an universal constant. Hence,

E
[ kn−1∑
i=0

(
m

(i)
ti+1−ti−1

)2]
= E

[ kn−1∑
i=0

q(ti+1 − ti − 1)

]
≤ CE[tkn ].

Moreover,

E[tkn ] =

n∑
k=1

krk
∏
i≥k+1

(1− ri) ≤
n∑
k=1

rk1−a = O(n2−a).

Combining the last two equations with (77) and (78) gives that

E[(X̂tkn
)2] = O(1) +O(nε+2−a) = o(n), (80)

since ε ≤ (a− 1)/2 and a > 1.
We are now in the position to compute the variances of Xn and Mn. Observe that

q(n+ 1) ≥ E[(m
(kn)
n−tkn )2] = E[q(n− tkn)] ≥ q(n− [n1/2])P(tkn ≤ [n1/2]).

Since q(n+ 1) = (1 + o(1))n and P(tkn ≤ [n1/2])→ 1 as n→∞, we deduce that

E[(m
(kn)
n−tkn )2] = n+ o(n). (81)

28



It follows from (75), (76), (80) and (81) that

E[M̂2
n] = n+ o(n). (82)

Therefore, using E[M̂n] = (
√

2/π + o(1))
√
n (by Corollary 3.9),

Var[M̂n] = E[M̂2
n]− (E[M̂n])2 =

(
1− 2

π

)
n+ o(n). (83)

On the other hand, since E[Z2
k ] = (1 + o(1))k and P(tkn ≥ [n1/2]) = o(1),

E[Z2
n−tkn ] =

n∑
k=0

E[Z2
n−k]P(tkn = k)

=

[n1/2]∑
k=0

E[Z2
n−k]P(tkn = k) +O(n)P(tkn ≥ [n1/2]) = n+ o(n).

Combining the above equation with (74), (80) yields

E[X̂2
n] = n+ o(n), (84)

which together with E[X̂n] = O(ϕa(n)) = o(
√
n) (by Corollary 3.9) implies that

Var[X̂n] = n+ o(n). (85)

Finally, using (71), (84) and (85) we arrive at

Var[Xn] = n+ o(n).

Similarly, it follows from (72), (82) and (83) that

Var[Mn] =
(

1− 2

π

)
n+ o(n).

We now prove limit theorems for Xn and Mn. By (73),

Xn√
n

=
Xn − X̂n√

n
+
X̂tkn√
n
−
Ztkn√
n

+
Zn√
n

=: Un +
Zn√
n
. (86)

We observe that E[|Xn−X̂n|] ≤ E[kn] = O(1), and E[|X̂tkn
|] = E[X̂tkn

] = O(ϕa(n)) =

o(
√
n), and since E[|Zk|] = O(k1/2),

E[|Ztkn |] =

n∑
k=0

E[|Zk|]P(tkn = k) = O(1)

n∑
k=1

k1/2k−a = O(ϕa(n)) = o(
√
n).

Therefore, E[|Un|] = o(1) and thus (86) implies that

Xn√
n

(d)−→ N (0, 1), (87)

since (n−1/2Zn)n≥1 converges in distribution to N (0, 1).
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(a) The graph of DM (a, r) (b) The graph of DX(a, r)

Figure 3: Scaling functions of the variances

For the limit theorem of Mn, using (73),

Mn√
n

=
Mn − M̂n√

n
+
X̂tkn√
n

+
m

(kn)
n−tkn√
n

=: Vn +
m

(kn)
n−tkn√
n

. (88)

By similar arguments as above, E[|Vn|] = o(1). Moreover,

mn ≥ mn−tkn ≥ mn−[n1/2]I(kn ≤ [n1/2]).

In addition, P(kn ≤ [n1/2]) → 1 and (n−1/2mn)n≥1 converges weakly to the random

variable max0≤t≤1Bt, as n→∞, and so does the sequence (n−1/2m
(kn)
n−tkn )n≥1. Hence,

Mn√
n

(d)−→ max
0≤t≤1

Bt. (89)

We have finished the proof of Theorem 1.4. �

4.2 Simulation for the variances of Xn and Mn

As we have proved, in both the cases a = 0 or a > 1 the variances of Xn and Mn

grow linearly in n regardless the value of a. So, we predict the following.

Open question: Let 0 < a ≤ 1 and r > 0. Prove that the following limits exist:

DX(a, r) := lim
n→∞

Var[Xn]

n
, DM (a, r) := lim

n→∞

Var[Mn]

n
.

When a gets to 0 our modifying Xn by X̂n might lead a large error in the variance
approximation. In particular, when a = 0 the difference between the two processes
grows linearly, and it would make a non-negligible error in the approximation. Fur-
thermore, the computing for the variances of X̂n and M̂n is also highly nontrivial, so
we leave the problem to future researches.

We have done some simulation supporting to this open question.
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(a) The graph of DM (a, 12 ) (b) The graph of DM (a, 10)

Figure 4: Scaling function of the variance of Mn

(a) The graph of DX(a, 12 ) (b) The graph of DX(a, 10)

Figure 5: Scaling function of the variance of Xn

In Figure 3, we consider 10× 10 values of (a, r) in [0, 1]× [0, 1]. Corresponding to
each pair (a, r), we make 15000 independent samples of (Xn,Mn) with n = 104 and
then compute the empirical variances of Xn and Mn.

In Figures 4 and 5, for r = 1
2 and r = 10, we consider 20 values of a ranging in

[0, 1] and make 20000 samples of (Xn,Mn) with n = 104 for each pair (a, r).
The numerical results show that both the variances of Xn and Mn is of order n.

It seems that for all r, the scaling function DX(·, r) increases in a and tends to 1
as a reaches to 1. Meanwhile, the function DM (·, r) might not be increasing in the
neighborhood of a = 1 when r is small, but it does increase for large r.
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