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Abstract

In this paper, we obtain finite estimates and asymptotic formulas for the expected number
of real roots of two classes of random polynomials arising from evolutionary game theory. As
a consequence of our analysis, we achieve an asymptotic formula for the expected number
of internal equilibria in multi-player two-strategy random evolutionary games. Our results
contribute both to evolutionary game theory and random polynomial theory.

1 Introduction

1.1 Motivation from evolutionary game theory and random polynomial
theory

Large random systems, in particular random polynomials and systems of random polynomi-
als, arise naturally in a variety of applications in physics (such as in quantum chaotic dynamics
[3]), biology (such as in theoretical ecology [21], evolutionary game theory and population dynam-
ics [18]), computer science (such as in the theory of computational complexity [31]) and in social
sciences (such as in social/complex networks [23]). They are indispensable in the modelling and
analysis of complex systems in which very limited information is available or where the environ-
ment changes so rapidly and frequently that one cannot describe the payoffs of their inhabitants’
interactions [22, 15, 18, 19, 17]. The study of statistics of equilibria in large random systems
provides important insight into the understanding of the underlying physical, biological and social
system such as the complexity-stability relationship in ecosystems [21, 19, 30, 16], bio-diversity
and maintenance of polymorphism in multi-player multi-strategy games [18], and the learning
dynamics [17]. A key challenge in such study is due to the large (but finite) size of the underlying
system (such as the population in an ecological system, the number of players and strategies in an
evolutionary game and the number of nodes and connections in a social network). Understanding
the behaviour of the system at finite size or characterizing its asymptotic behaviour when the size
tends to infinity are of both theoretical and practical interest, see for instance [29, 27].

In this paper we are interested in the number of internal equilibria in (n + 1)-player two-
strategy random evolutionary games as in [7, 8, 11, 10]. We consider an infinitely large population
that consists of individuals using two strategies, A and B. We denote by y, 0 ≤ y ≤ 1, the frequency
of strategy A in the population. The frequency of strategy B is thus (1 − y). The interaction of
the individuals in the population is in randomly selected groups of (n + 1) participants, that
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is, they interact and obtain their fitness from (n + 1)-player games. In this paper, we consider
symmetric games where the payoffs do not depend on the ordering of the players. Suppose that
ai (respectively, bi) is the payoff that an A-strategist (respectively, B) achieves when interacting
with a group of n other players consisting i (0 ≤ i ≤ n) A strategists and (n− i) B strategists. In
other words, the payoff matrix is given by

Opossing A players 0 1 . . . i . . . n
A a0 a1 . . . ai . . . an
B b0 b1 . . . bi . . . bn

The average payoffs (fitnesses) of strategies A and B are respectively given by

πA =

n∑
i=0

ai

(
n
i

)
yi(1− y)n−i and πB =

n∑
i=0

bi

(
n
i

)
yi(1− y)n−i.

Internal equilibria in (n+1)-player two-strategy games can be derived using the replicator dynamic
approach [18] or the definition of an evolutionary stable strategy, see e.g., [4]. They are those points
0 < y < 1 (note that y = 0 and y = 1 are trivial equilibria in the replicator dynamics) such that
the fitnesses of the two strategies are the same πA = πB , that is

n∑
i=0

ξi

(
n
i

)
yi(1− y)n−i = 0 where ξi = ai − bi.

In the literature, the sequence of the difference of payoffs {ξi}i is called the gain sequence [1, 28].
Dividing the above equation by (1 − y)n and using the transformation x = y

1−y , we obtain the

following polynomial equation for x (x > 0)

Pn(x) :=

n∑
i=0

ξi

(
n
i

)
xi = 0, (1.1)

In random games, the payoff entries {ai}i and {bi} are random variables, thus so are the gain se-
quence {ξi}i. Therefore, the expected number of internal equilibria in a (n+1)-player two-strategy
random game is the same as the expected number of positive roots of the random polynomial Pn,
which is half of the expected number of the real roots of Pn due to the symmetry of the distri-
butions. This connection between evolutionary game theory and random polynomial theory has
been revealed and exploited in recent serie of papers [7, 8, 11, 10]. It has been shown that, if {ξi}i
are i.i.d normal (Gaussian) distributions then [7, 8]

2n

π
√

2n− 3
≤ ENn ≤

2
√
n

π

(
1 + ln 2 +

1

2
ln(n)

)
∀n, (1.2)

where Nn is the number of real roots of Pn. We emphasize that (1.2) is true for all finite group size
n, which is useful for practical purposes, for instance when doing simulations. A direct consequence
of this estimate is the following asymptotic limit

lim
n→∞

lnENn
lnn

=
1

2
. (1.3)

On the other hand, the expected number of real roots of random polynomials has been a topic
of intensive research over the last hundred years. Three most well-known classes studied in the
literature are

(i) Kac polynomials:
∑n
i=0 ξix

i,

(ii) Weyl (or flat) polynomials:
∑n
i=0

1
i!ξix

i,
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(iii) Elliptic (or binomial) polynomials:
∑n
i=0

√(
n
i

)
ξix

i.

When {ξi} are Gaussian distributions, it has been proved, see for instance [12], that

ENn =


2
π ln(n) + C1 + 2

nπ +O(1/n2) for Kac polynomials,
√
n for elliptic polynomials,
√
n
(

2
π + o(1)

)
for Weyl polynomials.

(1.4)

We refer the reader to standard monographs [2, 14] for a detailed account and [24, 6] for recent
developments of the topic. The asymptotic formulas (1.4) are much stronger than the limit (1.3)
because they provide precisely the leading order of the quantity ENn. A natural question arises:
can one obtain an asymptotic formula akin to (1.4) for the random polynomial from random multi-
player evolutionary games? It has been conjectured, in a study on computational complexity, by
Emiris and Galligo [13] and formally shown in [11] that

ENn ∼
√

2n+O(1). (1.5)

In this paper, we rigorously prove generalizations of the asymptotic formula (1.5) and of the finite
group size estimates (1.2) for two more general classes of random polynomials

P (γ)
n (x) =

n∑
i=0

ξi

(
n
i

)γ
xi and P (α,β)

n (x) =

n∑
i=0

(
n+ α
n− i

) 1
2
(
n+ β
i

) 1
2

ξix
i. (1.6)

Here γ > 0, α, β > −1 are given real numbers, {ξi}i=0,...,n are standard normal i.i.d. random
variables. The class of random polynomials Pn arising from evolutionary game theory is a special

case of both P
(γ)
n (when γ = 1) and P

(α,β)
n (when α = β = 0). For general values of α, β and γ,

P
(γ)
n and P

(α,β)
n are related to more complex models in evolutionary game theory where the gain

sequence {ξi}i depends not only on i but also on group size n. An example for such scenarios is in
a public goods game in which the benefit from cooperation are shared among all group members
rather than accruing to each individual [20, 26, 27]. From a mathematical point of view, the class

P
(γ)
n is a natural extension of Pn and covers both Kac polynomials and elliptic polynomials as

special cases (corresponding to γ = 0 and γ = 1
2 respectively). In addition, as previously shown in

[8], Pn is connected to Legendre polynomials. As will be shown in Section 3.1, the class P
(α,β)
n is

intrinsically related to Jacobi polynomials, which contain Legendre polynomials as special cases.

The link between Pn and Legendre polynomials in [8] is extended to that of between P
(α,β)
n and

Jacobi polynomials in the present paper.

1.2 Main results

Throughout this paper, we suppose that {ξi} are i.i.d standard normal distributions. We

denote by EN
(γ)
n and EN

(α,β)
n the expected number of real roots of P

(γ)
n and P

(α,β)
n respectively.

The main results of the present paper are the following theorems.

Theorem 1.1 (Estimates of EN
(α,β)
n for any n). Suppose that α, β > −1.

(1) (estimates in terms of roots of Jacobi polynomial) Let 0 < sn,max < 1 be the maximum root
of the Jacobi’s polynomial of degree n as defined in (3.1) . Then

√
n

1− sn,max
1 + sn,max

≤ EN (α,β)
n ≤

√
n

1 + sn,max
1− sn,max

. (1.7)
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(2) (explicit estimates for finite n) For all α = β > −1, it holds that

2

π

√
n(n+ 2α)

2n+ 2α− 1
≤ EN (α,α)

n ≤ 2
√
n

π

(
1 + ln(2) +

1

2
log

n+ α

1 + α

)
. (1.8)

Theorem 1.1, which combines Theorems 3.2 and 3.3, provides lower and upper bounds for

EN
(α,β)
n in terms of the group size n. It is only applicable to the class Pα,βn since our proof makes

use of a connection between Pα,βn and Jacobi polynomials. In addition, in the second part, we use

a symmetry condition on the coefficients of the polynomial P
(α,β)
n which requires α = β. The next

result characterizes the asymptotic limits, as the group size n tends to infinity, of both EN
(γ)
n and

EN
(α,β)
n .

Theorem 1.2 (Asymptotic behaviour as n→ +∞). We have

EN (γ)
n ∼

√
2γn(1 + o(1)) and EN (α,β)

n ∼
√

2n(1 + o(1)) as n→∞. (1.9)

As a consequence, there is a phase transition (discontinuity) in the expected number of roots of

EN
(γ)
n as a function of γ as n→∞

EN (γ)
n ∼

{
2
π ln(n) for γ = 0,
√

2γn for γ > 0.
(1.10)

Our study on the expected number of real roots of P
(γ)
n and P

(α,β)
n contributes to both

evolutionary game theory and random polynomial theory. From an evolutionary game theory
point of view, our results show surprisingly that in random multiplayer evolutionary games, one
expects much less number of equilibria, which is proportional to the square root of the group size,
than in deterministic games (recalling that the expected number of internal equilibria is the same
as the expected number of positive roots, which is half of the expected number of real roots).
In addition, since for a polynomial equation, the number of stable equilbria is half of that of
equilibria, our results also apply to stable equilibria. From a random polynomial theory point of
view, the present paper introduces two meaningful classes of random polynomials that have not

been studied in the literature. In particular, the fact that the asymptotic behavour of EN
(α,β)
n is

independent from α and β is rather unexpected and is interesting on its own right. In addition
the phase transition phenomenon (1.10), to the best of our knowledge, is shown for the first time.

1.3 Organization of the paper

The rest of the paper is organized as follows. In Section 2 we recall the Kac-Rice formula for
computing the expected number of real roots of a random polynomial. In Section 3, we establish

connections between P
(α,β)
n and Jacobi polynomials and prove Theorem 1.1. Proof of Theorem 1.2

is presented in Section 4 and Section 5. In Section 6 we provide further discussions and outlook.
Finally, detailed proofs of technical lemmas are given in Appendix 7.

2 Kac-Rice formula

In this section, we recall the celebrated Kac-Rice formula for computing the expected number
of real roots of a random polynomials, which is the starting point of our analysis. Consider a
general random polynomial

pn(x) =

n∑
i=0

aiξix
i.



5

Let {ξ} are standard i.i.d. random variables. Let ENn(a, b) be the expected number of real roots
of pn in the interval (a, b). Then the Kac-Rice formula is given by, see for instance [12]

ENn(a, b) =
1

π

∫ b

a

√
An(x)Mn(x)−B2

n(x)

Mn(x)
dx (2.1)

where
Mn(x) = var(pn(x)), An(x) = var(p′n(x)), B = cov(pn(x)p′n(x)).

We can find Mn, An and Bn explicitly in terms of the coefficients {ai} of pn as follows. Since {ξi}
are standard i.i.d. random variables, we have

p′n(x) =

n∑
i=0

aiiξix
i−1, pn(x)2 =

n∑
i,j=0

aiajξiξjx
i+j , pn(x)p′n(x) =

n∑
i,j=0

aiajiξiξjx
i+j−1,

E(pn(x)) =

n∑
i=0

aix
i
E(ξi) = 0, E(p′n(x)) = 0

Mn(x) = var(pn(x)) = E(p2n(x))− (E(pn(x)))2 =

n∑
i,j=0

aiajx
i+j

E(ξiξj) =

n∑
i=0

a2ix
2i,

An(x) = var(p′n(x)) = E((p′n(x))2)− (E(p′n(x)))2 =

n∑
i,j=0

aiajijx
i+j−2

E(ξiξj) =

n∑
i=0

a2i i
2x2(i−1),

Bn(x) = cov(pn(x)p′n(x)) = E(pn(x)p′n(x)) =

n∑
i,j=0

iaiajx
i+j

E(ξiξj) =

n∑
i=0

i a2ix
2i−1.

In conclusion, we have

Mn(x) =

n∑
i=0

a2ix
2i, An(x) =

n∑
i=0

a2i i
2x2(i−1), Bn(x) =

n∑
i=0

i a2ix
2i−1. (2.2)

Furthermore, the following relations between Mn, An and Bn, which follow directly from the above
formulas, will also be used in the subsequent sections:

Bn(x) =
1

2
M ′n(x), An(x) =

1

4x

(
xM ′n(x)

)′
,

An(x)Mn(x)−B2
n(x)

M2
n(x)

=
1

4

(M ′′n (x)

Mn(x)
+

1

x

M ′n(x)

Mn(x)
−
(M ′n(x)

Mn(x)

)2)
=

1

4

( 1

x

M ′n(x)

Mn(x)
+
(M ′n(x)

Mn(x)

)′)
=

1

4x

(
x
M ′n(x)

Mn(x)

)′
,

where the prime ′ notation denotes a derivative with respect to the variable x.

Let EN
(γ)
n (a, b) and EN

(α,β)
n (a, b) be respectively the expected number of real roots of P

(γ)
n

and of P
(α,β)
n in a given interval [a, b]. Applying (2.1)-(2.2) to P

(γ)
n and to P

(α,β)
n , we obtain the

following common formula for EN
(γ)
n (a, b) and EN

(γ)
n (a, b) but with different triples {An, Bn,Mn}

EN (∗)
n (a, b) =

1

π

∫ b

a

√
An(x)Mn(x)−B2

n(x)

Mn(x)
dx, (2.3)

where (∗) ∈ {(γ), (α, β)}. For EN
(γ)
n (a, b):

Mn(x) =

n∑
k=0

(
n
k

)2γ

x2k, An(x) =

n∑
k=0

k2
(
n
k

)2γ

x2(k−1), Bn(x) =

n∑
k=0

k

(
n
k

)2γ

x2k−1. (2.4)
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For EN
(α,β)
n :

Mn(x) =

n∑
k=0

(
n+ α
n− k

)(
n+ β
k

)
x2k, An(x) =

n∑
k=0

k2
(
n+ α
n− k

)(
n+ β
k

)
x2(k−1),

Bn(x) =

n∑
k=0

k

(
n+ α
n− k

)(
n+ β
k

)
x2k−1. (2.5)

By writing EN
(γ)
n or EN

(α,β)
n it becomes clear which class of random polynomials is under con-

sideration; therefore, for notational simplicity, we simply write {An, Bn,Mn} without superscripts
(γ) or (α, β). The above Kac-Rice formulas are starting points for our analysis. The difficulty
now is to analyze the integrand in (2.3) for each class of random polynomials.

3 Finite group-size estimates

In this section, we show a connection between the class P
(α,β)
n and Jacobi polynomials which

extends that of between Pn and Legendre polynomials in [8]. Using this connection, we will prove

Theorem 1.1 on the estimates of EN
(α,β)
n for finite n.

3.1 Connections to Jacobi polynomials and finite estimates of EN
(α,β)
n

We recall that the Jacobi polynomial is given by

J (α,β)
n (x) =

n∑
i=0

(
n+ α
n− i

)(
n+ β
i

)(x− 1

2

)i(x+ 1

2

)n−i
. (3.1)

If α = β, Jacobi’s polynomial J
(α,β)
n (x) is called an ultraspherical polynomial. Legendre’s polyno-

mial is a special case of Jacobi’s polynomial when α = β = 0. It is well-known that the zeros of

J
(α,β)
n are real, distinct and are located in the interior of the interval [−1, 1] [32]. The following

lemma links M
(α,β)
n to Jacobi polynomials. Its proof is given in Appendix 7.

Lemma 3.1. It holds that

M (α,β)
n (x) = (1− x2)nJ (α,β)

n

(1 + x2

1− x2
)
. (3.2)

The following theorem provides estimates of E(NR) in terms of the maximum root of the
Jacobi polynomial.

Theorem 3.2. Let 0 < sn,max < 1 be the maximum root of the Jacobi’s polynomial of degree n.

Then the expected number of real roots, EN
(α,β)
n , of P

(α,β)
n satisfies

√
n

1− sn,max
1 + sn,max

≤ EN (α,β)
n ≤

√
n

1 + sn,max
1− sn,max

. (3.3)

Proof. Let {−1 < s1 < s2 < . . . < sn < 1} be the zeros of the Jacobi polynomial of degree n. Note
that sk = −sn+1−k < 0 for k = 1, . . . , bn2 c. We deduce from Lemma 3.1 that Mn has 2n distinct

zeros given by {±i
√

1−sk
1+sk

, 1 ≤ k ≤ n} which are purely imaginary. Thus Mn can be written as

Mn(x) = mn

n∏
k=1

(x2 + rk), (3.4)
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where mn is the leading coefficient and for 1 ≤ k ≤ n

rk =
1− sk
1 + sk

> 0. (3.5)

It follows from the properties of {sk} that r1 > r2 > . . . > rn > 0 and rkrn+1−k = 1 for
k = 1, . . . , bn2 c. Using the representation (3.4) of Mn we have

M ′n(x) = 2xmn

n∑
k=1

∏
j 6=k

(x2 + rj),
M ′n(x)

Mn(x)
=

n∑
k=1

2x

x2 + rk
,
(
x
M ′n(x)

Mn(x)

)′
=

n∑
k=1

4xrk
(x2 + rk)2

.

Hence the density function can be represented as

fn(x)2 =
1

4x

(
x
M ′n(x)

Mn(x)

)′
=

n∑
k=1

rk
(x2 + rk)2

. (3.6)

Since 0 < rn < . . . < r1, we deduce that

n
rn

(x2 + r1)2
≤ fn(x)2 =

n∑
k=1

rk
(x2 + rk)2

≤ n r1
(x2 + rn)2

, (3.7)

that is
√
n

√
rn

x2 + r1
≤ fn(x) ≤

√
n

√
r1

x2 + rn
.

Since

EN (α,β)
n =

1

π

∫ ∞
−∞

fn(x) dx

we have
1

π

∫ ∞
−∞

√
nrn

x2 + r1
dx ≤ EN (α,β)

n ≤ 1

π

∫ ∞
−∞

√
nr1

x2 + rn
dx,

that is, since
∫∞
−∞

1
x2+a dx = π√

a
for a > 0,

√
n

√
rn
r1
≤ EN (α,β)

n ≤
√
n

√
r1
rn
.

Since r1rn = 1, the above expression can be written as

√
nrn ≤ EN (α,β)

n ≤
√
nr1.

From (3.5), we obtain the following estimate for EN
(α,β)
n in terms of roots of Jacobi’s polynomials

√
n

1− sn
1 + sn

=
√
n

1 + s1
1− s1

≤ EN (α,β)
n ≤

√
n

1− s1
1 + s1

=
√
n

1 + sn
1− sn

.

This completes the proof of the theorem.

The following theorem provides an explicit finite estimate for EN
(α,β)
n in the ultraspherical

case. It generalizes a previous result for α = 0 (see (1.2)) obtained in [8].

Theorem 3.3. Consider the ultraspherical case (i.e., α = β). We have

2

π

√
n(n+ 2α)

2n+ 2α− 1
≤ EN (α,α)

n ≤ 2
√
n

π

(
1 + ln(2) +

1

2
log

n+ α

1 + α

)
. (3.8)

As a consequence,

lim
n→+∞

ln(EN
(α,α)
n )

ln(n)
=

1

2
. (3.9)
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Proof. Since α = β changing x to 1/x and x to −x leaves the distribution of the coefficients of

P
(α,α)
n (x) invariant. Thus we obtain that

EN (α,β)
n = 4EN (α,β)

n (−∞,−1) = 4EN (α,β)
n (−1, 0) = 4EN (α,β)

n (0, 1) = 4EN (α,β)
n (1,∞).

It follows from (3.6) that fn(x) is decreasing on (0,+∞). Thus for any x ∈ [0, 1], we have

fn(0) =

√
n(n+ α)

1 + α
≥ fn(x) ≥ fn(1) =

1

2

√
n(n+ 2α)

2n+ 2α− 1
. (3.10)

In addition, since (x2 + rk)2 ≥ 4rkx
2 for all x > 0, we also deduce from (3.6) that

fn(x)2 ≤ n

4x2
for x > 0,

that is

fn(x) ≤
√
n

2x
for x > 0. (3.11)

Using the second inequality in (3.10) we obtain the lower bound for EN
(α,β)
n as follows

EN (α,β)
n =

4

π

∫ 1

0

fn(x) dx ≥ 4

π

∫ 1

0

fn(1) dx =
4fn(1)

π
=

2

π

√
n(n+ 2α)

2n+ 2α− 1
.

Using the first inequality in (3.10) and (3.11) we obtain the following upper bound for EN
(α,β)
n

for any 0 < γ < 1

EN (α,β)
n =

4

π

∫ 1

0

fn(x) dx =
4

π

(∫ γ

0

fn(x) dx+

∫ 1

γ

fn(x) dx
)

≤ 4

π

(∫ γ

0

fn(0) dx+

∫ 1

γ

√
n

2x
dx
)

=
4

π

(
γ

√
n(n+ α)

1 + α
−
√
n

2
ln(γ)

)
.

We choose γ ∈ (0, 1) that minimizes the right-hand side of the above expression. That is

γ =
1

2

√
1 + α

n+ α
,

which gives

EN (α,β)
n ≤ 2

√
n

π

(
1 + ln(2) +

1

2
log

n+ α

1 + α

)
.

This completes the proof of the theorem.

4 Asymptotic behaviour of EN
(γ)
n

In this section, we prove Theorem 1.2 obtaining asymptotic formulas for EN
(γ)
n .

Strategy of the the proof. Let us first explain the main idea of the proof since it requires a
rather delicate analysis. The first observation is that, similarly as the proof of Theorem 3.3, since

changing x to 1/x and x to −x leaves the distribution of the coefficients of P
(γ)
n (x) invariant, we

have
EN (γ)

n (−∞,−1) = EN (γ)
n (−1, 0) = EN (γ)

n (0, 1) = EN (γ)
n (1,∞).

Thus EN
(γ)
n = 4EN

(γ)
n (0, 1) and it suffices to analyze EN

(γ)
n (0, 1). We then split the interval

(0, 1) further into two smaller intervals (0, η) and (η, 1), EN
(γ)
n (0, 1) = EN

(γ)
n (0, η) + EN

(γ)
n (η, 1)
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for a carefully chosen 0 < η < 1 (which may depend on n) such that EN
(γ)
n (0, η) is negligible. To

select a suitable η, we will use Jensen’s inequality (see Lemma 4.1) that provides an upper bound
on the number of roots of an analytic function (including polynomials) in an open ball. As such,
we obtain η = n−3γ/4 and write

EN (γ)
n (0, 1) = EN (γ)

n (0, n−3γ/4) + EN (γ)
n (n−3γ/4, 1).

In fact as will be shown, EN
(γ)
n (0, n−3γ/4) is of order o(

√
n), which is negligible (see Proposition

4.2). The next step is to obtain precisely the leading order in EN
(γ)
n (n−3γ/4, 1). We recall that

by Kac-Rice formula (see Section 2) we have

EN (γ)
n (n−3γ/4, 1) =

∫ 1

n−3γ/4

√
An(x)Mn(x)−B2

n(x)

Mn(x)
dx (4.1)

where An, Bn and Mn are given in (2.4). Therefore, we need to understand thoroughly the
asymptotic behaviour of An(x)Mn(x)−B2

n(x) and of Mn(x) in the interval [n−3γ/4, 1]. This will
be the content of Proposition 4.3. Its proof requires a series of technical lemmas and will be
presented in Appendix 7.

We now follow the strategy, starting with Jensen’s inequality.

Lemma 4.1 (Jensen’s inequality). Let f be an entire complex function f and R, r > 0. The
number of roots of f in B(r) = {z ∈ C : |z| ≤ r}, denoted by Nf (r), satisfies

Nf (r) ≤
log MR

Mr

log R2+r2

2Rr

, (4.2)

where Mt = max|z|≤t |f(z)| for t > 0.

An elementary proof of Jensen’s inequality can be found in [25, Section 15.5]. Now we show

that EN
(γ)
n (0, n−3γ/4) is negligible as an interesting application of Jensen’s inequality.

Proposition 4.2. We have

EN (γ)
n (0, n−3γ/4) = o(

√
n).

Proof. We aim to apply (4.2) to P
(γ)
n (z), which is indeed an entire function. Let r = n−3γ/4 and

R = n−2γ/3. Then

log
R2 + r2

2Rr
� log n. (4.3)

Moreover,

Mr = max
|z|≤r

|P (γ)
n (z)| ≥ |P (0)| = |ξ0|, (4.4)

and

MR = max|z|≤R |P
(γ)
n (z)| ≤

n∑
i=0

|ξi|Ri
(
n

i

)γ
≤ max

0≤i≤n
|ξi| ×

n∑
i=0

(
n∑
i=0

Ri/γ
(
n

i

))γ
≤ n max

0≤i≤n
|ξi| × (1 +R1/γ)nγ

≤ n max
0≤i≤n

|ξi| × exp(γO(n1/3)). (4.5)

We define the event

E =
{

max
1≤i≤n

|ξi| ≤ n
}
∩ {n−1 ≤ |ξ0| ≤ n}.
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Since {ξi}i=0,...,n are standard normal i.i.d. random variables,

P(E) ≥ 1−O(1/n). (4.6)

By combining (4.2)–(4.5), we obtain

N (γ)
n (r)1(E) ≤ Cn1/3

log n
, (4.7)

for some positive constant C, where N
(γ)
n (r) is the number of roots of P

(γ)
n in the ball B(r) defined

above. We notice also that N
(γ)
n (r) ≤ n. Therefore, by (4.6) and (4.7)

EN (γ)
n (0, n−3γ/4) ≤ EN (γ)

n (r) = E[N (γ)
n (r)1(E)] + E[N (γ)

n (r)1(Ec)]

≤ Cn1/3

log n
+ nP(Ec) ≤ Cn1/3.

As a consequence, we obtain
EN (γ)

n (0, n−3γ/4) = o(
√
n). (4.8)

As already mentioned, the following proposition characterizes precisely the asymptotic be-
haviour of AnMn − B2

n and of Mn, the two quantities appearing in (4.1). The proof of this
proposition is presented in Appendix 7.

Proposition 4.3. If 1 ≥ x ≥ (logn)4γ

nγ then

Mn(x) =

n∑
i=0

(
n

i

)2γ

x2i =

(
n

iγ,x

)2γ

x2iγ,x × (
√
π + o(1))

√
nx1/γ

γ(1 + x1/γ)2
, (4.9)

and

An(x)Mn(x)−B2
n(x) =

(
n

iγ,x

)2γ

x4iγ,x−2 ×
(π

2
+ o(1)

)( nx1/γ

γ(1 + x1/γ)2

)2

, (4.10)

where iγ,x = [ntγ,x] with tγ,x = x1/γ

1+x1/γ .

We are now ready to prove the asymptotic behaviour of EN
(γ)
n (the first part of (1.9) in

Theorem 1.2).

Proof of asymptotic formula of EN
(γ)
n . From Proposition 4.2, Proposition 4.3 and Kac-Rice for-

mula, we get

EN (γ)
n (0, 1) = EN (γ)

n (0, n−3γ/4) + EN (γ)
n (n−3γ/4, 1) =

1

π

∫ 1

n−3γ/4

√
An(x)Mn(x)−B2

n(x)

Mn(x)
dx+ o(

√
n)

=

√
n√
2π

∫ 1

0

x
1
2γ−1

√
γ
(
1 + x1/γ

)dx+ o(
√
n) =

√
n√
2π
×

2
√
γπ

4
+ o(
√
n) =

√
2γn

4
+ o(
√
n),

where the last line follows from the change of variable u = x1/(2γ) and the equality

∫ 1

0

du

1 + u2
=
π

4
.

Hence
EN (γ)

n = 4EN (γ)
n (0, 1) =

√
2γn+ o(

√
n).

The proof is complete.
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5 Asymptotic behaviour of EN
(α,β)
n

This section deals with the asymptotic formula of EN
(α,β)
n (the second part of (1.9) in The-

orem 1.2). The strategy of the proof is as follows. We will first relate the asymptotic behaviour

of EN
(α,β)
n for general (α, β) to that of EN

(0,0)
n for α = β = 0. We then exploit the relation that

EN
(0,0)
n = EN

(1)
n and use the result from the previous section.

The negligible interval [0, n−3/4]. We use the same argument as in Proposition 4.2. The
estimate for MR can be replaced as

MR = max
|z|≤R

|P (α,β)
n (z)| ≤

n∑
i=0

|ξi|Ri
(
n+ α

n− i

) 1
2
(
n+ β

i

) 1
2

≤ max
0≤i≤n

|ξi|(n+ |α|)|α|(n+ |β|)|β| ×
n∑
i=0

Ri
(
n

i

)
≤ max

0≤i≤n
|ξi| × exp(O(n1/3)),

where for the second line we used the inequality that
(
n+α
k

)
≤
(
n
k

)
(n+ |α|)2|α|. Then by repeating

the same argument in Proposition 4.2, we can show that

E[N (α,β)
n (0, n−3/4)] = o(

√
n). (5.1)

The main interval [n−3/4, 1]. We first study the coefficients. It follows from Stirling formula
that as i ∧ (n− i)→∞,

a
(α,β)
i =

(
n+ α

n− i

)(
n+ β

i

)
= (1 + o(1))

√
(n+ α)(n+ β)

4π2i(i+ α)(n− i)(n+ β − i)
exp

(
(n+ α)I( α+in+α ) + (n+ β)I( i

n+β )
)

= (1 + o(1))
n

2πi(n− i)
exp

(
(n+ α)I( α+in+α ) + (n+ β)I( i

n+β )
)
,

where I(t) = −t log t+ (t− 1) log(1− t). By Taylor expansion,

I( i+αn+α ) = I( in ) + I ′( in )

(
i+ α

n+ α
− i

n

)
+O(I ′′(i/n))n−2

= I( in ) + I ′( in )
α(n− i)
n2

+O( 1
i(n−i) ).

Note that I ′′(t) = −t−1(1− t)−1. Therefore, as i ∧ (n− i)→∞,

(n+ α)I( i+αn+α )− nI( in ) = (1 + o(1))

(
αI( in ) + αI ′( in )

(n− i)
n

)
. (5.2)

Similarly,

(n+ β)I( i
n+β )− nI( in ) = (1 + o(1))

(
βI( in )− βI ′( in )

i

n

)
.

Hence,

a
(α,β)
i = (1 + o(1))

n

2πi(n− i)
exp

(
(α+ β)I( in ) + I ′( in )

α(n− i)− βi
n

)
exp(2nI( in )),
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so that

a
(α,β)
i = (1 + o(1)) exp

(
(α+ β)I( in ) + I ′( in )

α(n− i)− βi
n

)
a
(0,0)
i

= (1 + o(1))h(α,β)(
i
n )a

(0,0)
i ,

where for t ∈ (0, 1)
h(α,β)(t) = (α+ β)I(t) + I ′(t)(α(1− t)− βt).

Suppose that x ∈ [n−3/4, 1]. In the case (α, β) = (0, 0), or equivalently the case γ = 1, in

Lemma 7.2 below, we show that the terms a
(0,0)
i xi attain the maximum around i = ix ± i3/4x with

ix = [nx/(x + 1)], and the other terms are negligible. Here, the asymptotic behavior of a
(α,β)
i

differs from that of a
(0,0)
i only on the term h(α,β)(

i
n ) which is minor compared with a

(0,0)
i . Hence,

using exactly the same analysis in Lemma 7.2, we can also show that these terms a
(α,β)
i xi when

|i− ix| ≥ i3/4x are negligible. Therefore,

M (α,β)
n (x) = (1 + o(1))

∑
i:|i−ix|≤i3/4x

a
(α,β)
i xi = (1 + o(1))

∑
i:|i−ix|≤i3/4x

h(α,β)(
i
n )a

(0,0)
i xi

= (1 + o(1))h(α,β)(
x
x+1 )

∑
i:|i−ix|≤i3/4x

a
(0,0)
i xi = (1 + o(1))h(α,β)(

x
x+1 )M (0,0)

n (x),

since when |i− ix| ≤ i3/4x , we have h(α,β)(
i
n ) = (1 + o(1))hα,β( x

x+1 ). Similarly,

A(α,β)
n (x) = (1 + o(1))h(α,β)(

x
x+1 )A(0,0)

n (x), B(α,β)
n (x) = (1 + o(1))h(α,β)(

x
x+1 )B(0,0)

n (x).

Thus for x ∈ [n−3/4, 1],
f (α,β)n (x) = (1 + o(1))f (0,0)n (x),

and hence

EN (α,β)
n (n−3/4, 1) = (1 + o(1))EN (0,0)

n (n−3/4, 1) = (1 + o(1))

√
2n

4
. (5.3)

Combining (5.1) and (5.3), we obtain that EN
(α,β)
n (0, 1) = (1 + o(1))

√
2n
4 , and hence

EN (a,b)
n = 4EN (a,b)

n (0, 1) = (1 + o(1))
√

2n.

6 Summary and outlook

In this paper, we have proved asymptotic formulas for the expected number of real roots
of two general class of random polynomials. As a consequence, we have obtained an asymptotic
formula for the expected number of internal equilibria in multi-player two-strategy random evolu-
tionary games. Our results deepen the connection between evolutionary game theory and random
polynomial theory which was discovered previously in [8, 10]. Below we discuss some important
directions for future research.

Extensions to other models in EGT. The class of random polynomials that we studied in this
paper arises from the replicator dynamics. It would be interesting to generalize our results to
more complex models in evolutionary game theory and population dynamics. The most natural
model to study next is the replicator-mutator dynamics where mutation is present. Equilibria for
the replicator-mutator dynamics are positive roots of a much more complicated class of random
polynomials, which depend on the mutation. Studying the effect of mutation on the equilibrium
properties, in particular on the expected number of internal equilibria, is a challenging problem,
see [9] for an initial attempt. One can also ask whether our results can be extended to multi-
player multi-strategy evolutionary games whose equilibria are positive roots of a system of random
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polynomials. In this case, the assumption that the gain sequence is independent is not realistic
from evolutionary game theory’s point of view (see [7, Remark 4] for a detailed explanation).
Therefore, one needs to deal with a dependent system of random polynomials, which is very
challenging.

Universality and other statistical properties. The assumption that the random variables
{ξi}ni=0 are Gaussian distributions is crucial in the present paper. It allowed us to employ the
fundamental tool of Kac-Rice formula in Section 2. What happens if {ξi} are not Gaussian? Very
recently, it has been shown that universality phenomena hold for three classes of random polyno-
mials: Kac polynomials, elliptic polynomials, and Weyl polynomials (recall the Introduction for
their explicit expressions) [33, 24, 6]. The universality results state that the expectation of the
number of real roots of these classes of random polynomials depend only on the mean and variance
of the coefficients {ξi} but not on their type of the distributions. It would be very interesting to
obtain such a universality theorem for the class of random polynomials arising from evolutionary
game theory studied in this paper. The distributions of the roots in different classes are different,
and the methods to study them need to be tailored to each of the class. It remains elusive to us
whether the techniques in [33, 24, 6] can be applied to the class of random polynomials in this
paper. Furthermore, studying other statistical properties such as central limit theorem and the
distribution of the number of equilibria also demands future investigations, see for instance [5] for
a characterization of the probability that a multiplayer random evolutionary random game has no
internal equilibria.

7 Appendix

In this appendix, we present detailed computations and proofs of technical results used in
previous sections.

7.1 Proof of Lemma 3.1 and detailed computations of fn(0) and fn(1),

In this section, we prove Lemma 3.1 and compute fn(0) and fn(1).

Proof of Lemma 3.1. It follows from the definition of Jacobi polynomial (3.1) that for any q ∈ R

Jα,βn

(
1 + q

1− q

)
=

1

2n

n∑
i=0

(
n+ α
n− i

)(
n+ β
i

)(
1 + q

1− q
− 1

)i(
1 + q

1− q
+ 1

)n−i
=

1

2n

n∑
i=0

(
n+ α
n− i

)(
n+ β
i

)(
2q

1− q

)i(
2

1− q

)n−i
=

1

(1− q)n
n∑
i=0

(
n+ α
n− i

)(
n+ β
i

)
qn−i.

Taking q = x2 yields the statement of Lemma 3.1.

Next we compute fn(0) and fn(1). We have

Mn(0) =

(
n+ α
n

)
, An(0) =

(
n+ α
n− 1

)(
n+ β

1

)
= (n+ β)

(
n+ α
n− 1

)
, Bn(0) = 0. (7.1)

Thus

fn(0)2 =
An(0)Mn(0)−Bn(0)2

Mn(0)2
=
An(0)

Mn(0)
=
n(n+ β)

α+ 1
,

that is

fn(0) =

√
n(n+ β)

1 + α
.
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Next we compute fn(1). We have

Mn(1) =

n∑
i=0

(
n+ α
n− i

)(
n+ β
i

)
=

(
2n+ α+ β

n

)
Using the following formula for the derivative of Jacobi polynomials [32, Section 4.5]

(2n+ α+ β)(1− x2)
d

dx
J (α,β)
n (x)

= −n
(

(2n+ α+ β)x+ β − α
)
J (α,β)
n (x) + 2(n+ α)(n+ β)J

(α,β)
n−1 (x)

and Lemma 3.1 we obtain the following formula for the derivative of Mα,β
n (x).

x(2n+α+β)M ′n(x) =
(
n(2n+α+β)+β−α

)
M (α,β)
n (x)−2(1−x2)(n+α)(n+β)M

(α,β)
n−1 (x). (7.2)

Applying (7.2) for x = 1, we obtain

Bn(1) =
1

2
M ′n(1) =

n(2n+ α+ β) + β − α)Mn(1)

2(2n+ α+ β)
=

1

2

(
n+

β − α
2n+ α+ β

)(2n+ α+ β
n

)
.

Taking derivative of (7.2) we have

(2n+ α+ β)(M ′n(x) + xM ′′n (x)) = (n(2n+ α+ β) + β − α)M ′n(x)

− 2(n+ α)(n+ β)
[
− 2xMn−1(x) + (1− x2)M ′n−1(x)

]
.

It follows that

An(1) =
1

4
(M ′n(1) +M ′′n (1))

=
1

4(2n+ α+ β)

[
(n(2n+ α+ β) + β − α)M ′n(1) + 4(n+ α)(n+ β)Mn−1(1)

]
=

1

4

(
n+

β − α
2n+ α+ β

)2(2n+ α+ β
n

)
+

(n+ α)(n+ β)

2n+ α+ β

(
2n+ α+ β − 2

n− 1

)
.

Hence

fn(1) =

√
An(1)Mn(1)−Bn(1)2

Mn(1)

=

√
(n+ α)(n+ β)

2n+ α+ β

√√√√√√√
(

2n+ α+ β − 2
n− 1

)
(

2n+ α+ β
n

)

=
1

2n+ α+ β

√
n(n+ α)(n+ β)(n+ α+ β)

2n+ α+ β − 1
.

In particular, when α = β,

fn(1) =
1

2

√
n(n+ 2α)

2n+ 2α− 1
.

7.2 Proof of Proposition 4.3

In this section we prove Proposition 4.3. The proof will be established after a series of technical
lemmas. We start with the following lemma that provides an estimate for a power of the binomial
coefficient, which is a key factor appearing in the expressions of An, Bn and Mn.
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Lemma 7.1. For 0 < t < 1and x > 0 we define I(t) := t log 1
t + (1 − t) log 1

1−t and Jγ,x(t) :=
γI(t) + t log x. Then(

n
i

)γ
xi =

(
n

2πi(n− i)

)γ/2(
1 +O

(
1

i
+

1

n− i

))γ
enJγ,x(

i
n ). (7.3)

Proof of Lemma 7.1. It follows from Stirling formula

i! =
√

2πi(1 +O(i−1))

(
i

e

)i
that (

n
i

)
=

√
n

2πi(n− i)

(
1 +O

(
1

i
+

1

n− i

))
enI(

i
n ),

where

I(t) = t log
1

t
+ (1− t) log

1

1− t
Therefore, (

n
i

)γ
xi =

(
n

2πi(n− i)

)γ/2(
1 +O

(
1

i
+

1

n− i

))γ
enJγ,x(

i
n ),

which is the statement of the lemma.

Lemma 7.2. We define

tγ,x :=
x1/γ

1 + x1/γ
and iγ,x := bntγ,xc, (7.4)

We note that tγ,x is the unique solution of the equation J ′γ,x(t) = 0, where

J ′γ,x(t) = γ log
1− t
t

+ log x and J ′′γ,x(t) =
−γ

t(1− t)
. (7.5)

Assume that 1 ≥ x ≥ (log n)4γ/nγ .

a. If |i− iγ,x| ≥ i3/4γ,x then (
n
i

)γ
xi(

n
iγ,x

)γ
xiγ,x

≤ 1

n10
.

b. If |i− iγ,x| < i
3/4
γ,x then(

n
i

)γ
xi(

n
iγ,x

)γ
xiγ,x

=

(
1 +O

(
1

log n

))
exp

{[
J ′′γ,x (tγ,x) +O

(
(ntγ,x)3/4

nt2γ,x

)]
(i− iγ,x)2

2n

}
.

Proof of Lemma 7.2. a. Since

(
n

i

)
≤ exp(nI(i/n)), using (7.3) we have

(
n
i

)γ
xi(

n
iγ,x

)γ
xiγ,x

≤ (2πiγ,x)γ/2 exp (n [Jγ,x(i/n)− Jγ,x(iγ,x/n)])

≤ (2πiγ,x)γ/2 exp

(
n

[
Jγ,x

(
iγ,x ± i3/4γ,x

n

)
− Jγ,x(iγ,x/n)

])
,
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where the second lines follows from the fact that the function Jγ,x(t) is concave and attains

maximum at tγ,x. By Taylor expansion, there exists θ ∈
(
iγ,x−i3/4γ,x

n ,
iγ,x+i

3/4
γ,x

n

)
such that

Jγ,x

(
iγ,x ± i3/4γ,x

n

)
− Jγ,x

(
iγ,x
n

)
=
±i3/4γ,x

n
J ′γ,x

(
iγ,x
n

)
+ J ′′γ,x(θ)

i
3/2
γ,x

2n2
.

Notice that∣∣∣J ′γ,x( iγ,xn
) ∣∣∣ =

∣∣∣J ′γ,x( iγ,xn
)
− J ′γ,x (tγ,x)

∣∣∣ ≤ sup

y∈(
iγ,x
n ,tγ,x)

|J ′′γ,x(y)|
∣∣∣ iγ,x
n
− tγ,x

∣∣∣
≤ 1

n
sup

y∈(
iγ,x
n ,tγ,x)

∣∣∣ −γ
y(1− y)

∣∣∣ ≤ C

nx1/γ
. (7.6)

Combining this with the fact that

J ′′γ,x(θ) =
−γ

θ(1− θ)
≤ −γ

θ
≤ −nγ
iγ,x + i

3/4
γ,x

≤ −cn
iγ,x

,

we get that for n large enough,(
n
i

)γ
xi(

n
iγ,x

)γ
xiγ,x

≤ (2πiγ,x)γ/2 exp

(
Ci3/4γ,x

nx1/γ − ci
1/2
γ,x

)
≤ (2πn)γ/2 exp

(
−c′(log n)2

)
≤ 1

n10
,

where in the last line we use the estimate iγ,x ' nx1/γ = (log n)4. This ends the proof of Part a.

b. Suppose that |i− iγ,x| < i
3/4
γ,x . By using (7.3) and Taylor expansion,(

n
i

)γ
xi(

n
iγ,x

)γ
x2γ,x

=

[
(1 +O(i−1γ,x))

iγ,x(n− iγ,x)

i(n− i)

]γ/2
exp

(
n

[
Jx

(
i

n

)
− Jx

(
ix
n

)])
=

(
1 +O

(
1

log n

))
exp

(
n

[
J ′γ,x

(
iγ,x
n

)
(i− iγ,x)

n
+ J ′′γ,x

(
iγ,x
n

)
(i− iγ,x)2

2n2
+ J ′′′γ,x (θ)

(i− iγ,x)3

6n3

])
,

for some θ ∈ (
iγ,x
n , in ).

Observe that

•
∣∣∣J ′γ,x( iγ,xn

) ∣∣∣ ≤ C ′

nx1/γ
≤ C

iγ,x
as in the proof of Part a.

• J ′′′γ,x(y) = O(y−2) for all y ∈ R. Therefore J ′′′γ,x(θ) = O(t−2γ,x).

• J ′′γ,x

(
iγ,x
n

)
= J ′′x (tγ,x) +O

(
1

t2γ,x

)(
iγ,x
n
− tγ,x

)
= J ′′x (tγ,x) +O

(
1

nt2γ,x

)
.

Combining these estimates,

n

[
Jx

(
i

n

)
− Jx

(
ix
n

)]
= O

(
i
3/4
γ,x

iγ,x

)
+

[
J ′′γ,x (tγ,x) +O

(
1

nt2γ,x

)
+O

(
1

t2γ,x

)
i− iγ,x
n

]
(i− iγ,x)2

2n

= O
(
i−1/4γ,x

)
+

[
J ′′γ,x (tγ,x) +O

(
(ntγ,x)3/4

nt2γ,x

)]
(i− iγ,x)2

2n
.

Then Part b. follows.
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Lemma 7.3. We have

An(x)Mn(x)−Bn(x)2 =
1

2

n∑
i,j=0

(i− j)2
(
n

i

)2γ(
n

j

)2γ

x2(i+j−1). (7.7)

Proof of Lemma 7.3. Using formulas of Mn, An and Bn given in (2.4), we obtain

An(x)Mn(x)−Bn(x)2 =

n∑
i,j=0

i2
(
n

i

)2γ

x2(i−1)
(
n

j

)2γ

x2j −
n∑

i,j=0

i

(
n

i

)2

x2i−1j

(
n

j

)2

x2j−1

=
1

2

n∑
i,j=0

[i2 + j2 − 2ij]

(
n

i

)2γ(
n

j

)2γ

x2(i+j−1)

=
1

2

n∑
i,j=0

(i− j)2
(
n

i

)2γ(
n

j

)2γ

x2(i+j−1).

The last step is the desired equality.

The following lemma will be used to obtain asymptotic behaviour of AnMn −B2
n later on.

Lemma 7.4. Let f(x, y) be a bivariate function such that f(x, y) = O(x2 + y2). Consider two

sequences (an) and (bn) such that an → 0 and bn(logn)
4

an
→ 0. Then for k < iγ,x − a−1n and

l > iγ,x + a−1n ,

l∑
i,j=k

f(i, j) exp
(
−(an + bn)

(
(i− iγ,x)2 + (j − iγ,x)2

))
=

(
1 +O

(
1

log n

)) ∑
|i−iγ,x|<(anbn)

−1/4

|j−iγ,x|<(anbn)
−1/4

f(i, j) exp
(
−an

(
(i− iγ,x)2 + (j − iγ,x)2

))
+O(1).

Proof of Lemma 7.4. Denote by θ = (anbn)−1/4. If |i− iγ,x| ≥ θ or |j − iγ,x| ≥ θ then

−(an + bn)
(
(i− iγ,x)2 + (j − iγ,x)2

)
≤ −anθ2 ≤ −c(log n)2.

Therefore∑
|i−iγ,x|<(anbn)

−1/4 or

|j−iγ,x|<(anbn)
−1/4

f(i, j) exp
(
−(an + bn)

(
(i− iγ,x)2 + (j − iγ,x)2

))
≤ Cn4e−c(logn)

2

= O(1).

Consider |i− iγ,x| < θ and |j − iγ,x| < θ. Then

bn
(
(i− iγ,x)2 + (j − iγ,x)2

)
= O(bnθ

2) = O

(
1

(log n)2

)
.

It implies that

exp
(
−(an + bn)

(
(i− iγ,x)2 + (j − iγ,x)2

))
=

(
1 +O

(
1

log n

))
exp

(
−an

(
(i− iγ,x)2 + (j − iγ,x)2

))
.

Then the result follows.

Lemma 7.5. Let g : R→ R be a differentiable function such that∫
R

(|g(x) + |g′(x)|)(x2 + |x|+ 1)dx <∞.
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Then for any K, l,m such that K, l√
K
, m√

K
→∞, we have

m∑
i=−l

g

(
i√
K

)
= (1 + o(1))

√
K

∫
R

g(x)dx, (7.8)

and
m∑

i,j=−l

(i− j)2g
(

i√
K

)
g

(
j√
K

)
= (1 + o(1))(

√
K)4

∫
R2

(x− y)2g(x)g(y)dxdy. (7.9)

Proof of Lemma 7.5. We can rewrite (7.8) as

lim
k→∞

1√
K

m∑
i=−l

g

(
i√
K

)
=

∫
R

g(x)dx <∞.

Indeed, for any ε > 0 there exists Nε > ε−1 such that∫
R\[−Nε,Nε]

|g(x)|dx ≤ ε.

It is clear that

lim
k→∞

1√
K

∑
−
√
KNε≤i≤

√
KNε

g

(
i√
K

)
=

∫ Nε

−Nε
g(x)dx <∞,

then there exists Kε > 0 such that for any K > Kε,∣∣∣∣∣∣ 1√
K

∑
−
√
KNε≤i≤

√
KNε

g

(
i√
K

)
−
∫ Nε

−Nε
g(x)dx

∣∣∣∣∣∣ ≤ ε.
For the remainder term, using the fact that there exists M > 0 such that |g(x)|x4 ≤M, ∀x ∈ R,∣∣∣∣∣∣ 1√

K

∑
i∈[−l,m]\[−

√
KNε,

√
KNε]

g

(
i√
K

)∣∣∣∣∣∣ ≤ 2√
K

∑
i>
√
KNε

M

(i/
√
K)4

≤2MK3/2

∫ ∞
√
KNε

x−4dx =
2MK3/2

3(
√
KNε)3

=
2M

3N3
ε

≤ ε.

In conclusion, for any ε > 0 there exists Kε > 0 such that for any K > Kε,∣∣∣∣∣ 1√
K

m∑
i=−l

g

(
i√
K

)
−
∫
R

g(x)dx

∣∣∣∣∣ ≤ 3ε.

It implies (7.8). By the same argument, we can prove (7.9).

Finally, we now bring all previous technical lemmas to prove Proposition 4.3.

Proof of Proposition 4.3. We have

Mn(x) =
∑

|i−iγ,x|≥i3/4γ,x

(
n

i

)2γ

x2i +
∑

|i−iγ,x|<i3/4γ,x

(
n

i

)2γ

x2i =: M1,n +M2,n.

By Lemma 7.2 Part a.,
M1,n(

n
iγ,x

)2γ
x2iγ,x

≤ n

n20
≤ 1

n10
;
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and by Lemma 7.2 Part b., Lemma 7.4 and Lemma 7.5,

M2,n(
n
iγ,x

)2γ
x2iγ,x

= (1 + o(1))
∑

|i−iγ,x|<i3/4γ,x

exp

([
J ′′γ,x (tγ,x) +O

(
(ntγ,x)3/4

nt2γ,x

)]
(i− iγ,x)2

n

)

= (1 + o(1))

∫
R

e−x
2

dx×
√
n/|J”(tγ,x)|

= (
√
π + o(1))

√
nx1/γ

γ(1 + x1/γ)2
.

Now according to Lemma 7.3, we have

An(x)Mn(x)−B2
n(x) =

1

2

n∑
i,j=0

(i− j)2
(
n

i

)2γ

x2i
(
n

j

)2γ

x2i+2j−2.

Then by the same argument as above, we get

An(x)Mn(x)−B2
n(x) =

1

2
(1 + o(1))

∫
R2

(x− y)2e−(x
2+y2)dxdy × (n/|J”(tγ,x)|)2

=
(π

2
+ o(1)

)( nx1/γ

γ(1 + x1/γ)2

)2

,

which completes the proof.
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