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Abstract

The paper deals with a random connection model, a random graph whose
vertices are given by a homogeneous Poisson point process on Rd, and edges
are independently drawn with probability depending on the locations of the two
end points. We establish central limit theorems (CLT) for general functionals
on this graph under minimal assumptions that are a combination of the weak
stabilization for the-one cost and a (2 + δ)-moment condition. As a consequence,
CLTs for isomorphic subgraph counts, isomorphic component counts, the number
of connected components are then derived. In addition, CLTs for Betti numbers
and the size of biggest component are also proved for the first time.
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1 Introduction

Given a configuration P of a homogeneous Poisson point process on the d-dimensional
Euclidean space Rd with density λ > 0, and a measurable symmetric connection
function ϕ : Rd → [0, 1], connect any two distinct points x, y ∈ P with probability
ϕ(x−y) independently of the other pairs. The resulting random graph Gϕ(P) is called
a random connection model (RCM) with parameters (λ, ϕ). For a special choice of ϕ
that ϕ(x) = I(|x| ≤ r), where I is the indicator function and |x| is the Euclidean norm
of x, Gϕ(P) becomes a random geometric graph, where two vertices are connected,
if their distance is less than or equal to the threshold r > 0. Figure 1 illustrates
a RCM and a random geometric graph built on the same set of vertices. RCMs,
including general models where a point process is taken in an abstract space, have
been known as a very useful model with many applications in physics, epidemiology
and telecommunications, see e.g. [5]. Therefore, they have gained a great interest
from many scientists in different branches of science [15, 19, 25]. In particular, for
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(a) Random connection model (b) Random geometric graph

Figure 1: Illustration of (a) a random connection model with λ = 1 and ϕ(x) = e−|x|
2

restricted on the rectangle [−5, 5]2, and (b) a random geometric graph on the same
set of vertices with r = 1.

the mathematical side, problems such as connectivity, diameter, degree counts and
the number of connected components have been studied [4, 6, 11, 16].

In this paper, we focus on studying the asymptotic behavior of general functionals
on the RCM for fixed parameters (λ, ϕ). Assume that f is a functional defined on
finite graphs. For a bounded window W ⊂ Rd, let Gϕ(P)|W be the restriction of
the random graph Gϕ(P) on the set of vertices lying in W . Our aim is to establish
a central limit theorem (CLT) for f(Gϕ(P)|W ) as the window W tends to Rd. The
result here generalizes CLTs in [23, 27] for stabilizing functionals on homogeneous
Poisson point processes. We first extend the concept of weakly stabilization which
is original from [23] to this setting. Then a CLT holds under assumptions that the
functional is weakly stabilizing and satisfies a moment condition. Our result should
be a counterpart to a general result on normal approximation in [16].

Let us introduce the result in more details. Let G(P ∪ {o}) be a random graph
obtained from G(P) = Gϕ(P) by adding the origin {o} and edges {o, x}, x ∈ P
independently with probability ϕ(x). We define the add-one cost of f as

Dof(W ) := f(G(P ∪ {o})|W )− f(G(P)|W ),

where W is a bounded subset of Rd. This is the cost paid by adding a point at the
origin. Then the functional f is said to be weakly stabilizing if there is a random
variable ∆, called the limit add-one cost, such that for any sequence of cubes {Wn}
tending to Rd,

Dof(Wn)→ ∆ in probability as n→∞.

Here by a cube, we mean a subset of the form
∏d
i [xi, xi + l), xi ∈ R, l > 0. Our CLT

is stated as follows.

Theorem 1.1. Assume that the functional f is weakly stabilizing and satisfies the
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following moment condition

sup
o∈W :cube

E[|Dof(W )|p] <∞,

for some p > 2. Then as the sequence of cubes W ’s tends to Rd,

f(G(P)|W )− E[f(G(P)|W )]√
|W |

d→ N (0, σ2),
Var[f(G(P)|W )]

|W |
→ σ2.

Here ‘
d→’ denotes the convergence in distribution, |W | is the volume of the cube W and

N (0, σ2) denotes the normal distribution with mean zero and variance σ2. Moreover,
the limiting variance σ2 is positive, if the limit add-one cost is non-trivial, that is,
P(∆ 6= 0) > 0.

An extended version of Theorem 1.1 is stated as Theorem 2.15. It is worth
mentioning that this is a result in the thermodynamic regime where the connection
function ϕ is fixed (and will be assumed to satisfy the condition

∫
Rd ϕ(x)dx ∈ (0,∞)).

The terminology is based on the study of random geometric graphs [22] in which three
main regimes are divided according to the limit of the radius r = r(W ): sparse regime
(r(W ) → 0), critical or thermodynamic regime (r(W ) → const) and dense regime
(r(W )→∞).

For the proof, we use the idea of generating the random connection model (λ, ϕ)
from a marked Poisson point process in [16]. We actually establish general CLTs
for weakly stabilizing functionals on marked Poisson point processes from which the
above theorem is just a particular case. Examples of weakly stabilizing functionals
include isomorphic subgraph counts, (isomorphic) component counts, Betti numbers
of the clique complex of a graph, and the size of the biggest component. Thus, CLTs
for those quantities are obtained from the above general result. Note that by the
approach in [16], CLTs with rate of convergence for isomorphic component counts
were established. By approximation, a CLT (without rate) for the total number of
connected components was then derived. CLTs for Betti numbers in this paper are
generalizations of that result, because the zeroth Betti number is nothing but the
number of connected components. Moreover, in Section 4, we establish the CLT for
the size of the biggest cluster of the random graph provided that λ is large enough
and ϕ satisfies two conditions (C1) and (C2). Roughly speaking, the condition (C1)
requires that ϕ is a radial function with limx→0 ϕ(x) = 1, while (C2) is a moment
condition on ϕ. As far as we are concerned, our results for Betti numbers and the size
of the biggest component of random connection models have not been known before.

The paper is organized as follows. In Section 2, we establish a general result
for weakly stabilizing functionals on marked Poisson point processes, and then the
CLT for random connection models with general functionals is derived. Thenceforth,
we apply these results to establish CLTs for isomorphic subgraph counts and Betti
numbers in Section 3, and for the size of the biggest component in Section 4.
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2 General results

2.1 CLT for weakly stabilizing functionals on marked Poisson point
processes

In this sub-section, we consider a random graph with marks built on a special marked
Poisson point process under which the random connection model (λ, ϕ) can be gener-
ated. Let η̂ be a Poisson point process on S := Rd× [0, 1]× [0, 1]N×N with the intensity
measure λ`d ⊗ ` ⊗ Q, where λ > 0 is a constant, `d is the Lebesgue measure on Rd,
` is the Lebesgue measure on [0, 1] and Q = `⊗N×N is the product measure of ` on
M := [0, 1]N×N. To a point (x, t,M) = (x, t, (ui,j)) ∈ S, the first component points
out the location in Rd, the second one is regarded as its birth time and the third one
is a double sequence of marks.

Let {Bk}k∈N be an enumeration of all unit cubes from the lattice Zd. To be
more precise, each Bk is of the form

∏d
i=1[ni, ni + 1), ni ∈ Z. For a locally finite set

η ⊂ S (the number of points of η in any compact set is finite) whose birth times
are all different, the edge marking mapping T associated with {Bk} is constructed as
follows [16]. We first order the points of η in each cube Bk according to their birth
times. Then for two points s1 = (x, t, (ui,j)) and s2 = (y, s, (vi,j)) in η with t < s and
s1 the mth oldest point in Bn, the edge {x, y} is marked with vm,n. The resulting
image T (η) consisting of points of the form ({x, y}, u) is viewed as a graph with
marks on the set of the first components of η. Formally, T is a measurable map from
N(S) to N((Rd)[2] × [0, 1]), where N(X) denotes the space of locally finite subsets
of a topological space X and (Rd)[2] denotes the space of undirected edges. Given a
connection function ϕ, which is a measurable symmetric function ϕ : Rd → [0, 1], a
random connection model with parameters (λ, ϕ) can be generated from η̂ by

η̂ 7→ T (η̂) 7→
{
{x, y} : ({x, y}, u) ∈ T (η̂), u < ϕ(x− y)

}
. (1)

We will study more about RCMs in the next section.
For η ∈ N(S), and W ⊂ Rd, denote by η|W the restriction of η on {(x, t,M) :

x ∈W} and T (η)|W the induced subgraph of T (η) with vertices in W . Note that by
the construction T (η̂)|W = T (η̂|W ), if W is a union of sets from the collection {Bk}.
For general W , two graphs T (η̂)|W and T (η̂|W ) have the same set of vertices, but
edges may be different. However, they have the same distribution. This is because
conditional on the configuration of points in W , each edge is independently marked
with a random variable uniformly distributed on [0, 1].

Let f be a (measurable) functional defined on finite subsets of (Rd)[2] × [0, 1].
Then the add-one cost of f , the functional on finite subsets of S, is defined as

D(x,t,M)(η) = f(T (η ∪ {(x, t,M)}))− f(T (η ∪ {(x, t,M)}) \ {x}), η ⊂ S. (2)

Here for (x, t,M) ∈ η, the graph T (η) \ {x} is obtained from T (η) by removing the
vertex x and all corresponding edge marks.

Set Ω̂ = Ω ×M and P̂ = P ⊗ Q, where (Ω,F ,P) is the underlying probability
space for the point process η̂. We will use Ê to denote the expectation with respect
to P̂.

Definition 2.1. (i) The functional f is said to be translation invariant if for any
z ∈ Rd, and any finite set {(xi, yi, ui)}i∈I ⊂ (Rd)[2] × [0, 1],

f({(xi, yi, ui)}i∈I) = f({(z + xi, z + yi, ui)}i∈I).
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Here for simplicity, (x, y, u) denotes an element in (Rd)[2] × [0, 1].

(ii) The functional f is said to be weakly stabilizing if it is translation invariant
and there is a random variable ∆1 = ∆1(ω,M) (defined on Ω̂) such that for
any sequence of cubes {Wn}n tending to Rd,

D(o,1,M)(η̂|Wn)
P̂→ ∆1.

Here ‘
P̂→’ denotes the convergence in probability with respect to P̂ and o =

(0, . . . , 0) ∈ Rd denotes the origin.

Remark 2.2. Note that T (η̂|W ∪ {o, 1,M}) is obtained from T (η̂|W ) by adding the
vertex o and new edges connected to it. Thus,

D(o,1,M)(η̂|W ) = f(T (η̂|W ∪ {o, 1,M}))− f(T (η̂|W )).

From now on, assume that the functional f is translation invariant. The following
criterion might be useful to check the weak stabilization.

Proposition 2.3. Assume that for any increasing sequence of cubes W = {Wn}∞n=1

tending to Rd, the sequence {D(o,1,M)(η̂|Wn)} converges in probability to a limit ∆(W).
Then the functional f is weakly stabilizing.

Proof. We first show that the limit ∆(W) is unique. Let V = {Vn} and W = {Wn}
be two increasing sequences of cubes tending to Rd. Then by the assumption,

D(o,1,M)(η̂|Wn)
P̂→ ∆(W), D(o,1,M)(η̂|Vn)

P̂→ ∆(V).

We form a new sequence from subsequences of V and W in a way that

V1 ⊂Wi1 ⊂ Vj1 ⊂Wi2 ⊂ · · · ↗ Rd.

Along this sequence, the limit of the add-one cost exists, implying that ∆(W) = ∆(V)

(P̂-almost surely). Thus, there is a random variable ∆ such that for any increasing
sequence {Wn} tending to Rd,

D(o,1,M)(η̂|Wn)
P̂→ ∆.

Now let {Wn} be an arbitrary sequence of cubes tending to Rd. Assume for
contradiction that {D(o,1,M)(η̂|Wn)} does not converge in probability to ∆. Then
there are ε > 0, δ > 0, and a subsequence {Wnk

} such that

P̂(|D(o,1,M)(η̂|Wnk
)−∆| ≥ ε) > δ.

Since the sequence {Wnk
} tends to Rd, we can always extract a further increasing

subsequence along which the sequence of the add-one cost converges to ∆, making a
contradiction. The proof is complete.

Definition 2.4. The functional f is said to satisfy a moment condition if for some
p > 2,

sup
o∈W :cube

Ê[|D(o,1,M)(η̂|W )|p] <∞. (3)
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Assume that the functional f is weakly stabilizing and satisfies the above moment
condition. Then for any sequence of cubes {Wn} tending to Rd,

D(o,1,M)(η̂|Wn)→ ∆1 in Lq(Ω̂), (4)

for 1 ≤ q < p. This is a consequence of a fundamental result in probability theory
(the corollary following Theorem 25.12 in [2]).

Our main result in this paper is the following central limit theorem.

Theorem 2.5. Assume that the functional f is weakly stabilizing and satisfies the
moment condition (3). Then for any sequence of cubes W ’s tending to Rd,

f(T (η̂|W ))− E[f(T (η̂|W ))]√
|W |

d→ N (0, σ2),

for a constant σ2 ≥ 0 given in (5) below. Here recall that |W | denotes the volume, or
the Lebesgue measure `d(W ) of W . Moreover, the limiting variance σ2 is positive, if
the limit add-one cost ∆1 is non-trivial, that is, P̂(∆1 6= 0) > 0.

Remark 2.6. (i) For marked Poisson point processes, central limit theorems have
been established for functionals h of the form

h(η) =
∑
i∈I

ξ((xi, ti,Mi), η)),

defined on finite subset η = {(xi, ti,Mi)}i∈I of S, provided that the functional
ξ is stabilizing plus some moment conditions [1, 24]. Isomorphic subgraph
counts are typical examples of such functionals in which ξ((xi, ti,Mi), η)) is the
number of isomorphic subgraphs containing the point xi, divided by a constant.
For RCMs studied in the next section, we will show that subgraph counts are
weakly stabilizing. However, when the connection function satisfies ϕ ∈ (0, 1),
one may immediately see that in the simplest case where the number of edges is
considered, the corresponding functional ξ is not stabilizing (in the sense of [1,
§2.3.1] or [24, Definition 2.1]). And thus, those general results are not applicable
to the RCM (1) constructed from a marked Poisson point process.

(ii) A CLT for weakly stabilizing functionals (in the case without marks) was first
established in [23] under a fourth moment condition (a similar condition as the
moment condition (3) with p = 4). It was slightly improved to the case p > 2
in [27]. We extend the approach in [27] to prove Theorem 2.5. It is worth
noting that a direct generalization of CLTs from the above two papers to a
marked case would lead to a CLT for a functional h defined on finite subset
η = {(xi, ti,Mi)}i∈I of S with the stabilization concept being defined by using
the add-one cost

D(x,t,M)h(η) = h(η ∪ {(x, t,M)})− h(η).

To apply to the RCM (1), we would consider a functional of the form h = f ◦T ,
and thus the add-one cost is given by

D(x,t,M)h(η) = f(T (η ∪ {(x, t,M)}))− f(T (η)).
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From the construction of T , it is clear that T (η) is not a subgraph of T (η ∪
{(x, t,M)}), in general, which causes a difficulty in this direction. The idea
here is to use an add-one cost defined in the equation (2), the difference of f on
T (η∪{(x, t,M)}) and its subgraph T (η∪{(x, t,M)}) \ {x}, which is originated
from [16] to define the weak stabilization. The main contribution of this paper is
to introduce a suitable generalized concept of weak stabilization and to establish
the limiting variance formula stated in Lemma 2.9.

Remark 2.7 (A quenched CLT). We state here a quenched version of Theorem 2.5.
For simplicity, assume that the underlying probability space is written as the product

(Ω,F ,P) = (Ω1,F1,P1)× (Ω2,F2,P2)

for which the first component of η̂ is defined on Ω1, and the second and the third
ones are defined on Ω2, that is,

η̂(ω) = {(x(ω1), t(ω2),M(ω2))}.

Assume that the functional f satisfies the conditions in Theorem 2.5. Let

Zn(ω1, ω2) =
f(T (η̂|Wn))− E2[f(T (η̂|Wn))]√

n
,

where E2 denotes the expectation with respect to P2. Then there exists 0 ≤ σ2
q ≤ σ2

(the variance in Theorem 2.5), such that with high probability (in ω1) the random
variables (Zn(ω1, ·))n≥1 converge weakly to N (0, σ2

q ). The detailed statement (see
(57)) and its proof are given in the Appendix A.

We need some preparations before proving the main result. A cube is called a
lattice cube if it is of the form

∏d
i=1[ni, ni + m), with ni ∈ Z and m ∈ N. Clearly, a

lattice cube is a union of cubes from the collection {Bk}.

Lemma 2.8. Assume that the functional f is weakly stabilizing. Then there is a
random variable ∆t (defined on Ω̂) such that for any sequence of cubes {Wn} tending
to Rd,

D(o,t,M)(η̂|Wn)
P̂→ ∆t.

Proof. The proof is based on the following two observations

(i) under P̂, the two graphs T (η̂|W ∪{(o, t,M)}) and T (η̂|W ∪{(o, 1,M)}) have the
same distribution;

(ii) for any lattice cube V with o ∈ V ⊂W ,

D(o,t,M)(η̂|W )−D(o,t,M)(η̂|V )
d
= D(o,1,M)(η̂|W )−D(o,1,M)(η̂|V ).

Here ‘
d
=’ denotes the equality in distribution. Then similar arguments as those will be

used in the proof of Proposition 2.14 work to show the weak stabilization of D(o,t,M)

for any t ∈ [0, 1]. Let us omit the details to continue the main stream.

For η ∈ N(Rd × [0, 1] ×M) and t ∈ [0, 1], we write ηt for the restriction of η to
Rd × [0, t) ×M, and E[·|η̂t] denotes the conditional expectation with respect to the
sigma-field generated by η̂t.
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Lemma 2.9. Assume that the functional f is weakly stabilizing and satisfies the
moment condition (3). Then for any sequence of cubes W ’s tending to Rd,

Var[f(T (η̂|W ))]

|W |
→ λ

∫ 1

0
Ê[E[∆t|η̂t]2]dt =: σ2. (5)

The limiting variance σ2 is positive, if P̂(∆1 6= 0) > 0.

Remark 2.10. In the case without marks as in [23, 27], the limit ∆ = ∆1 does not
depend on t and M , and thus the limiting variance is written as

σ2 = λ

∫ 1

0
E[E[∆|η̂t]2]dt.

The above lemma shows that σ2 > 0, if P(∆ 6= 0) > 0. Note that under the assump-
tion of strong stabilization, Theorem 2.1 in [23] states that the limiting variance σ2

is positive, if ∆ is nondegenerate, that is, ∆ is not a constant.

The proof of the above lemma relies on the following variance formula.

Lemma 2.11 ([16, Theorem 5.1]). Let f : N((Rd)[2]× [0, 1])→ R be measurable with
E[f(T (η̂|W ))2] <∞, where W ⊂ Rd. Then

Var[f(T (η̂|W ))] = λ

∫
W

∫ 1

0
Ê[E[D(x,t,M)(η̂|W )|η̂t]2]dtdx.

Proof of Lemma 2.9. Similar to the convergence (4), the weak stabilization and the
moment condition imply that

Ê[|D(o,t,M)(η̂|Wn)−∆t|2]→ 0,

along any sequence of cubes {Wn} tending to Rd. It follows that∫ 1

0
Ê
[
|D(o,t,M)(η̂|Wn)−∆t|2

]
dt→ 0.

Then, by using Jensen’s inequality for conditional expectation, we obtain that∫ 1

0
Ê
[
|E[D(o,t,M)(η̂|Wn)|η̂t]− E[∆t|η̂t]|2

]
dt→ 0.

Consequently,

h(Wn) :=

∫ 1

0
Ê
[
E[D(o,t,M)(η̂|Wn)|η̂t]2

]
dt→

∫ 1

0
Ê
[
E[∆t|η̂t]2

]
dt =: a2.

The convergence holds for any sequence of cubes {Wn} tending to Rd. Thus, it is
straightforward to show that for any ε > 0, there is a radius r > 0 such that

|h(V )− a2| < ε, if Br(o) ⊂ V . (6)

Here Br(o) = {x ∈ Rd : |x| ≤ r} denotes the closed ball centered at o of radius r.
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It now follows from the variance formula and the translation invariance that

Var[f(T (η̂|W ))] = λ

∫
W

∫ 1

0
Ê[E[D(x,t,M)(η̂|W )|η̂t]2]dtdx

= λ

∫
W
h(W − x)dx.

For given ε > 0, take r such that the condition (6) holds. Then divide the above
integral into two parts according to Br(o) ⊂ W − x or not. For the part with
Br(o) ⊂ W − x, the integrand h(W − x) is different from a2 by at most ε, while
the integral over the other part divided by |W | clearly vanishes as W tends to Rd.
Consequently,

Var[f(T (η̂|W ))]

|W |
=

λ

|W |

∫
W
h(W − x)dx→ λa2 = σ2 as W → Rd,

which proves the desired convergence (5).
Next, we show the positivity of σ2 under the condition that P̂(∆1 6= 0) > 0. Our

aim is to show the continuity of Ê[E[∆t|η̂t]2] at t = 1, that is,

Ê[E[∆t|η̂t]2]→ Ê[∆2
1] as t→ 1. (7)

This clearly implies the positivity of σ2, because E[∆2
1] > 0. We will show the

continuity through several steps.
Step 1. Recall that as W tends to Rd,

Ê[|D(o,t,M)(η̂|W )−∆t|2]→ 0,

and moreover the expectation does not depend on t, if W is a lattice cube.
Step 2. For any finite cube W ,

D(o,t,M)(η̂|W )→ D(o,1,M)(η̂|W ) in probability as t→ 1.

This is because the two functionals coincide on the event that there is no point in
W × [t, 1] ×M whose probability tends to 1 as t → 1. Then the convergence in L2

holds as a consequence of the moment condition.
Step 3. The results in Step 1 and Step 2, together with the triangular inequality,

imply that as t→ 1,
∆t → ∆1 in L2.

Then using Jensen’s inequality for conditional expectation, we obtain that

Ê[E[∆t −∆1|η̂t]2]→ 0 as t→ 1,

and thus,
Ê[E[∆t|η̂t]2]− Ê[E[∆1|η̂t]2]→ 0 as t→ 1.

Step 4. We claim that for any finite cube W ,

E[D(o,1,M)(η̂|W )|η̂t]→ D(o,1,M)(η̂|W ) in probability, and then in L2 as t→ 1.

It suffices to show that for each M , the above convergence holds in probability with
respect to P. Let M be fixed. First we write the conditional expectation as

E[D(o,1,M)(η̂|W )|η̂t] = Eη̂
t
[D(o,1,M)(η̂t|W + η̂t|W )],
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where Eη̂t denotes the expectation with respect to a Poisson point process η̂t on
Rd × [t, 1] ×M independent of η̂t. Then by expressing the conditional expectation
further as

D(o,1,M)(η̂t|W )P(At) + Eη̂
t
[D(o,1,M)(η̂t|W + η̂t|W )1Ac

t
],

where At is the event that η̂t has no point in W × [t, 1]×M, we see that

E[D(o,1,M)(η̂|W )|η̂t]−D(o,1,M)(η̂t|W )

= D(o,1,M)(η̂t|W )(P(At)− 1) + Eη̂
t
[D(o,1,M)(η̂t|W + η̂t|W )1Ac

t
]

→ 0 in probability as t→ 1.

Here Hölder’s inequality has been used to show the second term in the second last
equation converges to zero. In addition, D(o,1,M)(η̂t|W )→ D(o,1,M)(η̂|W ) in probabil-
ity (by the same reason as in Step 2). These imply the desired convergence.

Step 5. Take the limit as W → Rd in Step 4, we obtain

E[∆1|η̂t]→ ∆1 in L2 as t→ 1,

which, together with Step 3, yields the continuity (7). The proof is complete.

We also need the following Poincaré inequality which is a direct consequence of
the variance formula by using Jensen’s inequality.

Lemma 2.12 ([16]). Let f be a functional defined on finite subsets of (Rd)[2]× [0, 1].
Assume that

E[f(T (η̂|W ))2] <∞.

Then the following Poincaré inequality holds

Var[f(T (η̂|W ))] ≤ λ
∫
W

Ê[D(x,1,M)(η̂|W )2]dx.

Proof of Theorem 2.5. We sketch some key steps in the argument because it is sim-
ilar to the proof of Theorem 3.1 in [27]. Let us consider the sequence of cubes
Wn := [−n1/d/2, n1/d/2)d, where n needs not be an integer number. Because of the
translation invariance, it suffices to show that as n→∞,

f(T (η̂|Wn))− E[f(T (η̂|Wn))]√
n

d→ N (0, σ2),
Var[f(T (η̂|Wn))]

n
→ σ2, (8)

for some σ2 ≥ 0. For L > 0 with L1/d an integer number and for each n, divide the
cube Wn according to the lattice L1/dZd and let {Ci}`ni=1 be the lattice cubes entirely
contained in Wn. Then it follows from the construction of the graph T that

Xn,L :=
1√
n

`n∑
i=1

(
f(T (η̂|Ci))− E[f(T (η̂|Ci))]

)
=

1√
n

`n∑
i=1

(
f(T (η̂|Wn)|Ci)− E[f(T (η̂|Wn)|Ci)]

)
.
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The first expression shows that Xn,L is a sum of i.i.d. (independent identically
distributed) random variables. Thus, for fixed L, a central limit theorem for {Xn,L}
holds, that is,

Xn,L
d→ N (0, σ2

L), Var[Xn,L]→ σ2
L = L−1 Var[f(T (η̂|Ci))]. (9)

The second expression helps us to make use of the Poincaré inequality

Var

[
f(T (η̂|Wn))− E[f(T (η̂|Wn))]√

n
−Xn,L

]
≤ λ

n

∫
Wn

Ê
[∣∣∣∣D(x,1,M)(η̂|Wn)−

`n∑
i=1

D(x,1,M)(η̂|Ci)I(x ∈ Ci)
∣∣∣∣2]dx

=
λ

n

∫
Wn\∪iCi

Ê[|D(x,1,M)(η̂|Wn)|2]dx

+

`n∑
i=1

∫
Ci

Ê[|D(x,1,M)(η̂|Wn)−D(x,1,M)(η̂|Ci)|2]dx.

Here I denotes the indicator function. Then using the weak stabilization together
with the moment condition, we can argue in exactly the same way as in the proof of
Theorem 3.1 in [27] to show that

lim
L→∞

lim sup
n→∞

Var

[
f(T (η̂|Wn))− E[f(T (η̂|Wn))]√

n
−Xn,L

]
= 0. (10)

The two equations (9) and (10) imply our desired CLT (8) (see [27, Lemma 2.2]).
The proof is complete.

Corollary 2.13. Assume that functionals {fi}mi=1 are weakly stabilizing and satisfy
the moment condition. Then as the sequence of cubes W ’s tends to Rd,(

fi(T (η̂|W ))− E[fi(T (η̂|W ))]√
|W |

)m
i=1

d→ N (0,Σ),

where Σ = (σij)
m
i,j=1 is a nonnegative definite matrix,

σij = lim
n→∞

Cov[fi(T (η̂|W )), fj(T (η̂|W ))]

|W |
. (11)

Here N (0,Σ) denotes the multidimensional Gaussian distribution with mean zero and
covariance matrix Σ.

Proof. Observe that the desired multidimensional CLT follows, if we can show that
for any a = (a1, . . . , am) ∈ Rm, the following hold for f =

∑m
i=1 aifi,

f(T (η̂|W ))− E[f(T (η̂|W ))]√
|W |

d→ N (0, σ2
f ),

Var[f(T (η̂|W ))]

|W |
→ σ2

f = atΣa.

The functional f is clearly weakly stabilizing and satisfies the moment condition,
and hence a CLT for f follows from Theorem 2.5. To see the convergence of the
covariance and the formula σ2

f = atΣa, it remains to show the convergence (11).
However, it is an easy consequence of the convergence of variances when applying
Theorem 2.5 to the functionals (fi± fj) by noting that Cov[X,Y ] = 1

4(Var[X + Y ]−
Var[X − Y ]). The proof is complete.
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We conclude this sub-section by discussing further equivalent conditions for the
weak stabilization. Consider the add one-cost functional in a slightly different way

D̃(o,1,M)(W ) = f(T (η̂ ∪ {(o, 1,M)})|W )− f(T (η̂)|W ).

Here we first construct the infinite graph T (η̂ ∪ {(o, 1,M)}) and then take the re-
striction. Its advantage is the increasing property of a sequence of graphs. The two
add-one cost functionals coincide, if W is a union of cubes from the collection {Bk}.

Proposition 2.14. The following are equivalent

(i) the functional f is weakly stabilizing;

(ii) for any sequence of cubes {Wn} tending to Rd,

D̃(o,1,M)(Wn)
P̂→ ∆1;

(iii) the sequence {D̃(o,1,M)(Wn)} converges in probability to a limit for any sequence

of increasing cubes {Wn} tending to Rd.

Proof. The equivalence of (ii) and (iii) is quite similar to Proposition 2.3, and hence
its proof is omitted. We now prove the equivalence of (i) and (ii).

Let V ⊂W be a lattice cube. Note that the two graphs T (η̂|W ∪{(o, 1,M)}) and
T (η̂∪{(o, 1,M)})|W have the same distribution. In addition, since V is a lattice cube,
D(o,1,M)(η̂|W ) − D(o,1,M)(η̂|V ) can be written as a function of T (η̂ ∪ {(o, 1,M)})|W
by restriction. In the same manner, D̃(o,1,M)(W )− D̃(o,1,M)(V ) can be written as the
same function of T (η̂ ∪ {(o, 1,M)})|W . Consequently,

D(o,1,M)(η̂|W )−D(o,1,M)(η̂|V )
d
= D̃(o,1,M)(W )− D̃(o,1,M)(V ). (12)

Let us show that (i) implies (ii). Assume that (i) holds. Let {Wn} be any sequence
of cubes tending to Rd. We take a sequence of lattice cubes {Vn} tending to Rd such
that Vn ⊂Wn, for each n. We assume without loss of generality that o ∈ Vn, for any
n. The condition (i) implies that

D(o,1,M)(η̂|Wn)
P̂→ ∆1, D(o,1,M)(η̂|Vn)

P̂→ ∆1.

It then follows that

D(o,1,M)(η̂|Wn)−D(o,1,M)(η̂|Vn)
P̂→ 0,

and hence

D̃(o,1,M)(Wn)− D̃(o,1,M)(Vn)
P̂→ 0, (13)

by the identity in distribution (12). In addition, since Vn is a lattice cube,

D̃(o,1,M)(Vn) = D(o,1,M)(η̂|Vn)
P̂→ ∆1. (14)

Adding the two equations (13) and (14), we get the desired convergence in the state-
ment of (ii). The converse can be proved similarly. The proof is complete.
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2.2 CLT for random connection models

Let P be a homogeneous Poisson point process on Rd with density λ > 0. Let
ϕ : Rd → [0, 1] be a measurable, symmetric function, that is, ϕ(x) = ϕ(−x). Given a
configuration P which is a locally finite subset in Rd (almost surely), connect any two
points x, y ∈ P independently with probability ϕ(x−y). (In general, we can consider
a connectivity function ϕ : Rd × Rd → [0, 1] with ϕ(x, y) = ϕ(y, x) the probability
of connecting two points x and y. The model here is the case where the translation
invariance is assumed.) The resulting graph, denoted by G(P), is called a random
connection model with parameters (λ, ϕ). If we take ϕ as

ϕ(x) =

{
1, |x| ≤ r,
0, otherwise,

for some r > 0, then the RCM G(P) reduces to a random geometric graph.
The graph G(P) can be generated by using the random graph with marks in the

previous section as follows [16]. Let η̂ be a Poisson point process on Rd × [0, 1] ×
[0, 1]N×N with the intensity measure λ`d ⊗ ` ⊗ Q. We regard P as the projection of
η̂ to Rd. Then define the graph G(P) as the one with the vertex set P, and edges
{x, y}, if u < ϕ(x − y), for (x, y, u) ∈ T (η̂). In other words, G(P) = ι(T (η̂)) is the
image of T (η̂) under some mapping ι defined on N((Rd)[2] × [0, 1]).

For a bounded subset W ⊂ Rd, let G(P)|W be the induced subgraph obtained
from G(P) by restricting the graph on the vertex set in P|W . Note that G(P)|W
has the same distribution with the graph G(P|W ) generated by connecting a pair
x, y ∈ P|W with probability ϕ(x−y) independent of the others. Let f be a functional
defined on finite graphs. Then

f(G(P)|W ) = f(ι(T (η̂)|W )).

Clearly, the functional f ◦ ι is translation invariant.
The functional f is said to be weakly stabilizing onG(P) if f◦ι is weakly stabilizing

as in Definition 2.1. In this model, this concept is equivalent to the following. Let
G(P ∪ {o}) be a random graph obtained from G(P) by adding the vertex {o} and
new edges (o, x), x ∈ P independently with probability ϕ(x). For a bounded subset
W ⊂ Rd, let

Dof(W ) = f(G(P ∪ {o})|W )− f(G(P)|W )

be the add-one cost of f . Then using equivalent conditions in Proposition 2.14, the
functional f is weakly stabilizing on G(P), if and only if one of the following two
conditions holds

(i) there is a random variable ∆ such that

Dof(Wn)
P→ ∆,

for any sequence of cubes {Wn}∞n=1 tending to Rd;

(ii) for any increasing sequence of cubes {Wn}, the sequence {Dof(Wn)} converges
in probability to a limit.

The following result follows directly from Theorem 2.5 and Corollary 2.13.
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Theorem 2.15. (i) Assume that a functional f is weakly stabilizing on G(P). As-
sume further that for some p > 2,

sup
o∈W :cube

E[|Dof(W )|p] <∞. (15)

Then as the sequence of cubes W ’s tends to Rd,

f(G(P|W ))− E[f(G(P|W ))]√
|W |

d→ N (0, σ2),
Var[f(G(P|W ))]

|W |
→ σ2.

The limiting variance is positive (σ2 > 0), if P(∆ 6= 0) > 0.

(ii) Assume that functionals {fi}mi=1 are weakly stabilizing on G(P) and satisfy the
above moment condition. Then as the sequence of cubes W ’s tends to Rd,(

fi(G(P|W ))− E[fi(G(P|W ))]√
|W |

)m
i=1

d→ N (0,Σ),

where Σ = (σij)
m
i,j=1 is a nonnegative definite matrix,

σij = lim
W→Rd

Cov[fi(G(P|W )), fj(G(P|W ))]

|W |
.

3 Isomorphic subgraph counts and Betti numbers

3.1 Isomorphic subgraph counts

Consider the random connection model (λ, ϕ) with the assumption that

0 < mϕ =

∫
Rd

ϕ(x)dx <∞.

Let A be a connected graph on (k + 1) vertices. For given (k + 1) distinct points
{x1, x2, . . . , xk+1} in Rd, denote by Γ(x1, x2, . . . , xk+1) the random graph generated
by independently drawing an edge between any two vertices xi, xj with probability
ϕ(xi − xj). Let

ψA(x1, x2, . . . , xk+1) =

{
P(Γ(x1, x2, . . . , xk+1) ' A), if {xi} are distinct,

0, otherwise,

where ‘'’ denotes the isomorphism of graphs. Then it is clear that ψ is translation
invariant, that is,

ψA(z + x1, z + x2, . . . , z + xk+1) = ψA(x1, x2, . . . , xk+1), for any z ∈ Rd.

Lemma 3.1. Let A be a connected graph on (k + 1) vertices. Then the expected
number of induced subgraphs containing the origin o in G(P ∪ {o}) isomorphic to A
is given by

hA :=
λk

k!

∫
· · ·
∫

(Rd)k
P(Γ(o, x1, . . . , xk) ' A)dx1 · · · dxk

=
λk

k!

∫
· · ·
∫

(Rd)k
ψA(o, x1, . . . , xk)dx1 · · · dxk <∞. (16)
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Proof. We first show that the integral in (16) is finite. Although this result was
already proved in Theorem 7.1 in [16], we give here a slightly different proof. We
claim that for a connected graph A, there are at least two vertices such that after
removing each of them together with all edges connected to it, the remaining graph is
still connected. Indeed, let B be a spanning tree of A, that is, a connected subgraph
of A with exactly k edges. Then the sum of degrees of all vertices in B is 2k, implying
that at least two vertices have degree one. Note that by removing a vertex of degree
one from the tree, the remaining is still a tree, which proves our claim.

Now let A = (V,E) be a connected graph on V = [k+ 1] := {1, 2, . . . , k+ 1}. The
graph Γ(o, x1, . . . , xk) is isomorphic to A, if there is a permutation π ∈ Sk+1 such that
{i, j} is an edge on A, if and only if {xπi , xπj} is an edge on Γ(xk+1 = o, x1, . . . , xk).
Therefore ∫

· · ·
∫

(Rd)k
P(Γ(o, x1, . . . , xk) ' A)dx1 · · · dxk

≤
∑

π∈Sk+1

∫
· · ·
∫

(Rd)k

∏
{i,j}∈E

ϕ(xπi − xπj )dx1 · · · dxk.

Then it suffices to show that∫
· · ·
∫

(Rd)k

∏
{i,j}∈E

ϕ(xi − xj)dx1 · · · dxk <∞.

Let m 6= k + 1 be a vertex such that the induced subgraph A′ = (V ′, E′), where
V ′ = V \ {m}, is still connected. Let n be a vertex connected to m. Then∫

· · ·
∫

(Rd)k

∏
{i,j}∈E

ϕ(xi − xj)dx1 · · · dxk

≤
∫
· · ·
∫

(Rd)k−1

( ∏
{i,j}∈E′

ϕ(xi − xj)
)(∫

Rd

ϕ(xn − xm)dxm

)∏
l 6=m

dxl

= mϕ ×
∫
· · ·
∫

(Rd)k−1

∏
{i,j}∈E′

ϕ(xi − xj)
∏
l 6=m

dxl.

Since A′ is again a connected graph, we continue this way to see that the above
integral is bounded by (mϕ)k <∞.

Next by the multivariate Mecke equation (Theorem 4.4 in [17]), the expected
number of induced subgraphs containing the origin o in G(P ∪ {o}) isomorphic to A
can be written as

E
[ ∑
{x1,x2,...,xk}⊂P

ψA(o, x1, x2, . . . , xk)

]

=
λk

k!

∫
· · ·
∫

(Rd)k
ψA(o, x1, . . . , xk)dx1 · · · dxk,

which completes the proof.

The graph A is said to be feasible if hA > 0. Equivalently, the graph A is
feasible, if the probability P(Γ(o, x1, . . . , xk) ' A) is positive on some set in (Rd)k
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with positive Lebesgue measure. In particular, in case ϕ ∈ (0, 1), any connected

graph is feasible. Let ξ
(A)
n be the number of induced subgraphs in G(Pn) isomorphic

to A, where Pn = P|Wn with Wn = [−n1/d

2 , n
1/d

2 )d. By direct calculation using the
Mecke formula, we can show the following asymptotic behaviors, natural extensions
of those for random geometric graphs in [22, Chapter 3].

Lemma 3.2. (i) Let A be a feasible connected graph on (k + 1) vertices. Then as
n→∞,

E[ξ
(A)
n ]

n
→ λ

k + 1
hA =

λk+1

(k + 1)!

∫
· · ·
∫

(Rd)k
P(Γ(o, x[k]) ' A)dx[k].

Here x[k] denotes the set {x1, . . . , xk} and dx[k] stands for dx1 · · · dxk.

(ii) Let A and B be two feasible connected graphs on (k + 1) vertices and (l + 1)
vertices with k ≤ l, respectively. Then

lim
n→∞

Cov[ξ
(A)
n , ξ

(B)
n ]

n
(=: σA,B)

=

k+1∑
m=1

λk+l+2−m

m!(k + 1−m)!(l + 1−m)!

×
∫
· · ·
∫

(Rd)k+l+1−m

P(Γ(o, x[k]) ' A,Γ(o, x[m−1], y[l+1−m]) ' B)

× dx[k]dy[l+1−m],

where the two graphs Γ(o, x[k]) and Γ(o, x[m−1], y[l+1−m]) are coupling as induced
subgraphs of Γ(o, x[k], y[l+1−m]).

Proof. (i) By the multivariate Mecke equation, we see that

E[ξ(A)
n ] = E

[ ∑
x[k+1]⊂Pn

ψA(x1, x2, . . . , xk+1)

]

=
λk+1

(k + 1)!

∫
· · ·
∫

(Wn)k+1

ψA(x1, x2, . . . , xk+1)dx1dx2 · · · dxk+1

=
λk+1

(k + 1)!

∫
Wn

dxk+1

∫
· · ·
∫

(Wn−xk+1)k
ψA(o, x1, x2, . . . , xk)dx1dx2 · · · dxk.

Since the integral in (16) is convergent, it follows that for any ε > 0, there is a radius
r > 0 such that if Br(o) ⊂W ,∣∣∣∣ ∫ · · · ∫

Wk

ψA(o, x1, x2, . . . , xk)dx1dx2 · · · dxk −
k!

λk
hA

∣∣∣∣ < ε.

Then by dividing the integral with respect to xk+1 into two parts according to Br(o) ⊂
Wn − xk+1 or not, we can deduce the desired result

lim
n→∞

E[ξ
(A)
n ]

n
=

λ

k + 1
hA.
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(ii) Let us begin with the following expression for E[ξ
(A)
n ξ

(B)
n ]

E[ξ(A)
n ξ(B)

n ] =

k+1∑
m=0

E
[ ∑
x[k+1],y[l+1]⊂Pn,

|x[k+1]∩y[l+1]|=m

P(Γ(x[k+1]) ' A,Γ(y[l+1]) ' B)

]
.

To be more precise, the two random graphs Γ(x[k+1]) and Γ(y[l+1]) are coupling as
induced subgraphs of a random graph on the set x[k+1] ∪ y[l+1]. Note that the term

with m = 0 coincides with E[ξ
(A)
n ]E[ξ

(B)
n ] (by using the multivariate Mecke equation

and the fact that the two random graphs are independent). Thus, the covariance

Cov[ξ
(A)
n , ξ

(B)
n ] is given by

Cov[ξ(A)
n , ξ(B)

n ] =

k+1∑
m=1

E
[ ∑
x[k+1],y[k+1]⊂Pn.

|x[k+1]∩y[k+1]|=m

P(Γ(x[k+1]) ' A,Γ(y[k+1]) ' B)

]
.

For m ≥ 1, to choose the sets x[k+1] and y[l+1] with m points in common, we first select
m common points, and then select the remaining points of x’s and y’s. Again, using
the multivariate Mecke equation, the corresponding term can be expressed further as

λk+l+2−m

m!(k + 1−m)!(l + 1−m)!

×
∫
· · ·
∫

(Wn)k+l+2−m

P(Γ(x[k+1]) ' A,Γ(x[m], y[l+1−m]) ' B)dx[k+1]dy[l+1−m].

Then similar to the proof of (i), we can show that the above integral, divided by n
(the volume of Wn), converges to∫

· · ·
∫

(Rd)k+l+1−m

P(Γ(o, x[k]) ' A,Γ(o, x[m−1], y[l+1−m]) ' B)dx[k]dy[l+1−m],

where the integral is finite. The proof is complete.

Theorem 3.3. Let {A1, . . . , Am} be feasible connected graphs. Then(
ξ

(Ai)
n − E[ξ

(Ai)
n ]√

n

)m
i=1

d→ N (0,Σ), Σ = (σAi,Aj )
m
i,j=1.

Here σAi,Ai > 0.

Remark 3.4. Lemma 3.2 implies the following weak law of large numbers

ξ
(A)
n

n
→ λ

k + 1
hA in probability as n→∞.

Proof. Let A be a feasible connected graph and let f be the functional counting the
number of induced subgraphs isomorphic to A. By Theorem 2.15, it suffices to show
the weak stabilization property and the moment condition for f .
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By definition, Dof(W ) is the number of induced subgraphs in G(P ∪ {o})|W
containing the vertex o isomorphic to A,

Dof(W ) =
∑

x[k]⊂P|W

I(Γ(o, x[k]) ' A).

Here recall that I denotes the indicator function. Thus, the functional f is weakly
stabilizing because almost surely,

Dof(Wn)→ ∆ :=
∑
x[k]⊂P

I(Γ(o, x[k]) ' A). (17)

Moreover, since A is feasible, Lemma 3.1 implies that the limit ∆ is finite (almost
surely) and non-trivial.

For the moment condition, observe that

sup
o∈W :cube

E[|Dof(W )|3] ≤ E[∆3]. (18)

Thus, our remaining task is to show that E[∆3] is finite. Similar to the proof of
Lemma 3.2 (see also [8, Lemma 3.4]), we see that there exist constants {C(k, r, s, t) :
0 ≤ r, s, t ≤ k}, such that

E[∆3]

(19)

=

k−1∑
r=0

k−1∑
s=0

min{k−r,k−s}∑
t=0

C(k, r, s, t)

∫
(Rd)`

pA(y[k], z[k−r], w[k−u])dy[k]dz[k−r]dw[k−u],

where ` = 3k − r − u, u = s+ t and pA(y[k], z[k−r], w[k−u]) is the probability that the
following three events happen

Γ(o, y[k]) ' A, Γ(o, y[r], z[k−r]) ' A, Γ(o, y[s], z[t], w[k−u]) ' A.
In addition, each integral in the above expression is finite, which can be proved in
the same way as in Lemma 3.1. Therefore E[∆3] <∞. The proof is complete.

The following result on component counts was shown in [16] by a different ap-
proach for which the rate of convergence in the CLT was also known. The multidi-
mensional CLT itself can be easily derived from Theorem 2.15 here.

Theorem 3.5 ([16]). (i) Let A be a feasible graph on (k + 1) vertices. Let ζ
(A)
n be

the number of components in G(Pn) isomorphic to A. Then as n→∞,

ζn
n
→ λk+1

(k + 1)!

∫
· · ·
∫

(Rd)k
P(Γ(x0 = o, x1, . . . , xk) ' A)

× exp

(∫
Rd

[
k∏
i=0

(1− ϕ(y − xi))− 1

]
dy

)
dx1 · · · dxk > 0,

in probability.

(ii) Let {A1, . . . , Am} be feasible connected graphs. Then(
ζ

(Ai)
n − E[ζ

(Ai)
n ]√

n

)m
i=1

d→ N (0,Σ),

with explicit formula for Σ.
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(a) A graph (b) An intermediate (c) The clique complex

Figure 2: The clique complex of a graph.

3.2 Betti numbers

For a bounded subset W ⊂ Rd, denote by XW the clique complex of the graph
G(P)|W , that is, the abstract simplicial complex formed by the cliques (or complete
subgraphs) of G(P)|W . (A simple example of the clique complex of a graph is given in
Figure 2.) Let βk(W ), or βk(XW ) be the kth Betti number of the simplicial complex
XW . We are going to establish a LLN and a CLT for βk(W ) as W → Rd.

Let us give a quick review on Betti numbers and some necessary properties needed
in the arguments. We refer the readers to the book [20] for more details.

Let K be an abstract simplicial complex, that is, a collection of nonempty subsets
of a finite set V closed under inclusion relation. An element σ ∈ K is called a simplex
and more precisely, a k-simplex, if |σ| = k + 1. For each k, denote by Kk the set of
all k-simplices in K, and let

Ck(K) =

{∑
αi〈σi〉 : αi ∈ F, σi ∈ Kk

}
be a vector space on some fixed field F, where 〈σ〉 denotes the oriented simplex. For
k ≥ 1, the boundary operator ∂k : Ck(K) → Ck−1(K) is defined as a linear mapping
with

∂k(〈v0, . . . , vk〉) =
k∑
i=0

(−1)i〈v0, . . . , v̂i, . . . , vk〉,

on any oriented k-simplex 〈v0, . . . , vk〉. Here the symbol ˆ over vi indicates that
the vertex vi is removed from the sequence. (The operator ∂0 : C0(K) → {0} is
defined to be a trivial one.) We can easily check that ∂k ◦ ∂k+1 = 0, and thus
Bk(K) := Im ∂k+1 ⊂ Zk(K) := ker ∂k. The two are called the kth boundary group
and the kth cycle group, respectively. The quotient space

Hk(K) = Zk(K)/Bk(K)

is called the kth homology group of K, and its rank is the kth Betti number,

βk(K) = rankHk(K) = dimZk(K)− dimBk(K).

Note that the zeroth Betti number coincides with the number of connected compo-
nents in the undirected graph G = (V,E), where E = K1.
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Let {K(i)}i∈I be a finite collection of disjoint simplicial complexes. Then the
disjoint union ti∈IK(i) is again a simplicial complex, and the following identity holds

βk

(⊔
i∈I
K(i)

)
=
∑
i∈I

βk(K(i)). (20)

This property follows directly from the definition. Another useful property is the
following. For two finite simplicial complexes K ⊂ K̃, and any k ≥ 0,

|βk(K)− βk(K̃)| ≤
k+1∑
j=k

(Sj(K̃)− Sj(K)), (21)

where Sj(K) (resp. Sj(K̃)) denotes the number of j-simplices in K (resp. K̃). The
proof of this inequality can be found in [26, 28].

The following LLN for Betti numbers is analogous to a LLN for Betti numbers in
the thermodynamic regime [7, 28].

Theorem 3.6. As the sequence of cubes {Wn} tends to Rd,

βk(Wn)

|Wn|
→ β̄k in probability,

where β̄k is a constant. The limit β̄k is positive, if ϕ ∈ (0, 1).

Proof. We will only show the convergence of the mean, because the convergence in
probability is a consequence of the CLT below. It suffices to consider the sequence of
cubes Wn = [−n1/d/2, n1/d/2)d as n→∞. For L > 0, divide the cube Wn according
to the lattice L1/dZd and let {Ci}`ni=1 be the lattice cubes entirely contained in Wn.
It is clear that `n/n→ 1/L as n→∞. Let

K =

`n⊔
i=1

XCi

be the disjoint union of {XCi} which is a subcomplex of XWn . It follows from the
estimate (21) that

|βk(XWn)− βk(K)| ≤
k+1∑
j=k

(Sj(XWn)− Sj(K)) .

Then by taking the expectation, we obtain that∣∣∣∣∣E[βk(XWn)]

n
− 1

n

`n∑
i=1

E[βk(XCi)]

∣∣∣∣∣ ≤
k+1∑
j=k

(
E[Sj(XWn)]

n
− 1

n

`n∑
i=1

E[Sj(XCi)]

)
.

Here we have used the fact that K is the disjoint union of {XCi}. In addition, note
that all XCi have the same distribution. Therefore∣∣∣∣E[βk(XWn)]

n
− `n
n
E[βk(XC1)]

∣∣∣∣ ≤ k+1∑
j=k

(
E[Sj(XWn)]

n
− `n
n
E[Sj(XC1)]

)
.
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By letting n→∞, it follows that

lim sup
n→∞

E[βk(XWn)]

n
≤ E[βk(XC1)]

L
+

k+1∑
j=k

(
lim
n→∞

E[Sj(XWn)]

n
− E[Sj(XC1)]

L

)
,

lim inf
n→∞

E[βk(XWn)]

n
≥ E[βk(XC1)]

L
−
k+1∑
j=k

(
lim
n→∞

E[Sj(XWn)]

n
− E[Sj(XC1)]

L

)
,

and hence

lim sup
n→∞

E[βk(XWn)]

n
− lim inf

n→∞

E[βk(XWn)]

n

≤ 2
k+1∑
j=k

(
lim
n→∞

E[Sj(XWn)]

n
− E[Sj(XC1)]

L

)
.

Since Sj counts the number of complete subgraphs on (j + 1) vertices, Lemma 3.2(i)
ensures that the limit of E[Sj(XWn)]/n exists. This also implies that the right
hand side of the above equation goes to zero as L → ∞. Therefore, the limit
limn→∞ E[βk(XWn)]/n exists. We will show the positivity of β̄k at the end of this
section. The proof is complete.

Next, we establish a CLT for Betti numbers. Related results are CLTs for Betti
numbers and persistent Betti numbers in [10, 28], respectively.

Theorem 3.7. As the sequence of cubes W ’s tends to Rd,

βk(W )− E[βk(W )]√
|W |

d→ N (0, σ2
k),

for a constant σ2
k ≥ 0. The limiting variance σ2

k is positive, if ϕ ∈ (0, 1).

This is again an application of Theorem 2.15. Thus, we need to show the following

(i) Betti numbers are weakly stabilizing;

(ii) the moment condition holds;

(iii) and the limit add-one cost is non-trivial, if ϕ ∈ (0, 1).

The moment condition follows immediately from that for subgraph counts, and hence
the proof is omitted. We now show the weak stabilization and the non-triviality in
sequent.

Lemma 3.8. Let {K(n)}∞n=1 be a sequence of increasing simplicial complexes. Assume
that K0 is a finite set of complexes which is disjoint from K(n) such that K̃(n) :=
K(n) tK0 is also a simplicial complex for all n. Then the following limit exists

lim
n→∞

(βk(K̃(n))− βk(K(n))).
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Proof. From the definition of Betti numbers, we can write

βk(K̃(n))− βk(K(n)) =
{

dim Z̃
(n)
k − dimZ

(n)
k

}
+
{

dim Z̃
(n)
k+1 − dimZ

(n)
k+1

}
−
{

dim C̃
(n)
k+1 − dimC

(n)
k+1

}
.

Here we use the superscript (n) and that with the symbol˜ to indicate quantities of
K(n) and K̃(n), respectively. It follows from the assumption K̃(n) = K(n) t K0 that

the difference (dim C̃
(n)
k+1 − dimC

(n)
k+1) is a constant.

Let ∂k : C̃
(n+1)
k → C̃

(n+1)
k−1 denote the boundary operator for K̃(n+1). SinceK(n), K̃(n)

and K(n+1) are sub-complexes of K̃(n+1), we get that

Z
(n)
k = ker ∂k ∩ C

(n)
k , Z̃

(n)
k = ker ∂k ∩ C̃

(n)
k , Z

(n+1)
k = ker ∂k ∩ C

(n+1)
k .

As subspaces of C̃
(n+1)
k , we can easily check the relation

C̃
(n)
k ∩ C(n+1)

k = C
(n)
k ,

from which we deduce that

Z̃
(n)
k ∩ Z(n+1)

k = Z
(n)
k .

It then follows that

dimZ
(n)
k = dim Z̃

(n)
k + dimZ

(n+1)
k − dim(Z̃

(n)
k + Z

(n+1)
k )

≥ dim Z̃
(n)
k + dimZ

(n+1)
k − dim Z̃

(n+1)
k .

This implies the increasing property of the sequence {dim Z̃
(n)
k − dimZ

(n)
k }n. Since

the roles of k and k+1 are equal, we conclude that βk(K̃(n))−βk(K(n)) is an increasing
sequence. In addition, it is bounded by taking into account of the inequality (21).
Therefore, the limit exists, which completes the proof.

Lemma 3.9. βk is weakly stabilizing.

Proof. Let Wn be a sequence of increasing cubes tending to Rd. Let ω ∈ Ω be such
that the set P is locally finite and that the graph G(P ∪ {o}) has a finite number of
edges connected to o. Note that the set of such ω has probability one. Then there is a
number N (depending on ω) such that for n ≥ N , Wn contains all vertices connected
to o. Let K(n) = XWn and let K̃(n) be the clique complex of the graph G(P ∪{o})|Wn .
Then for n ≥ N , K0 = K̃(n) \ K(n) does not change. By definition of the add-one
cost, it holds that

Doβk(Wn) = βk(K̃(n))− βk(K(n)),

from which the weak stabilization follows from the above lemma.

On the positivity of β̄k and σ2
k. Let Ok be the graph on [2k+2] with all except

the following edges {{1, k + 1}, {2, k + 3}, . . . , {k, 2k + 2}}. The clique complex XOk

is a boundary of the (k + 1)-dimensional cross-polytope (Definition 3.3 in [13]). It
was known that [12] βk(XOk

) = 1, and that βk(XA) = 0 for any graph A on less than
2k + 2 vertices.
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Lemma 3.10. Assume that the graph Ok is feasible. Then β̄k > 0 and σ2
k > 0. In

particular, if ϕ ∈ (0, 1), then Ok is feasible and hence, both β̄k and σ2
k are positive.

Proof. Assume that Ok is feasible. Recall that ζ
(Ok)
n denotes the number of compo-

nents in G(Pn) isomorphic to Ok. It follows from the property (20) that,

βk(Wn) ≥ ζ(Ok)
n ,

and then from Theorem 3.5 that

β̄k ≥ lim
n→∞

ζ
(Ok)
n

n
> 0.

Next, for the positivity of the limiting variance, we will show that ∆ is non-trivial.
Let Ω0 be the event that the component containing o in G(P ∪ {o}) is isomorphic to
Ok. Then by using the multivariate Mecke equation, we can prove that

P(Ω0) =
λ2k+1

(2k + 1)!

∫
· · ·
∫

(Rd)2k+1

ψOk
(o, x[2k+1])

× exp

(∫
Rd

[ 2k+1∏
i=0

(1− ϕ(y − xi))− 1

]
dy

)
dx[2k+1] > 0.

(See also Proposition 3.1 in [16].) On Ω0, when the cube W is large enough,

Doβk(W ) = βk(XΓ(o,x[2k+1]))− βk(XΓ(x[2k+1])) = βk(XOk
) > 0.

Therefore, ∆(ω) > 0 on Ω0, that is, ∆ is non-trivial. The proof is complete.

4 Size of the biggest component

In this section, we aim to prove the central limit theorem for the size of the biggest
cluster of G(P|W ), or of G(P)|W as W → Rd under some conditions on the connection
function ϕ as follows. We suppose that there exists φ : R+ 7→ [0, 1], such that ϕ(x) =
φ(|x|) for all x ∈ Rd and

(C1) the function φ is continuous at 0 and φ(0) = 1,

(C2) there exist positive constants C0, ε0 such that for all r > 0,

φ(r) ≤ C0r
−(5d+ε0). (22)

For any cube W ⊂ Rd, we denote the biggest connected component of G(P)|W
(resp. of G(P|W )), that is, the connected component with the largest number of
vertices, by C(W ) (resp. C(P|W )). When there are more than one biggest components,
we choose C(W ) to be the component having the vertex with smallest coordinate in
the lexicographic order. We will need the following result on the uniqueness of the
infinite cluster in the graph G(P).

Lemma 4.1 ([21, Section 6.4]). Assume that
∫
Rd ϕ(x)dx ∈ (0,∞). Then there is

a critical parameter λc ∈ (0,∞) such that when λ ∈ (0, λc), all the connected com-
ponents of the random connection model are finite a.s., whereas when λ > λc the
random graph has a unique infinite connected component.
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Theorem 4.2. Assume that the conditions (C1)-(C2) hold. Then there exists λ? ∈
(λc,∞), such that for any fixed λ > λ?, as the sequence of cubes W ’s tends to Rd,

|C(W )| − E[|C(W )|]√
|W |

d→ N (0, σ2),

where σ2 = σ2(λ) > 0.

Proof. Let us begin with an expression for the add-one cost. Let W be a cube
containing the origin o. Recall that C(W ) denotes the biggest connected component
in G(P)|W . Note that G(P ∪ {o})|W is obtained from G(P)|W by adding one vertex
o and edges from o. To identify the biggest component in G(P ∪ {o})|W which is
denoted by C′(W ), there are three cases to consider.

Case 1: the vertex o is connected to C(W ). Then it is clear that the biggest
component in C′(W ) is the connected component containing C(W ). Thus, the add-
one cost is written as

∆(W ) := Dof(W ) = |C′(W )| − |C(W )| = 1 + #{x ∈ P|W : x
W↔ o, x 6∈ C(W )}.

Here x
W↔ o means there is a path γ = (xi)

l
i=0 ⊂ P|W , such that from x = x0, xl = o

and xi ∼ xi+1 for all i = 0, . . . , l − 1. For simplicity, we write x↔ o in case x
Rd

↔ o.
Case 2: the vertex o is not connected to C(W ) and the new component containing

o becomes the biggest one. In this case,

∆(W ) = 1 + #{x ∈ P|W : x
W↔ o} − |C(W )|

= 1 + #{x ∈ P|W : x
W↔ o, x 6∈ C(W )} − |C(W )|.

Case 3: the vertex o is not connected to C(W ) and the new component containing
o has size smaller than C(W ). When it happens, then C′(W ) = C(W ), and hence
∆(W ) = 0.

To apply Theorem 2.15, we will show the weak stabilization and a moment con-
dition with p = 3,

sup
o∈W :cube

E[∆(W )3] <∞. (23)

Define

∆ := I(o ∼ C(Rd))
(

1 + #{x ∈ P : x↔ o, x 6∈ C(Rd)}
)
, (24)

where C(Rd) is the unique infinite cluster in G(P), and o ∼ C(Rd) is the event that o
is connected to C(Rd). For the weak stabilization, we will prove in Subsection 4.2.1
that as a sequence of cubes W ’s tends to Rd,

∆(W )
P→ ∆. (25)

The idea is that, with high probability, C(W ) belongs to C(Rd), and Case 2 does not
happen. For the moment condition, by using an estimate that

0 ≤ ∆(W ) ≤ 1 + #{x ∈ P|W : x
W↔ o, x 6∈ C(W )}.
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showing the moment condition reduces to a problem of estimating the probability

P(x
W↔ o, x 6∈ C(W )).

We will show it in the next sub-section.
Finally, note that when λ > λc, we have P(∆ 6= 0) = P(o ∼ C(Rd)) > 0. Hence

by Theorem 2.15, the limiting variance σ2 > 0, which completes the proof of Theo-
rem 4.2.

Remark 4.3. We guess that Theorem 4.2 holds for all λ > λc. To reduce the condition
that λ > λ? to λ > λc, it appears to us that we need some renormalization of
Russo–Seymour–Welsh type, as done in [22, Chapter 10] for random geometric graph.
However, this task for general random connection models is more complicated and
highly nontrivial, so we leave it for future research. In fact, key tools in the proof of the
weak stabilization (25) and the moment condition (23) are the renormalization steps
to estimate the decay of the probability that there exists a long path not intersecting
to the biggest cluster, see in Proposition 4.5 and Lemma 4.9. In this estimate, we
need λ to be large enough for an initial ingredient of the renormalization procedure,
see in particular Lemma 4.4 and the condtion (56).

In the next subsection, renormalization estimates and some preparations are
proved. The proofs of the weak stabilization and the moment condition are then
given in Subsection 4.2.

4.1 Renormalization and preliminaries

For each δ > 0, we tessellate the whole space Rd to cubes of size δ and denote
the collection of cubes by Γ. Let Gδ be the random graph obtained from G(P) by
deleting the edges between vertices in non-adjacent cubes (that is, keeping only edges
between vertices in the same cube or in adjacent cubes). For each cube B ∈ Γ, when
B ∩ P 6= ∅, we choose an arbitrary point in B ∩ P 6= ∅ (in some deterministic way),
say xB, to be the representation of B. Let Per(δ) be the induced subgraph of Gδ
restricted on the vertex set V = {xB : B ∈ Γ, B ∩ P = ∅}. Then for each cube Λ,
we define

Cper
δ (Λ) = the biggest cluster of Per(δ)|Λ,

and
Cδ(Λ) = the connected component of Gδ|Λ containing Cper

δ (Λ).

For all t ≥ 2s > 0, define

βδ(t) = P(Cδ(Bo(t)) 6⊂ Cδ(Rd)), (26)

νδ(s, t) = sup
y:|y|∞≤t−s

P(Cδ(By(s)) 6⊂ Cδ(Bo(t))). (27)

Here |x|∞ = max1≤i≤d |xi| denotes the infinity norm of x = (x1, . . . , xd) ∈ Rd, and
Bx(t) = {y ∈ Rd : |y−x|∞ ≤ t} denotes the closed ball of radius t centered at x with
respect to the infinity norm. Notice that we have used Br(x) to denote the closed
ball of radius r centered at x with respect to the Euclidean norm. In this section, for
the simplicity of notation we denote the closed ball under the infinity norm by Bx(r).

Lemma 4.4. Assume that the condition (C1) holds.
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(i) There exist positive constants c0, δ0, λ0, such that for all λ > λ0, and t, s large
enough satisfying t

2 ≥ s ≥
√
t, it holds that

νδ0(s, t) ≤ exp(−c0s),

and
βδ0(t) + P(|Cδ0(Bo(t))| ≤ c0t

d) ≤ exp(−c0t).

(ii) For any fixed δ and Λ,

lim
λ→∞

P(|G(P|Λ)| = |Cδ(Λ)|) = 1.

We postpone the proof of Lemma 4.4 to Appendix B.
We define for u ∈ Rd, and α, t > 0,

Aκ(u, α, t) = {∃x, y ∈ P : |x− u|∞ ≤ 2t, x ∼ y, |x− y|∞ ≥ αt}. (28)

Note that the probability of Aκ(u, α, t) does not depend on the position of u, so we
can define

κ(α, t) = P(Aκ(u, α, t)). (29)

It follows from the condition (C2) that

κ(α, t) = O(1)×
∫

[−2t,2t]d

dx

∫
y:|y−x|∞≥αt

dy

|x− y|5d+ε0
= O(t−(3d+ε0)), (30)

with ε0 as in that condition. Here O is the big O notation with a constant not depend
on t.

From now on, we fix δ = δ0 as in Lemma 4.4 and omit δ in the notation of ν and
β. Define for J ⊂ [d], with [d] = {1, . . . , d}, x ∈ Rd, t > s > 0,

AθJ (x, s, t) =
{
∃ γ = (xi)

l
i=0 ⊂ P : xi ∼ xi+1, xi ∈ BJ

x (t) \ Cδ(BJ
x (t)),

(i = 0, . . . , l − 1), x0 ∈ BJ
x (s), xl ∈ BJ

x (2t) \BJ
x (t)

}
, (31)

where
BJ
x (r) = x+

∏
j∈J

[−r, r]×
∏

j∈[d]\J

[0, 2r]. (32)

Here we also omit δ in the notation. Notice that by the translation invariance and
the rotation invariance, P(AθJ (x, s, t))=P(AθJ′ (o, s, t)) for all x ∈ Rd, and all J, J ′

with |J | = |J ′|. Thus, we can denote

θj(
1
16 , t) = P(AθJ (x, t

16 , t)),

for any J with |J | = j ≤ d and x ∈ Rd. Define also

θ( 1
16 , t) = max

0≤j≤d
θj(

1
16 , t).
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Figure 3: Illustration of events AθJ

Proposition 4.5. Suppose that the conditions (C1) and (C2) hold. Then there exist
positive constants λ1, C1, such that when λ > λ1, for all j = 0, . . . , d,

θ( 1
16 , t) ≤ C1t

−(3d+ε0),

with ε0 as in (C2).

The proof of Proposition 4.5 is given in Sub-section 4.3.

Remark 4.6. It would be more natural if we can replace Cδ(BJ
x (t)) by the biggest

cluster C(BJ
x (t)) in the definition of AθJ (x, s, t) in (31). However, the proof of Propo-

sition 4.5 requires some prior estimates as in Lemma 4.4, which are currently not
available. More precisely, Proposition 4.5 still holds if we substitute the family of

27



connected components {Cδ(Bx(t))}t≥1 by any other family {C′(Bx(t))}t≥1 satisfying

β′(t) = P(C′(Bo(t)) 6⊂ C′(Rd)) ≤ exp(−c(log t)2),

ν ′(s, t) = sup
y:|y|∞≤t−s

P(C′(By(s)) 6⊂ C′(Bo(t))) ≤ exp(−c(log s)2),

with c a positive constant, for all t, s large real numbers such that t
2 ≥ s ≥

√
t,

and satisfying the inequality (56) (which is a consequence of Lemma 4.4 (ii) when
considering {Cδ(Bo(t))}t≥1). We could not prove directly these properties for the
family of biggest clusters {C(Bx(t))}t≥1. Instead, we show in Lemma 4.4 that the
properties hold for {Cδ(Bx(t))}t≥1 by using the comparison with percolation.

Corollary 4.7. Suppose that the conditions (C1) and (C2) hold and λ > λ1 with λ1

as in Proposition 4.5. Then there exist C, ε1 > 0, such that

P
(
∃ C a connected component of G(P)|Bo(t) : C ∩ Cδ(Bo(t)) = ∅, |C| ≥ td(1−ε1)

)
≤ Ct−(3d+ε1), (33)

and
P
(
Cδ(Bo(t)) ⊂ C(Bo(t)) ⊂ C(Rd)

)
≥ 1− Ct−(3d+ε1). (34)

Proof of Corollary 4.7. Let ε be a small positive constant. We first observe that

P
(
∃x ∈ P ∩Bo(t) : |Bx(t1−2ε) ∩ P| ≥ td(1−ε)

)
≤ exp(−ctd(1−2ε)),

for some c > 0. Moreover, for any connected set C, if d∞(C) = maxx,y∈C |x − y|∞ ≤
t1−2ε then C ⊂ Bz(t1−2ε) for any z ∈ C. Thus

P
(
∃ C a connected component of G(P)|Bo(t) : |C| ≥ td(1−ε1), d∞(C) ≤ t1−2ε

)
≤ exp(−ctd(1−2ε)). (35)

Now suppose that C ⊂ Bo(t) is a connected set satisfying d∞(C) > t1−2ε and C ∩
Cδ(Bo(t)) = ∅. Then there exists γ = (xi)

l
i=0 ⊂ Bo(t) \ Cδ(Bo(t)) such that xi ∼ xi+1

for all i = 0, . . . , l − 1 and |x0 − xl|∞ > t1−2ε.
We divide the cube Bo(t) into cubes of size t1−2ε/16, and call the center of

these cubes by (yi)
L
i=1 with L � t2dε. Then there exists an index i0 such that

x0 ∈ Byi0 (t1−2ε/16) and thus if Cδ(Byi0 (t1−2ε)) ⊂ Cδ(Bo(t)) then γ = (xi)
l
i=0 is a

realization of Aθ[d](yi0 ,
1
16 , t

1−2ε). In the other words,

{∃ C a connected component of G(P)|Bo(t) : d∞(C) > t1−2ε} ∩ E1 ⊂ E2,

where

E1 = ∩Li=1{Cδ(Byi(t1−2ε)) ⊂ Cδ(Bo(t))}, E2 = ∪Li=1Aθ[d](yi,
1
16 , t

1−2ε).

Thus

P
(
∃ C a connected component of G(P)|Bo(t) : d∞(C) > t1−2ε

)
≤ P(E2) + P(Ec1) ≤ L

(
ν(t1−2ε, t) + θd(

1
16 , t

1−2ε)
)

≤ Ct−(3d+ε0)(1−2ε)+2dε ≤ Ct−(3d+ε0/2),
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for ε small enough. Combining this with (35) we obtain (33).
We turn to prove (34). By (33), with probability 1−O(t−3d+ε1), all the connected

components in Bo(t) that are not intersected with Cδ(B0(t)) have size smaller than
td(1−ε1). On the other hand, by Lemma 4.4 (i), |Cδ(Bo(t))| ≥ ctd and Cδ(Bo(t)) ⊂
Cδ(Rd) ⊂ C(Rd) with probability 1 − exp(−ct) for some c > 0. Altogether gives the
proof of (34).

4.2 Weak stabilization and moment condtion

4.2.1 Proof of the weak stabilization (25)

Let {Wn} be an increasing sequence of cubes tending to Rd. Let A be the event
that the vertex o is connected to the infinite cluster C(Rd). Recall the expression of
∆n = ∆(Wn) in three different cases in the proof of Theorem 4.2. Recall also the
definition of the limit add-one cost

∆ = I(A)
(

1 + #{x ∈ P : x↔ o, x 6∈ C(Rd)}
)
.

Define
∆′n = I(A)

(
1 + #{x ∈ P|Wn : x

Wn↔ o, x 6∈ C(Rd)}
)
.

It is clear that with probability one, ∆′n → ∆, and thus, ∆′n
P→ ∆ as n → ∞.

Therefore, for the weak stabilization, it suffices to show that

∆n −∆′n
P→ 0 as n→∞. (36)

Denote by An the event that

An = {C(Wn) ⊂ C(Rd)}.

By Corollary 4.7, P(An) → 1 as n → ∞. On the event A, denote by x1, . . . , xk the
points in the infinite cluster C(Rd) directly connected to o. Let Bn be the event that

Bn = A ∩ {xi ∈ C(Wn), i = 1, . . . , k} ⊂ An.

Then we claim that
P(Bn)→ P(A) as n→∞. (37)

Indeed, for m > n, note that

A ∩An ∩ {C(Wn) ⊂ C(Wm)} ∩ {xi
Wm↔ C(Wn), i = 1, . . . , k} ⊂ Bm,

which implies

P(Bm) ≥ P(A)− P(Acn)− P(C(Wn) 6⊂ C(Wm))

−
(

1− P(xi
Wm↔ C(Wn), i = 1, . . . , k)

)
.

For fixed n, it is clear that the second term and the fourth term go to zero as m →
∞. The third term also goes to zero as n,m → ∞ by taking into account of the
equation (34) and Lemma 4.4(i). Taking the liminf in the above equation for fixed n,
then letting n tend to infinity, we get that

P(A) ≥ lim inf
m→∞

P(Bm) ≥ P(A),
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proving the claim.
It follows from the definition of the event Bn that on Bn,

∆n = 1 + #{x ∈ P|Wn : x
Wn↔ o, x 6∈ C(Wn)}

= 1 + #{x ∈ PWn : x↔ o, x 6∈ C(Rd)} = ∆′n.

Now let us write

∆n −∆′n = ∆nI(Bn)−∆′n + ∆n(I(A)− I(Bn)) + ∆nI(Ac)
= ∆′n(I(Bn)− I(A)) + ∆n(I(A)− I(Bn)) + ∆nI(Ac).

The first and the second terms converge in probability to zero by the claim (37). It
remains to show that the third term converges to zero in probability. But it is an
easy consequence of the fact that on the event Ac, the finite component containing
the vertex o is of course smaller than the biggest component when n is large enough.
And thus, when n is large enough, ∆n = 0 (Case 3 in the expression of ∆n). The
proof of the weak stabilization is complete.

4.2.2 Proof of the moment estimate (23)

Let W 3 o be a cube. Recall the following upper bound for the add-one cost

0 ≤ ∆(W ) ≤ 1 + #{x ∈ P|W : x
W↔ o, x 6∈ C(W )}

= 1 +
∑

x∈P|W

I(x W↔ o, x 6∈ C(W )).

Thus

∆(W )3 ≤ 4 + 4

( ∑
x∈P|W

I(x W↔ o, x 6∈ C(W ))

)3

= 4 + 24
∑

{x,y,z}⊂P|W

I(x W↔ o, y
W↔ o, z

W↔ o, x, y, z 6∈ C(W ))

+ 24
∑

{x,y}⊂P|W

I(x W↔ o, y
W↔ o, x, y 6∈ C(W )) + 4

∑
x∈P|W

I(x W↔ o, x 6∈ C(W )).

(38)

Here the first and the second sums are taken over subsets of three elements, and two
elements of P|W , respectively.

For x ∈ Rd and a finite subset X ⊂ Rd with o 6∈ X , let G(X ) be a random graph
generated by connecting any two points (y, z) of X with probability ϕ(y − z), and
G(X ∪ {x}), when x 6∈ X , be the random graph obtained from G(X ) by adding the
vertex x and new edges connected to x (independently with probability ϕ(x− y), y ∈
X ). Similarly, let G(X ∪ {x, o}) be the random graph obtained from G(X ∪ {x}) by
adding the vertex o and new edges from o. Denote by C(G) the biggest connected
component of a graph G. Define ξ(x;X ) to be the probability that x and o are in
the random graph G(X ∪ {x, o}) and x does not belong to the biggest component of
G(X ∪ {x}),

ξ(x;X ) = P2(x↔ o, x 6∈ C(G(X ∪ {x}))).
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Here we may consider P = P1 ⊗ P2, where P1 and P2 are the probability measures
for the Poisson process and for connecting edges, respectively. With those notations,
by the Mecke formula, the expectation of the last sum in the estimate (38) can be
written as

E
[ ∑
x∈P|W

I(x W↔ o, x 6∈ C(W ))

]
= E1

[ ∑
x∈P|W

ξ(x;P|W )

]

= λ

∫
W

E1[ξ(x;P|W )]dx. (39)

Note that E1[ξ(x;P|W )] is nothing but the probability of the event that x is
connected to o in G(P|W ∪{x, o}) and x does not belong to the biggest component of
C(G(P|W ∪{x})). The latter condition implies that C(G(P|W ∪{x})) = C(G(P|W )) =
C(W ), because G(P|W ) is a subgraph of G(P|W ∪ {x}). Therefore, we deduce that

E1[ξ(x;P|W )] ≤ P(Ax), (40)

where

Ax = {∃(xi)li=0 ∈ P|W ∪ {x, o} \ C(W ) : xi ∼ xi+1, i = 0, . . . , l − 1, (x0 = o, xl = x)}.

Lemma 4.8. Assume that λ > λ1 with λ1 as in Proposition 4.5. Then there exist
positive constants C2, ε2, such that

P(Ax) ≤ C2|x|−(3d+ε2)
∞ . (41)

Proof of the moment condition (23). The expectation of the third sum in the esti-
mate (38) is uniformly bounded by combining equations (39)–(41). Let us now show
the uniform boundedness of the expectation of the first sum.

For x, y, z ∈ W , and a finite set X ⊂ W , we build random graphs in the same
way as above in the order that

G(X )→ G(X ∪ {x})→ G(X ∪ {x, y})→ G(X ∪ {x, y, z})→ G(X ∪ {x, y, z, o}).

Define

ξ3(x, y, z;X ) = P2(x↔ o, y ↔ o, z ↔ o, and x, y, z 6∈ C(G(X ∪ {x, y, z}))).

Then by the multivariate Mecke equation (Theorem 4.4 in [17]), the expectation of
the first sum is written as

E
[ ∑
{x,y,z}⊂P|W

I(x W↔ o, y
W↔ o, z

W↔ o, x, y, z 6∈ C(W ))

]

=
λ3

6

∫
(W )3

E1[ξ3(x, y, z;P|W )] dxdydz.

Note that E1[ξ3(x, y, z;P|W )] is the probability of the event Ax,y,z that x, y and z
are connected to o in the random graph G(P|W ∪ {x, y, z, o}) and x, y and z do not
belong to the biggest component of G(P|W ∪ {x, y, z}). The latter condition implies
that

C(G(P|W ∪ {x, y, z})) = C(G(P|W ∪ {x, y})) = C(G(P|W ∪ {x})) = C(W ).
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Note that Ax,y,z is not included in Ax ∩ Ay ∩ Az. However, it holds that

Ax,y,z ⊂ A′x ∩ A′y ∩ A′z,

where A′x,A′y and A′z are events obtained by replacing the condition

∃(xi)li=0 ∈ P|W ∪ {x, o}

in the definition of Ax,Ay and Az, respectively, to the condition that

∃(xi)li=0 ∈ P|W ∪ {x, y, z, o}.

We can show that the probabilities of A′x,A′y and A′z also satisfy analogous estimates
as those for Ax,Ay and Az in Lemma 4.8, that is, there exist positive constants C3, ε3,
such that

P(A′u) ≤ C3|u|−(3d+ε3)
∞ , u ∈ {x, y, z}. (42)

Together with the following inequality

P(A′x ∩ A′y ∩ A′z) ≤ min{P(A′x),P(A′y),P(A′z)} ≤ P(A′x)1/3P(A′y)1/3P(A′y)1/3,

we deduce that

E1[ξ3(x, y, z;P|W )] = P(Ax,y,z) ≤ max{1, C|x|−d+ε|y|−d+ε|z|−d+ε} =: M(x, y, z),

for some constants C and ε. Note that the function M is integrable over (Rd)3.
Therefore,∫

(W )3
E1[ξ3(x, y, z;P|W )] dxdydz ≤

∫
(W )3

M(x, y, z) dxdydz

≤
∫

(Rd)3
M(x, y, z) dxdydz <∞,

implying the uniform boundedness of the expectation of the first sum follows. Similar
argument yields the uniform boundedness of the expectation of the second sum in
the estimate (38). The moment condition (23) is proved.

Proof of Lemma 4.8. Let W be a cube containing the vertex o. Let u = (u1, . . . , ud)
be the point such that W has the expression W =

∏d
j=1[uj , uj + h] with h the size of

W . Since o ∈W , we have uj ≤ 0 for all j = 1, . . . , d. Without loss the generality, we

assume that o is in the lowest conner of W , that is, o ∈
∏d
j=1[uj , uj + h

2 ].

For each J ⊂ [d], we denote by uJ the vertex such that uJj = 0 for j ∈ J and

uJj = uj for j ∈ [d]\J . We claim that there exist positive constants c and {cJ , J ⊂ [d]},
such that for all 0 < t ≤ h, one has BJ

uJ
(ct) ⊂W for all J ⊂ [d] and{

∃ (xi)
l
i=0 ⊂W : x0 = o, |xl|∞ ≥ t, xi ∼ xi−1 ∀ i = 1, . . . , l

}
∩ Aκ(u, c, t)c

⊂
⋃
J⊂[d]

A′J(uJ , cJ t), (43)
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where Aκ(u, c, t) is defined as in (28) (including two more points {x, o}) and

A′J(x, s) =
{
∃ γ = (yi)

l
i=0 ⊂ P : yi ∈ BJ

x (s), yi ∼ yi+1 ∀ i = 0, . . . , l − 1,

y0 ∈ BJ
x ( s

16), yl ∈ BJ
x (2s) \BJ

x (s)
}
,

with BJ
x (s) defined as in (32).

Assuming this claim for a moment, we return to estimate P(Ax). By Lemma 4.4(i),
Corollary 4.7 and the estimate (30),

P(Ec) ≤ C|x|−(3d+ε), (44)

for some C, ε > 0, where

E :=
{
Cδ(BJ

uJ (cJ |x|∞)) ⊂ Cδ(W ) ⊂ C(W )∀ J ⊂ [d]
}
∩ Aκ(u, c, |x|∞)c.

Suppose that Ax ∩ E happens. Then there exists γ = (xi)
l
i=0 ⊂ W \ Cδ(W ) such

that x0 = o, xl = x, xi ∼ xi−1 for i = 1, . . . , l. Hence, using (43) we obtain that on
E , there exists J ⊂ [d], such that the event AθJ (uJ , 1

16 , cJ |x|∞) happens. Therefore,
using Proposition 4.5 we have

P(Ax ∩ E) ≤ 2d max
0≤j≤d

θj(
1
16 , c|x|∞) ≤ C|x|−(3d+ε)

∞ ,

for some C, ε > 0. Combining this with (44), we obtain the desired estimate (41).
Now we show the relation (43) for d = 2, the proof for d ≥ 3 is similar and hence

is omitted. Here, we have o ∈ u+ [0, h2 ]2 and 0 < t ≤ h. We take c = 2−9. There are
four cases corresponding to the relative position of o and u as follows.

First, if o − u ∈ [0, t
24

]2, we consider J = ∅ and c∅ = 2−1, u∅ = u. Define m =
inf{i : xi /∈ B∅

u∅(c∅t)} (recall that B∅
u∅(s) = u∅ + [0, 2s]2). We have xm ∈ B∅

u∅(2c∅t),
as xm−1 ∈ B∅

u∅(c∅t) and |xm − xm−1|∞ ≤ ct by Aκ(u, c, t)c. Then since

o ∈ B∅
u∅( c∅t

24
) ⊂ B∅

u∅(c∅t) ⊂W ∩ [−t, t]2,

the path (xi)
m
i=0 is a realization of A′∅(u∅, c∅t).

Second, if o−u ∈ [ t
24
, h2 ]× [0, t

28
], then consider J = {1}, u{1} = (0, u2), c{1} = 2−4

and observe that

o ∈ B{1}
u{1}

(
c{1}t

24
) ⊂ B{1}

u{1}
(c{1}t) ⊂W ∩ [−t, t]2.

Then by the same argument as in the first case, we have A′{1}(u
{1}, c{1}t) happens.

Third, if o − u ∈ [0, t
28

] × [ t
24
, h2 ], using the same argument as above, we have

A′{2}(u
{2}, c{2}t) occurs with c{2} = 2−4.

Finally, if the above three cases do not hold, then u1, u2 ≤ − t
28

and hence

o ∈ B[2]

u[2]
(
c[2]t

24
) ⊂ B[2]

u[2]
(c[2]t) ⊂W ∩ [−t, t]2,

with u[2] = o, c[2] = 2−8. We then can conclude that A′[2](u
[2], c[2]t) happens. The

proof of (43) is completed.
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4.3 Proof of Proposition 4.5

For any t ≥ 2s > 0, α ∈ (0, 1/4), and x ∈ Rd, recall β(t) and ν(s, t) and κ(α, t) from
Sub-section 4.1.

The key to the proof of Proposition 4.5 is the following recursive relation, which
is inspired by the ideas in the study of Boolean percolation in [3, 14].

Lemma 4.9 (Renormalization estimate). There exists a positive constant K ≥ 1,
such that

θ( 1
16 , t) ≤ κ( 1

210
, t) +Kν( t

27
, t) +K

(
θ( 1

16 ,
t

23
) + θ( 1

16 ,
t

27
)
)2
.

Proof. We have to prove that for al 0 ≤ j ≤ d,

θj(
1
16 , t) ≤ κ( 1

210
, t) +Kν( t

27
, t) +K

(
θ( 1

16 ,
t

23
) + θ( 1

16 ,
t

27
)
)2
. (45)

For simplicity, we prove here the case j = 0 and d = 2 because the proof of general
cases is essential the same.

We recall
θ0( 1

16 , t) = P(Aθ∅(o, t
16 , t)), (46)

where AθJ (s, t) and BJ(x, r) are defined as in (31) and (32).
We call A = (2t, 0), B = (2t, 2t), C = (0, 2t) and A1 = ( t2 , 0), B1 = ( t2 ,

t
2), C1 =

(0, t2) and A2 = (3t
2 , 0), B2 = (3t

2 ,
3t
2 ), C2 = (0, 3t

2 ). Then we cover the segments A1B1∪
B1C1 by squares S1,a, S1,c, S1,1, . . . , S1,K1 , where S1,a, S1,c has the length size t/26 and
are adjacent to OA,OC respectively, and S1,1, . . . , S1,K1 have the length size t/210.
Similarly, we cover the segments A2B2 ∪ B2C2 by squares S2,a, S2,c, S2,1, . . . , S2,K2 .
See Figure 4 for an illustration of the cover. Notice that for i = 1, 2,

Figure 4: Illustration of the cover of A1B1 ∪B1C1

Si,a = B
{1}
Ai

( t
27

), Si,c = B
{2}
Ci

( t
27

), S′i,a, S
′
i,c ⊂ S, (47)
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where
S = [0, 2t]2, S′i,a := B

{1}
Ai

( t
23

), S′i,c := B
{1}
Ci

( t
23

). (48)

Similarly, if we call yi,j with i = 1, 2 and 1 ≤ j ≤ Ki, the center of the squares Si,j ,
then

Si,j := Byi,j (
t

211
), S′i,j := Byi,j (

t
27

) ⊂ S. (49)

Define

Aν(t) = {Cδ(S′i,a), Cδ(S′i,c), Cδ(S′i,j) ⊂ Cδ(S), ∀ i = 1, 2; 1 ≤ j ≤ Ki}.

We then claim that

Aθ∅(o, t
16 , t) ∩ Aκ(o, 2−10, t)c ∩ Aν(t) ⊂ B1(t) ∩ B2(t), (50)

where Aκ(o, 2−10, t) is defined as (28), and for i = 1, 2,

Bi(t) = Aθ{2}(Ai,
t

27
, t

23
) ∪ Aθ{1}(Ci,

t
27
, t

23
)

Ki⋃
j=1

Aθ[2](yi,j ,
t

211
, t

27
). (51)

Assuming this claim for a moment, we prove the lemma. Notice that B1(t) depends
only on the configuration of the graph inside [0, 3t

4 ]2, whereas B2(t) is measurable
to the the configuration of the graph in [0, 7t

4 ]2 \ [0, 5t
4 ]2. Hence, the two events are

independent, and thus (50) gives that

θ0( 1
16 , t) = P(Aθ[2](o,

t
16 , t)) ≤ P(Aκ(o, 2−10, t)) + P(Acν(t)) + P(B1(t))P(B2(t))

≤ κ( 1
210
, t) + (K1 +K2 + 4)ν( t

27
, t) + P(B1(t))P(B2(t)).

Moreover, by the union bound, for i = 1, 2,

P(Bi(t)) ≤ (2θ1( 1
16 ,

t
23

) +Kiθ2( 1
16 ,

t
27

)). (52)

Combining the last two estimates, we obtain (45) with K = (K1 + 2)(K2 + 2).
Now it remains to show (50). Suppose that Aθ∅(o, 1

16 , t)∩Aκ(t)∩Aν(t) happens.
Then there exists a path γ = (xi)

l
i=0 such that x0 ∈ [0, t

23
]2 and xi ∈ [0, 2t]2 \

Cδ([0, 2t]2) for i = 0, . . . , l − 1 and xl /∈ [0, 2t]2 with positive coordinates.
Since S1,a, S1,c, S1,j , j = 1, . . . ,K1 is a cover of A1B1∪B1C1 and by the assumption

on Aκ(o, 2−10, t)c, |xi − xi+1|∞ ≤ 2−10t for all i = 0, . . . , l − 1, there must be some
vertices of the path γ lying in these cubes. So we can define

l1 = min

{
i ∈ [1, l − 1] : xi ∈ S1,a ∪ S1,c ∪

K1⋃
j=1

S1,j

}
.

Suppose that xl1 ∈ S1,a. Define also

l′1 = min{i ≥ l1 : xi /∈ S′1,a}.

Then by the definition,

xl1 ∈ S1,a = B
{1}
A1

( t
27

), xi ∈ S′1,a = B
{1}
A1

( t
23

) ∀i = l1 + 1, . . . , l′1 − 1,
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and since Aκ(o, 2−10, t)c holds,

xl′1 ∈ B
{1}
A1

( t
23

+ t
210

) \B{1}A1
( t

23
) ⊂ B{1}A1

( t
22

) \B{1}A1
( t

23
).

Moreover, we notice that by Aν(t),

xi /∈ Cδ(S′1,a) ∀i = l1, . . . , l
′
1 − 1.

Hence, (xi)
l′1
i=l1

is a realization for the eventAθ{2}(A1,
t

27
, t

23
). The cases that xl1 ∈ S1,c

and xl1 ∈ S1,j for some j = 1, . . . ,K1 can be treated similarly, leading to the realiza-
tions of events Aθ{1}(C1,

t
27
, t

23
) and Aθ[2](y1,j ,

t
211
, t

27
), respectively. In summary, the

event B1 happens.
By the same argument, we can also prove that the vent B2 happens and the proof

of (50) completes.

Lemma 4.10. Let (at)t≥0, (bt)t≥0 ⊂ R+, 0 < ε1 < ε2 < 1, and K ≥ 1, t0 ≥ ε2
1−ε2

satisfy for all t ≥ t0

(i) at ≤ bt +K(aε1t + aε2t)
2,

(ii) 4K(bε1t + bε2t)
2 ≤ bt,

(iii) at ≤ 2bt, for all t0 ≤ t ≤ t0/ε1.

Then, at ≤ 2bt for all t ≥ t0.

Proof. By assumption (iii), we need to show at ≤ 2bt for all t ≥ t0/ε1. We prove by
induction in k that this claim holds for [t0/ε1 + k, t0/ε1 + k + 1]. Let t be in this
interval. Then

at ≤ bt +K(aε1t + aε2t)
2 ≤ bt +K(2bε1t + 2bε2t)

2 ≤ 2bt. (53)

Here, we used (i) and (ii) for the first and third inequalities respectively and for
the second one, we used the induction hypothesis with noting that for t ∈ [t0/ε1 +
k, t0/ε1 + k + 1], one has t0 < ε1t < ε2t < t0/ε1 + k.

Proof of Proposition 4.5. Let K be as in Lemma 4.9. Define

at = θ( 1
16 , t), b′t = κ( 1

210
, t) +Kν( t

27
, t), ε1 = 2−7, ε2 = 2−3.

Then by Lemma 4.9, for all t ≥ 0,

at ≤ b′t +K(aε1t + aε2t)
2.

Moreover, by (30) and Lemma 4.4 (i),

b′t ≤ Ct−(3d+ε0),

for some C > 0 and ε as in (C2). Hence,

at ≤ bt +K(aε1t + aε2t)
2, (54)

with bt = Ct−(3d+ε0). There exists t0 = t0(ε0, ε1, ε2,K,C) > 0, such that for all t ≥ t0

4K(bε1t + bε2t)
2 ≤ bt. (55)
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It is clear that θ( 1
16 , t) ≤ P(|G(P|[−t,t]d)| 6= |Cδ([−t, t]d)|) → 0 as λ → ∞, by

Lemma 4.4(ii). Thus for all λ large enough

at ≤ 2bt, ∀ t0 ≤ t ≤ t0/ε1. (56)

Combining the last three estimates and Lemma 4.10, we get that for all t ≥ t0

at ≤ 2bt ≤ 2Ct−(3d+ε),

which completes the proof.

A Quenched CLT

Let us first recall the setting of the quenched CLT. The underlying probability space
is written as the product

(Ω,F ,P) = (Ω1,F1,P1)× (Ω2,F2,P2)

for which the first component of η̂ is defined on Ω1, and the second and the third
ones are defined on Ω2, that is,

η̂(ω) = {(x(ω1), t(ω2),M(ω2))}.

We will use Ei and Vari, (i = 1, 2) to denote the expectation and the variance with
respect to Pi. Let W2 be the second Wasserstein distance in the space of probability
measures on R having finite second moment

W2(µ, ν)2 = inf
γ∈Γ(µ,ν)

∫∫
R×R
|x− y|2dγ(x, y),

where Γ(µ, ν) is the collection of all measures on R2 having µ and ν as marginal
distributions. It is known that the convergence of probability measures under W2

is equivalent to the convergence in distribution plus the convergence of the second
moment. Moreover, for two mean-zero random variables X and Y defined on the
same probability space, it follows directly from the definition of the distance that

W2(X,Y )2 ≤ E[(X − Y )2] = Var[X − Y ].

Assume that the functional f satisfies the conditions in Theorem 2.5. Let

Zn(ω1, ω2) =
f(T (η̂|Wn))− E2[f(T (η̂|Wn))]√

n
,

where Wn := [−n1/d/2, n1/d/2)d. Then for each fixed ω1 ∈ Ω1, Zn is a random
variable on Ω2 of mean zero. We assume in addition that the (2 + δ)th moment of
Zn is finite for any n > 0, that is, for some δ > 0,

E[|Zn|2+δ] <∞, for all n.

Then there exists σ2
q ≥ 0 such that for any ε > 0,

P1

(
ω1 : W2(Zn(ω1, ·),N (0, σ2

q )) ≥ ε
)
→ 0 as n→∞. (57)
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In particular, w.h.p. (Zn(ω1, ·))n≥1 converges weakly to N (0, σ2
q ).

Let us prove the above statement. We will use the notations in the proof of
Theorem 2.5. Define Yn,L = Yn,L(ω1, ω2) as

Yn,L :=
1√
n

`n∑
i=1

(
f(T (η̂|Ci))− E2[f(T (η̂|Ci))]

)
=:

1√
n

`n∑
i=1

fi.

Then for fixed ω1, under P2, Yn,L is a sum of independent random variables with

Var2[Yn,L] =
1

n

`n∑
i=1

Var2[fi].

Note that the sequence {Var2[fi]}`ni=1 is i.i.d. under P1. Then the strong law of large
numbers implies that for almost surely ω1 ∈ Ω1, as n→∞,

Var2[Yn,L] =
`n
n

1

`n

`n∑
i=1

Var2[fi]→
σ′2L
L
, σ′2L := E1[Var2[fi]].

Similarly, by the finiteness of the (2 + δ)th moment, we obtain that for almost surely
ω1 ∈ Ω1, as n→∞,

1

n

`n∑
i=1

E2[|fi|2+δ]→ 1

L
E1[E2[|fi|2+δ]] = E[|fi|2+δ] <∞.

Then for almost surely ω1 ∈ Ω1 (those ω1 such that the above two equations hold),
by using Lyapunov’s central limit theorem (see [2, Theorem 27.3]), we obtain that

W2(Yn,L(ω1, ·),N (0, σ′2L /L))→ 0 as n→∞. (58)

Note that σ′2L may be zero.
Observe that for any random variable X defined on Ω with finite second moment,

E1[Var2[X − E2[X]]] = E1[E2[X2]− E2[X]2] ≤ E[X2]− E[X]2 = Var[X]. (59)

This implies that σ′2L ≤ σ2
L, and thus the sequence {σ′2L /L} is bounded. Let σ2

q be a
limit of {σ′2L /L}, that is, for some subsequence {Lk} tending to infinity,

σ2
q = lim

k→∞

σ′2Lk

Lk
.

We are going to show that for this σ2
q , the quenched central limit theorem (57) holds.

(And thus σ2
q is unique as a consequence.) It follows from the observation (59) and

the estimate (10) that

lim
L→∞

lim sup
n→∞

E1 [Var2 [Zn − Yn,L]] = 0. (60)

This is a key estimate to show our result.
Next, by the triangle inequality, we see that

W2(Zn(ω1, ·),N (0, σ2
q )) ≤W2(Zn, Yn,L) +W2(Yn,L,N (0, σ′2L /L))

+W2(N (0, σ′2L /L),N (0, σ2
q )).
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Here for simplicity, we have removed (ω1, ·) in formulae. Let ε > 0 be given. By the
definition of σ2

q , when k is large enough, for L = Lk,

W2(N (0, σ′2L /L),N (0, σ2
q )) <

ε

3
.

For those L, the above triangle inequality implies that

P1(W2(Zn,N (0, σ2
q )) ≥ ε)

≤ P1

(
W2(Zn, Yn,L) ≥ ε

3

)
+ P1

(
W2(Yn,L,N (0, σ′2L /L)) ≥ ε

3

)
.

Since as n → ∞, the second term goes to zero by the almost sure convergence (58),
it follows that

lim sup
n→∞

P1(W2(Zn,N (0, σ2
q )) ≥ ε) ≤ lim sup

n→∞
P1

(
W2(Zn, Yn,L) ≥ ε

3

)
≤ lim sup

n→∞
P1

(
Var2[Zn − Yn,L] ≥ ε2

9

)
≤ lim sup

n→∞

9

ε2
E1[Var2[Zn − Yn,L]].

Here we have used the inequality W2(X,Y ) ≤ Var[X − Y ] for mean zero random
variables X and Y defined on the same probability in the second line and Markov’s
inequality in the last line. The desired result immediately follows from the esti-
mate (60). �

B Proof of Lemma 4.4

Proof. For the convenience, let us recall the construction of the connected component
Cδ(Λ). For each δ > 0, we tessellate the whole space Rd to cubes of size δ and call
Γ the collection of cubes. Let Gδ be the random graph obtained from G(P) by
deleting the edges between vertices in non-adjacent cubes. For each cube B ∈ Γ,
when B ∩ P 6= ∅, we take arbitrarily a point in B ∩ P 6= ∅, say xB, to be the
representation of B. Let Per(δ) be the induced subgraph of Gδ restricted on the
vertex set V = {xB : B ∈ Γ, B ∩ P = ∅}. Then for each cube Λ, we define

Cper
δ (Λ) = the biggest cluster of Per(δ)|Λ,

and
Cδ(Λ) = the connected component of Gδ|Λ containing Cper

δ (Λ).

If we consider each cube B ∈ Γ as a point in Zd and then we obtain a percolation.
More precisely, each cube B ∈ Γ is called open if B ∩ P 6= ∅ and thus

p = P(a cube is open) = 1− exp(−λδd).

For any two adjacent open cubes B1 and B2, we draw an edge between them if there
is an edge between their representations. In fact, the probability that the two open
cubes are connected is

ϕ(xB1 − xB2) ≥ q := inf
x1∈B1,x2∈B2

ϕ(x1 − x2).
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Then, Per(δ) can be viewed as a bond percolation on Zd with the following rule. An
edge e = {a, b} is called open if both a and b are open and the edge between a and
b is drawn. So Per(δ) is indeed a locally-dependent percolation (since the statuses of
e = {a, b} and f = {c, d} are independent if {a, b} ∩ {c, d} = ∅) with parameters

pe = P(e is open) ≥ p2q,

for all the edges e. By [18], there exists p′, such that whence pe > p′ for all edges e,
Per(δ) stochastically dominate the supercritical standard bond percolation on Zd.

By (C1), we have q → 1 as δ → 0. Moreover, p→ 1 when λ→∞ and δ is fixed.
Therefore, we can find δ0, λ0, such that if λ > λ0, and δ = δ0,

pe ≥ p2q ≥ 1+p′

2 > p′, (61)

for all edges e, and thus Per(δ) stochastically dominates the supercritical bond per-
colation. Thus for all t > 0

βδ(t) = P(Cδ(Bo(t)) 6⊂ Cδ(Rd)) = P(Cδ(Bo(t)) ∩ Cδ(Rd) = ∅)

≤ P(Cper
δ (Bo(t)) ∩ Cper

δ (Rd) = ∅) ≤ exp(−ct),

for some universal constant c > 0. Here for the first inequality, we used the fact that
Per(δ) is a subgraph of Gδ and for the last inequality we used stochastic domination
obtained above and standard estimates in Bernoulli percolation on Zd, see e.g. [9].
By the same arguments, we can also prove the other estimate in (i).

We turn to prove (ii). Observe that |G(P|Λ)| = |Cδ(Λ)| when for any pair of
adjacent small cubes, there exists an edge connecting them and all the subgraphs
constrained in cubes are connected. Hence,

P(|G(P|Λ)| 6= |Cδ(Λ)|) ≤ P(∃B ∈ Γ|Λ : G(P|B) is not connected)

+ P(∃B,B′ ∈ Γ|Λ : B,B′ are adjacent and there is no edge between them),
(62)

where Γ|Λ is the set of cubes that intersect with Λ.
Given two adjacent cubes B and B′, let X and X ′ denote the number of vertices

of P in B and B′ respectively. Then X and X ′ are i.i.d. random variables with the
Poisson distribution of mean λδd. Notice that each pair {x, y ∈ P|B}, or each pair
{z ∈ B, z′ ∈ B′} is connected with probability larger than q ∈ (0, 1]. Therefore,

P(G(P|B) is not connected | X) ≤ P(∃x, y ∈ PB : d(x, y) > 2 | X)

≤ P(∃x, y ∈ PB : ∀z ∈ PB, x 6∼ z or y 6∼ z | X)

≤ X(X − 1)(1− q2)(X−2),

where d is the graph distance in G(P|B). Moreover,

P(there is no edge between B,B′ | X,X ′) ≤ (1− q)XX′ .

Combining the above inequalities with (62), we obtain

P(|G(P|Λ)| 6= |Cδ(Λ)|) ≤ |Γ|Λ|E
[
X(X − 1)(1− p2

1)(X−2)
]

+ |Γ|Λ|2E
[
(1− p2)XX

′
]
.

The right hand side of the above tends to 0 as λ → ∞, since X and X ′ are i.i.d.
random variables with law Poi(λδd).
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